精品欧美无人区乱码毛片,欧美人与动牲交久久,91久久久久久亚洲精品,日韩人妻中文一区二区三区,久久精品国产一区二区,欧美精品午夜理论片在线网址,久久久久久久麻豆,欧美永久免费精品,欧美在线播放一区二区欧美馆

佳學(xué)基因遺傳病基因檢測機(jī)構(gòu)排名,三甲醫(yī)院的選擇

基因檢測就找佳學(xué)基因!

熱門搜索
  • 癲癇
  • 精神分裂癥
  • 魚鱗病
  • 白癜風(fēng)
  • 唇腭裂
  • 多指并指
  • 特發(fā)性震顫
  • 白化病
  • 色素失禁癥
  • 狐臭
  • 斜視
  • 視網(wǎng)膜色素變性
  • 脊髓小腦萎縮
  • 軟骨發(fā)育不全
  • 血友病

客服電話

4001601189

在線咨詢

CONSULTATION

一鍵分享

CLICK SHARING

返回頂部

BACK TO TOP

分享基因科技,實(shí)現(xiàn)人人健康!
×
查病因,阻遺傳,哪里干?佳學(xué)基因正確有效服務(wù)好! 靶向用藥怎么搞,佳學(xué)基因測基因,優(yōu)化療效 風(fēng)險(xiǎn)基因哪里測,佳學(xué)基因
當(dāng)前位置:????致電4001601189! > 檢測產(chǎn)品 > 生殖健康 > 男性生殖 >

【男性不孕癥】男性不孕癥的遺傳因素和非遺傳因素——基因檢測準(zhǔn)嗎

(1) 環(huán)境壓力是如何降低精子質(zhì)量和降低男性生育能力的;(2)哪些化學(xué)元素會導(dǎo)致男性生殖系統(tǒng)的氧化應(yīng)激和免疫遺傳學(xué)改變;(3) 多態(tài)性如何與生殖潛能和促抗氧化機(jī)制的變化相關(guān),作為男性生殖條件的病理生理障礙的標(biāo)志;(4)免疫遺傳性疾病的環(huán)境應(yīng)激因素如何伴隨男性不育和反應(yīng);環(huán)境和遺傳危險(xiǎn)因素的分布和流行程度如何。

男性不孕癥的遺傳因素和非遺傳因素

Abstract

We explain environmental and genetic factors determining male genetic conditions and infertility and evaluate the significance of environmental stressors in shaping defensive responses, which is used in the diagnosis and treatment of male infertility. This is done through the impact of external and internal stressors and their instability on sperm parameters and their contribution to immunogenetic disorders and hazardous DNA mutations. As chemical compounds and physical factors play an important role in the induction of immunogenetic disorders and affect the activity of enzymatic and non-enzymatic responses, causing oxidative stress, and leading to apoptosis, they downgrade semen quality. These factors are closely connected with male reproductive potential since genetic polymorphisms and mutations in chromosomes 7, X, and Y critically impact on spermatogenesis. Microdeletions in the Azoospermic Factor AZF region directly cause defective sperm production. Among mutations in chromosome 7, impairments in the cystic fibrosis transmembrane conductance regulator CFTR gene are destructive for fertility in cystic fibrosis, when spermatic ducts undergo complete obstruction. This problem was not previously analyzed in such a form. Alongside karyotype abnormalities AZF microdeletions are the reason of spermatogenic failure. Amongst AZF genes, the deleted in azoospermia DAZ gene family is reported as most frequently deleted AZF. Screening of AZF microdeletions is useful in explaining idiopathic cases of male infertility as well as in genetic consulting prior to assisted reproduction. Based on the current state of research we answer the following questions: (1) How do environmental stressors lessen the quality of sperm and reduce male fertility; (2) which chemical elements induce oxidative stress and immunogenetic changes in the male reproductive system; (3) how do polymorphisms correlate with changes in reproductive potential and pro-antioxidative mechanisms as markers of pathophysiological disturbances of the male reproductive condition; (4) how do environmental stressors of immunogenetic disorders accompany male infertility and responses; and (5) what is the distribution and prevalence of environmental and genetic risk factors.

1. Introduction

Nowadays a large pool of substances potentially harmful for human health is incessantly present in the natural environment. Toxic metals (Cd, Pb, Hg, As, Be, V, Ni), dioxins, anti-metabolites, dyes, herbicides, fungicides, or even house dust constitute a detrimental mixture that people are exposed to practically every day [1,2,3,4]. Therefore, essential systems of the human organism are continually subjected to potential damage. Among them, the reproductive system, especially spermatogenesis, appears to be affected, too [5]. Long-term exposure to destructive factors may lead to occupational diseases, irreversible changes in the reproductive system (worsening of sperm quality, disorders in spermatogenesis), or even to infertility [6]. In this respect, toxic heavy metals and certain chemical pollutants (dichloro-diphenyl-dichloro-ethane DDT or methoxychlor) are considered as oxidative stress inducers [7]. Oxidative stress is defined as a lack of balance between per-oxidation and anti-oxidation, directly connected with overproduction of reactive oxygen species ROS [8]. It is difficult to avoid certain factors that induce oxidative stress, especially in cities due to traffic and industrial activity (smog, traffic fumes), but other sources of ROS may remain under control. Cessation of smoking, introducing a low-fat diet, or regular physical activity can be simple strategies against oxidation [9]. One of the causes of oxidative stress is the decrease of antioxidant enzymes (superoxide dismutase SOD, catalase CAT or glutathione peroxidase GPx) which erodes the line of defense against reactive forms of oxygen [10]. Thus, introducing an anti-oxidative diet consisting, e.g., of fruits and vegetables rich in vitamins A, C, E, and B, is recommended and beneficial for strengthening the anti-oxidative potential of the body [11,12,13]. The male reproductive condition can be improved by supplementation of beneficial elements such as zinc or selenium that cause positive changes in sperm count and motility [14]. Melatonin, beta-carotene, or luteine also contribute to maintaining high semen quality [15,16].
Since oxidative stress contributes to serious impairments in genetic composition, such as damage of chromosomes or breakages in the deoxyribonucleic acid DNA [8], it is valuable to analyze genetic reasons for male infertility. On chromosome Y, microdeletions in the AZF-region (called the azoospermic factor) result in spermatogenic failure and a lack of sperm cells in semen [17,18]. The world frequency of AZF microdeletions is estimated in the range of 1–15% of cases of azoospermic infertile men [19,20]. Other common reason for male infertility is cystic fibrosis, i.e., a recessive disease with a frequency of occurrence of 1/2500 live births, is caused by mutations in the CFTR gene on chromosome 7 [21]. Overproduction of thick, sticky mucus in organs with mucous glands is a typical symptom of the disease. In addition to pathological changes in the alimentary or respiratory systems, cystic fibrosis also contributes to infertility through clogging spermatic ducts with mucus [22,23]. The condition often accompanying cystic fibrosis is a congenital bilateral absence of the vas deferens, manifested as aplasia of spermatic ducts and an obstruction of sperm outflow into the urethra. Similarly to cystic fibrosis, congenital bilateral absence of the vas deferens is caused by mutations in the CFTR gene [24,25]. Finally, impairments on the X chromosome play an essential role in pathogenesis of Klinefelter syndrome KS (the presence of an extra X chromosome in the male karyotype) and Kallmann KAL syndrome (mutations in the KAL1 gene on the X chromosome; KAL1 is a human gene which is located on the X chromosome at Xp22.3 and is affected in some male individuals with Kallmann syndrome). The former is manifested by small testicles, degenerative changes in spermatic ducts, azoospermia, and decay of potency [26,27,28,29,30], while the latter is manifested in a deficiency in the sense of smell, delayed maturation, small testicles, and underdevelopment of the penis [31,32,33,34].
We reviewed the recent data in an effort (1) to estimate the diversification of potentially harmful factors accumulated in the modern environment (from heavy metals to domestic dust) and their influence on human fertility; (2) to establish the relationship between various pollutants and oxidative stress intensification; (3) to find effective strategies in overcoming oxidative stress in everyday human life, thereby improving reproductive conditions; (4) to analyze common genetic factors underlying male infertility associated with chromosome Y (AZF region); and (5) to analyze the most common factors underlying male infertility associated with chromosome 7 and the X chromosome.
This review of existing research will broaden our knowledge of the impact of environmental stressors on antioxidant reactions, and changes of lipoperoxidation and immunogenetic disorders in patients with symptoms of infertility. The results can be used in the prophylaxis of male infertility among patients inhabiting degraded areas. It will also answer some questions about the causes of infertility in men in whom it was previously unknown. Linking the biochemical and morphological parameters of semen with immunogenetic disorders will bring clarification to the role of environmental factors in shaping responses to various stressors. Analysis of the activity of enzymatic antioxidative mechanisms, lipoperoxidation intensity, and the levels of stress proteins and non-enzymatic mechanisms jointly can give a more complete picture of conditions shaping the response of an organism to environmentally diversified stress. Simultaneous analysis of the degree of the accumulation of different physiological elements in the semen of men from polluted areas, as well as lipoperoxidation processes and reactions from oxidative enzymatic and non-enzymatic systems, will map the causal connections with the reproductive condition of particular patients.
Insufficient knowledge about the causes of impaired reproductive potential results in an inability to implement specific treatments, which is associated with a lack of positive outcomes [35]. This review allows an understanding of the role of environmental factors in shaping the body’s defense capabilities in the area of reproductive condition. In stress conditions physiological responses of the reproductive system can be estimated based on the changes in the activity of antioxidant enzymes, biochemical and structural modifications of proteins caused by oxidative stress involving products of advanced oxidation protein, assessment of oxidative stress by changing the quantity of products of advanced oxidation protein, or changes in the lipoperoxidation and pro-antioxidant mechanisms inactivation of ROS [8,11,12,14,15]. The lack of knowledge of the causes of impaired reproductive potential results in an inability to implement specific treatment, which is associated with the lack of positive outcomes (pregnancy). This review will make relevant environmental comparisons. It will allow an understanding of the importance of environmental factors in shaping the body’s defenses and capabilities in the field of reproductive condition. The results can be used in enhancing diagnosis and deciding on appropriate infertility treatment. Physiological responses in the semen and blood of patients (specified above) are indicative of changes in the reaction to stress conditions.
A further purpose of this review is to analyze the immunological mechanisms that determine male reproductive potential and the impact of environmental stress on semen quality parameters. This is of major significance since bioaccumulation of toxic metals causes oxidative stress, which negatively impacts the condition of the semen. These events lead to alterations in the activity of caspase proteins leading to apoptosis in the germ cells [8]. Most of the negative changes mentioned above result from degradation of the natural environment with toxic metals, pesticides, or chemicals used in the industry [4,6,7]. Since oxidative stress may contribute to DNA damage, the connected causes of human infertility appear at the genetic level. Mutations responsible for pathophysiological changes in the human reproductive system occur in Down syndrome (trisomy of autosome 21), Edwards syndrome (trisomy of autosome 18), Patau syndrome (trisomy of autosome 13), Klinefelter syndrome, Turner syndrome (complete or partial absence of one of the X chromosomes in all cells of the body or a portion thereof), or cystic fibrosis (mucoviscidosis) [23,36]. These mutations may create a serious, usually irreversible threat to male fertility with diverse prevalence. Simultaneous analysis of the degree of accumulation of different physiological elements in the semen of men from polluted sites will trace the causal connections listed above in parallel with the reactions of the biochemical systems and the level of elements, lipoperoxidation, and oxidative enzymatic and non-enzymatic systems. Here it is important to take account of links between environmental elements and conventional pathologies associated with male infertility in correlation with selected biochemistry (total protein, albumin, cholesterol, glucose, fructose, bilirubin, alanino-aminotransferase ALAT, aspartat-aminotransferase ASPAT, urea, enzymes (akrosine, alkaline, and acid phosphatase), and thioneins. Complementing this evaluation is the analysis of the extracellular matrix, the components of which also mediate intercellular communication through (1) binding of cytokines or concentrate them in certain locations; (2) presentation of cells; and (3) direct binding of the individual components with specific cell receptors, which causes specific changes in the cell metabolism.
This review analyzes the immunological mechanisms that determine male reproductive potential and the impact of environmental stress on semen quality parameters. The influence of chemical elements with different physiological groups on the morphometry of semen of people living in areas with varying degrees of contamination and degradation changes (acidification, salinity, increased levels of Ca, Fe, Mg, and trace elements) is discussed. Bioaccumulation of many elements causes oxidative stress, which leads to apoptosis and determines the condition of the semen. These events lead to alterations in the activity of caspases and induction of apoptosis in the germ cells. We examine the activity of antioxidant enzymes, which may differ significantly to the control group. Chemical elements, not yet analyzed in the study of infertility (Al, Ni, Cr, Mn, As, Se, Si), play an important role in the induction of immunogenetic changes and affect the activity of antioxidant enzymes. The changes may result from degradation of the environment with heavy metals, pesticides, and chemicals used in industry. These genetic mutations are responsible for the genetic pathophysiological changes (as above). Simultaneously, one of the causes of male infertility is immunogenetical change. Therefore, we should consider the cumulative impact of xenobiotics in the semen on the occurrence of mutations responsible for these diseases and disorders of spermatogenesis, in the form of the expression and deletion of genes. Previous studies give conflicting results about the effects of chemical elements on sperm. Much of the work relates to their direct impact or has been carried out on the seed derived from persons occupationally exposed [37]. This knowledge is incomplete and needs to be reviewed, but the condition of human sperm deteriorates significantly. Further research should broaden the understanding of the impact of elements on immunogenetic disorders in male infertility, both in lipoperoxidation and antioxidant activity, as well as reactions with reductases and stress proteins. This will determine the distribution of the prevalence of these changes in regions where such research has not been conducted. This will enable the mapping of the distribution of immunogenetic changes, the dangerous mutation of DNA, semen biochemical parameters, and concentrations of chemical elements in it. The results can be used in the prevention of infertility in women living in degraded areas. They will also shed light on the causes of infertility in those men who were previously fertile. Linking biochemical analysis of semen and immunogenetic changes elucidates the mechanisms and clarifies the role of heredity factors in shaping the response to environmental stress by oxidative enzyme systems. The results can be used in the diagnosis of male infertility undergoing environmental weakening. In addition, the levels of oxidative enzyme activity circuits and an analysis of the lipoperoxidation intensity and protein levels of stress can give an index of sperm health conditions in humans.

2. The Current State of Knowledge

2.1. Molecules Affecting Male Infertility

Currently, 30% of men suffer from idiopathic infertility [38]. The standard semen analysis is still the most important clinical assessment of male reproductive potential. The results of this analysis determine ejaculate capacity, sperm count, motility, and morphology. Among the basic components of the sperm plasma ions Na, K, Mg, Ca, Fe, Cu, Zn, and Se are the most significant [39]. The potassium concentration in the sperm plasma should be 27 ± 5 µmol (1.1 mg × mL−1). When the ratio of Na/K exceeds 1:2.5, it affects sperm motility and an increased concentration of potassium cations increases the electrical charge of the sperm cell membrane decreasing the motility of cell [40]. Each element plays a different role in the body, thus destabilizating their level has serious consequences. Ca, Mg, and other electrolytes maintain osmotic equilibrium and are involved in the transport of nutrients. Zn and Fe are involved in redox processes. Zn and Mg are stabilizers of cellular membranes and coenzymes of SOD, which prevents the harmful effects of free radicals on sperm [13,15]. Zinc, as one of the most important factors influencing male sexuality, is involved in processes of reproduction, in both hormone metabolism and sperm formation, as well as in the regulation of sperm viability and motility [14]. Zn deficiency results in decreased levels of testosterone and decreased sperm count, potency disorders, reduced sperm viability and even infertility [41]. Zinc, as an antioxidant plays an important role in the protection of spermatozoa from the attack of free radicals. High levels of Zn in the semen decrease the activity of oxygen radicals, maintaining sperm in a relatively quiet and less motile state, resulting in a lower consumption of oxygen which allows the storage of energy needed during the passage through the genital tract. Zn also has a protective effect against too high a concentration of Pb (contributing to reduction of fertility) [15]. Even with a high Pb accumulation, elevated Zn concentration has a protective effect, reducing the harmful effects of this element [42,43]. Chia et al. (2001) [44] have demonstrated a correlation between the concentration of Zn in the blood and semen plasma, and the quality of sperm from fertile and infertile men. The results showed lower Zn levels (accompanying lower morphologic parameters) in patients with impaired fertility (183.6 mg·L−1). In fertile patients Zn level was much higher (274.6 mg × L−1). Thus, Zn has a positive impact on fertility and potency through participation in spermatogenesis [44]. An important role of Zn was also described by Giller (1994) [45], indicating that semen volume decreases by 30% at a low Zn concentration. Similarly, Mohan et al. (1997) [46] have shown that men with low daily Zn intake (only 1.4 mg) displayed a significant decline in semen capacity and concentration of testosterone in serum. A relationship was also shown between the level of Zn in serum and semen in oligozoospermic infertile men, with significantly lower levels of Zn in serum and semen of men with fertility problems [46].
The second element of fundamental importance for semen quality is selenium, which occurs in high concentrations in semen and plays an important role in maintaining reproductive condition [13,14]. Selenium is an essential microelement at low levels of intake and produces toxic symptoms when ingested at level only 3–5 times higher than those required for adequate intake. Se-counteract the toxicity of heavy metals such as Cd, inorganic mercury, methylmercury, thallium and to a limited Ag extent. Although not as effective as Se, vitamin E significantly alters methylmercury toxicity and is more effective than Se against silver toxicity. Selenium can particularly counteract Hg toxicity, and is the key to understanding Hg exposure risks. Selenium compound selenide binds mercury by forming mercury selenide, which neutralizes the harmful effect of Hg. However, once that bond is made, Se is no longer available to react with selenoproteins that depend on it. Human studies have demonstrated that selenium may reduce As accumulation in the organism and protect against As-related skin lesions. Se was found to antagonize the prooxidant and genotoxic effects of As. From epidemiological point of view Se interaction with heavy metals raises a large interest. Although antagonistic influence of Se on the bioaccumulation of Hg, Cd, and As is well known, interaction mechanism between those elements in humans remain unexplained [47]. Selenium takes part in the constitution of the mitochondrial shield in sperm cells and influences the condition and function of sperm, and is effective in the treatment of impaired fertility [47]. Simultaneously, selenium as part of selenoproteins, playing a key role in defending the body against oxidative stress [48]. Phospholipid hydroperoxide glutathione peroxidase PHGPx changes the physical properties and biological activity during the maturation of sperm. In spermatids it displays enzymatic activity and is soluble, while in mature sperm it is present as an inactive and insoluble protein. Inside the mature sperm PHGPx protein constitutes at least 50% of the material of the shield [49]. However, toxic heavy metals (Cd, Pb, Hg, Ni, Cr, B, V) impair testicular function and the mechanisms of their toxic activity in the nucleus include damage of the vascular endothelium of the Leydig’ and Sertoli’ cells but these heavy metals not only damage the vascular endothelium but as stated for example, in [50,51], Cd and Pb cause an alteration in the functionality of the Sertoli cell even at subtoxic doses. Oxidative stress occurs as a result of their accumulation due to impairment of antioxidative defensive mechanisms and intensification of the inflammatory reaction leading to changes in the morphology and function of the testes [1,2,6,7,10,52,53]. The effect of these changes can be necrosis of the seminiferous tubules, which inhibits the synthesis of testosterone and impairs spermatogenesis. Short-term exposure to these metals increases the activity of SOD, CAT, GPx, and glutathione reductase GR, which is indicative of the activation of defense mechanisms and the adaptive response of cells [9,54].
In order to fully analyze the problem, we should distinguish precisely the functions of individual forms of GPx and their importance for the male reproductive system. Glutathione peroxidases are composed of eight forms that are distributed in different tissues with differences among species [55]. They catalyze the reaction needed to remove hydrogen peroxide H2O2 and other hydroperoxides using reduced glutathione GSH. In order to keep removing hydroperoxides, the oxidized glutathione disulfide GSSG must be reduced back to GSH by the GR enzyme using NADPH as reducing agent. There are selenium-dependent and selenium-independent GPx forms. The first group is represented by GPx1–4 and the second group by GPx5–8. GPx forms can also reduce peroxynitrites ONOO, a very reactive ROS capable of harming cells promoting tyrosine nitration in proteins involved in motility and sperm capacitation [55]. Of great importance for spermatozoa is the presence of the selenoprotein phospholipid hydroperoxide GPx4 (PHGPx), a structural protein which is essential for normal formation of the mitochondrial sheath and constitutes about 50% of the sperm midpiece protein content localized in the mitochondrial helix. The need for mitochondrial PHGPx (mGPx4) to assure normal sperm function has been demonstrated in humans since infertile men have shown low sperm motility with abnormal morphology [55]. It is important to highlight that what is relevant for fertility is the ability of mGPx4 to interact with hydroperoxides to form the mitochondrial sheath during spermiogenesis and not its antioxidant activity which is less than 3% of the total PHGPx protein content in ejaculated spermatozoa. Selenium is essential to assure normal GPx4 function during spermiogenesis as it was confirmed by the presence of abnormal spermatozoa with poor motility [55].
The sperm chromatin formation during spermiogenesis is accomplished in part by the nuclear isoform of GPx4 (snGPx4); this enzyme mediates the oxidation of S–H groups of protamines by hydroperoxides. It is possible then that other proteins are involved in the sperm chromatin re-modelling and potential candidates are peroxiredoxins. The contribution of GPx to the protection against ROS is limited in human spermatozoa since human spermatozoa, testes, or seminal plasma lacks GPx2, GPx3, and GPx5 and GPx4 are insoluble and enzymatically inactive in mature ejaculated spermatozoa [55]. It seems that the role of GPx1 as important antioxidant enzyme is questionable because Gpx1−/− males are fertile and they are not susceptible to oxidative stress and lipid peroxidation does not increase in human spermatozoa incubated with H2O2 in the presence of carmustine (GR inhibitor) or diethyl maleate (binds to GSH making it non-accessible for GPx/GR system) that affects the GPx/GR system activity [55].
In turn, Gladyshev et al. (2016) [56] indicates that the human genome contains genes coding for selenocysteine-containing proteins (selenoproteins). These proteins are involved in a variety of functions, most notably redox homeostasis. Selenoprotein enzymes with known functions are designated according to these ones. Selenoproteins with no known function appear to be important but require further research.
A particularly dangerous heavy metal for semen quality is lead. It is increasingly recognized that impaired fertility in men can be associated with environmental and occupational exposure to lead [10,57]. The mechanism of action of lead on male gonads is complex and includes effects on spermatogenesis, steroidogenesis, the redox system, and damage of the vascular endothelium of the gonads by free radicals, resulting in morphological changes (weight changes of the testes and seminal vesicles, their fibrosis, a reduction in the diameter of the seminiferous tubules, and a reduction in the population of reproductive cells by apoptosis) and functional changes (decreased testosterone synthesis). Lead may affect the function of Leydig’ cells impairing steroidogenesis, decreasing the levels of testosterone and worsening the quality of sperm” but this observation is valid not only for Leydig cells but also for Sertoli cells that are the sentinel of spermatogenesis [1,7,51,54]. The phenomenon of oxidative stress in animals poisoned with lead confirms an increase in lipid peroxides and decomposition of thiobarbituric acid reactive substances TBARS [58].

2.2. Antioxidant Mechanisms

A significant role in the pathogenesis of infertility involves redox reactions because the germ cells are capable of producing ROS. A certain physiological amount of reactive metabolites of oxygen, rising in the respiratory chain, is necessary to maintain normal sperm functionality. However, due to overproduction of ROS or the exhaustion of the compensating possibilities of antioxidative mechanisms in sperm, oxidative stress begins to increase [7,9]. Subsequently, it leads to changes in peroxidation of lipid membranes of sperm, impairing the structure of membrane receptors, enzymes, transport proteins, and leads to an increase in the level of DNA fragmentation of sperm [59,60,61]. The balance between ROS formation and the protective actions of antioxidative system is necessary to sustain normal functions of an organism [8]. The important area of influence of essential elements are metabolic mechanisms, i.e., reactions involving compounds quenching excited molecules, non-enzymatic mechanisms (ceruloplasmin, transferrin, polyamides, transitional metals, sequestration of metals, thioneins), antioxidant enzymatic mechanisms (SOD, CAT, GPx, GR, glutathione S-transferase GST, secretory phospholipase A2 sPLA2, reactions involving heat shock protein HSP, chaperones, and proteases [59,60,61]. Due to the particular sensitivity of male reproductive cells to the oxidative action of ROS, mammalian semen is equipped with a variety of enzymatic and non-enzymatic compounds, which neutralize the excess of ROS, localized in the seminal plasma and inside sperm cells [59,60,61]. A direct relationship between the SOD activity and sperm damage and sperm motility was confirmed by numerous researchers [9]. The addition of exogenous SOD to a suspension of sperm cells protected their vitality and significantly affected motility by inhibiting the destruction of biological membranes. However, some researchers could not confirm the effect of SOD on semen quality and sperm fertilizing potential [62,63].
The most effective antioxidative enzyme in sperm apart from SOD is CAT [12,13]. It was found inside sperm cells and seminal plasma, with activity significantly reduced in infertile men [64]. Another important enzyme that protects cells from the toxic effects of H2O2 is GPx. The sperm GPx is located in the mitochondrial matrix. Its activity is largely related to the level of Se in semen [13,14,15]. The important protective role of GPx in counteracting the loss of sperm motility as a result of spontaneous lipoperoxidation has been widely confirmed. Many researchers have proved the relationship between peroxidative damage of sperm and male infertility [62], because lipoperoxidation is one of the most important processes related to the action of ROS. The accumulation of damaged lipid molecules lowers the fluidity of biological membranes and the structural damage of membranes has a direct impact on their receptor and transport functions [9].

2.3. Genetic Effects

The accumulation of heavy metals in an organism and the impact of free radicals can cause immunogenetic disorders, chromosomal aberrations and consequently lead to serious genetic defects, causing infertility include numerical and structural aberrations that may affect autosomes or sex chromosomes [65,66,67,68]. Chromosomal aberrations appear in 7% of infertile men, that is 30 times more frequently than in the general population [69,70]. The most common chromosomal cause of male infertility is Klinefelter syndrome (>4%) [71]. In this disease, similarly to Turner syndrome, partial fertility is maintained only in mosaicism [66,72]. In Klinefelter syndrome changes in nuclear structure leading to infertility may be a result of the presence of two alleles of many genes associated with the X chromosome, which typically operate on the principle of disomy and do not undergo inactivation during lyonization of extra chromosome. In 15% of males with azoospermia and 5% with oligozoospermia display an abnormal karyotype [71,73]. Another cause of male infertility is microdeletions of the Y chromosome or aberrations and mutations of genes responsible for male sexual development, e.g., located in the short arms of the Y chromosome in the region Yp11.2 (the Yp11.2 region containing the amelogenin gene on the Y chromosome AMELY locus). The amelogenin gene on the Y chromosome, AMELY, is a homolog of the X chromosome amelogenin gene AMELX, and the marker is employed for sexing in forensic casework, SRY gene (a sex-determining gene on the Y chromosome). SRY gene, as a sex-determining gene on the Y chromosome in mammals that determines maleness and is essential for development of the testes; testis-determining factor TDF, known as sex-determining region Y SRY protein, is a DNA-binding protein (known as gene-regulatory protein/transcription factor) encoded by the SRY gene that is responsible for the initiation of male sex determination in humans). Another reason for male infertility is the partially symptomatical form of cystic fibrosis, responsible for 60% of the so-called obstructive azoospermy [23,36]. The true symptomatic form of cystic fibrosis is the result of mutations in the CFTR gene and in 95% cases of men leads to infertility [74,75].
The current state of knowledge about male fertility conditions does not give clear and unambiguous answers to the cause of the growing problem of infertility. We cannot determine unambiguously which environmental factors have the greatest impact on human fertility. It is, therefore, necessary to continue research in the field of concentration of elements, oxidative enzyme activity, and the incidence of immunogenetic disorders in the seed. These analyses are a benchmark in project design, making it possible to verify the views on the impact of environmental stressors on male fertility. The results of these studies can be applied in the prevention of infertility and contribute to the development of new diagnostics.

3. Potentially Harmful Factors in the Natural Environment: From Heavy Metals to Domestic Dust

Toxic heavy metals are one of the main sources of causative male infertility. From the beginning of their activities at the cellular level, they generate a series of reactions that destabilize normal processes within the cell organelles. Such a permanent and deepening interaction causes a gradual shift of the metabolic pathways and biochemical processes of the cell, including a change in normal transcription and translation in the nucleus. This ultimately generates genetic polymorphisms, responsible for the formation of changes in the male reproductive condition [1,2,52]. Among other destructive factors generally present in the environment we can enumerate combustion products, traffic fumes, dioxins, polychlorinated biphenyls, pesticides, food additives, and persistent pollutants, such as DDT [4,5,6,53]. A separate group includes potentially harmful factors that remain under human control, such as smoking, obesity, and a sedentary lifestyle. All of these can play the role in lowering reproductive condition resulting in decreased sperm counts, even among very young men [6]. Certain metals that we are exposed to almost every day, e.g., Cu, Pb, Cd, or Mo influence reproductive hormone levels (such as testosterone). Simultaneously, Meeker et al. (2010) [2] proved that certain interactions between metals in humans can modify serum testosterone level. Based on analysis of 219 relatively young men, researchers observed a 37% reduction in testosterone levels in the case of men with high Mo and low Zn concentrations in blood. Additionally, they observed higher Cu and Cd levels accompanying low Zn concentration among smokers. However, Buck et al. (2012) [53] broadened their investigation to both men and women reproductive conditions with environmental Cd and Pb exposure. This study sampled over 500 couples willing to have a child. The researchers measured the time to pregnancy in each case, and included daily questionnaires, filled by couples, about their lifestyles. The investigation encompassed two regions, selected to ensure a range of environmental exposures to heavy metals. Their results confirmed that environmentally relevant concentrations of blood Pb and Cd make time to pregnancy longer. Thus, couple fecundity decreased with more frequent exposures to toxic metals.
Generally, toxic metals are considered as strong oxidative stress inducers and endocrine disruptors in humans, and are particularly harmful to the testis. Similarly to Pb, Hg, and estrogenic compounds, Cd can seriously disrupt the functionality of the testis and, as a consequence, reduce sperm count and quality. Siu et al. (2009) [52] enquired how exactly Cd damaged the testicles and stated that the disruption of the blood-testis barrier applied to complex pathways of signal transduction and signaling molecules like kinase p38 (human mitogen-activated protein kinase 14/p38 alpha (active enzyme recombinant, human protein kinase p38; stress-activated protein kinase). Cadmium exposure appears to be a potential risk factor for testis injury via oxidative stress stimulation, endocrine destabilization, and certain interactions with protective elements, such as Zn [52]. Moreover, in the study conducted by [1], researchers expanded the pool of analyzed metals and testified to the environmental toxicity of Cd, Cr, Pb, Hg, As, and especially Mo. The authors linked semen quality with estimated blood concentrations of the enumerated elements. That investigative group involved over 200 men (patients from infertility clinics). The most surprising finding concerned molybdenum. Researchers observed a dose-dependent relationship between Mo and a decrease in sperm concentration and motility. Based on this result we could add molybdenum to the list of potential threats to male fertility. However, the toxicity of Cd, As, Pb, and Hg and their influence on a decline in semen quality was more obvious [1]. Simultaneously, Vaiserman (2014) [4] mentions that endocrine-disrupting chemicals are invariably present in the environment of industrialized societies. The list includes dioxin, dioxin-like compounds, phthalates, polychlorinated biphenyls, pharmaceuticals, agricultural pesticides, and industrial solvents. Their destructive role in chronic endocrine pathologies is doubtless and leads to negative estrogenic and anti-estrogenic activity. However, the damage is particularly detrimental at a genetic level, causing a threat to the normal development of the organism, which has been widely analyzed in animal models, e.g., exposure to dioxins disrupts the expression of genes involved in extra-cellular matrix remodeling in the cells of the cardiac muscle. Methoxychlor alters the methylation pattern of paternally and maternally imprinted genes in the sperm of mice offspring. Bisphenol A causes hypermethylation of the estrogen receptor promoter region in the adult testis of rats in addition to modifying hepatic DNA methylation [4]. Despite the fact that in Vaiserman’s [4] study the negative effects mentioned were verified mostly on rats and mice, the author suggested that a similar impact on people was of high probability. He highlighted that in the last number of decades the endocrine condition of humans has decrease seriously, subsequently worsening reproductive condition. In both problems the most serious changes occur due to toxic exposure in the prenatal period or early childhood, resulting in defective development of the organism in later years. These statements agree with [5], who also considered long term exposure to herbicides, formamide, antimetabolites, fungicidal preparations, dyes, and obviously toxic metals (Cd, Pb, Cr, Ni) as harmful factors that considerably worsen the quality of sperm.
If the realization that heavy metals and certain chemicals decrease human reproductive condition still does not bother us, then there is an example of a further disruptor from our close surroundings. Meeker and Stapleton (2010) [3] proved that even house dust can modify levels of reproductive hormones and diminish sperm quality. Researchers analyzed organophosphate compounds, commonly used as additive flame retardants and plasticizers in popular domestic materials. Semen parameters and reproductive hormone levels were measured in 50 men from infertility clinic who had frequent contact with these materials. They concluded that organophosphate compounds from typical domestic equipment (contained in house dust) may not only alter certain hormone levels (such as prolactine or thyroxine), but also decrease sperm concentration by as much as 19% [3].

3.1. Environmental Pollutants and Oxidative Stress

Oxidative stress is a damaging process that happen when there is an excess of free radicals in the body cells. The body produces free radicals during normal metabolic processes. Intense oxidation can damage cells, proteins, and DNA, which can contribute to aging. Disturbances in the normal redox state of cells can cause toxic effects through the production of peroxides and free radicals that damage all components, including proteins, lipids, and DNA. Oxidative stress from oxidative metabolism causes base damage, as well as strand breaks in DNA. ROS and free radicals are generally known to be detrimental to human health. A large number of studies demonstrate that, in fact, free radicals contribute to initiation and progression of the changes in genetic material, i.e., genetic polymorphisms [8]. Oxidative stress happens when the balance between peroxidation and anti-oxidation is disturbed, i.e., when the production of ROS exceed cellular concentrations of small molecular antioxidants or activity of antioxidative enzymes [8]. Researchers widely consider ROS as a source of dangerous reactions, uncontrolled and harmful to structures at a molecular level [11,12,13]. As a proof Bartosz (2009) [8] enumerates several negative effects of ROS activity (degradation of collagen, depolymerization of hyaluronic acid, oxygenation of hemoglobin, inactivation of enzymes and transport proteins, lipid peroxidation in cellular membranes, damage to chromosomes, and breakages in DNA). In the face of so many threats, it is valuable to know precisely how ROS comes about. Bartosz (2009) [8] identified several factors that stimulate the formation of ROS (ionic radiation, sonication, UV radiation, oxygenation of reduced forms of molecular components of cells, oxygenation of xenobiotics, photoreduction, and oxygenation of respiratory proteins).

3.2. Intensification of Oxidative Stress due to Pollution—Influence on Human Fertility

The close relationship between environmental pollution and oxidative stress is central to understand why human fertility has decreased in past decades, because the most environmental toxicants induce ROS, causing oxidative stress [7]. In the human reproductive system, the testes are especially susceptible to destructive changes due to this phenomenon. The after-effects are often irreversible and include a decline in testosterone levels, disorders in spermatogenesis, and eventually infertility. Certain physiological levels of ROS are even necessary for the proper course of spermatogenesis. However, an excess of reactive oxygen radicals, formed due to environmental pollutants, destroy testicular functionality and manifest as a diminished sperm count and quality. Among toxicants inducing apoptosis in germ cells, Mathur and D’Cruz (2011) [7] have singled out methoxychlor which decreases the levels of anti-oxidative enzymes in testicles, especially in the mitochondrial and the microsomal fractions of testis. Dichloro-diphenylo-trichloro-ethane DDT metabolites, on longer exposure, cause incremental changes in lipoperoxidation and a decrease in enzymatic antioxidants such as SOD or GPx in the testis. Exposure to certain fungicides have been found to contribute to reduced prostate mass and decreased sperm count, as well as induced impairments in expression of apoptosis-related proteins such as p51. Other enumerated chemicals such as pesticides, bisphenol A and certain herbicides also damage testicles and interrupt spermatogenesis through oxidative stress stimulation [7]. Therefore, many substances that humans associate with in everyday life are, in truth, very dangerous pro-oxidants and stimulants of uncontrolled ROS formation in several body systems. Data by Agarwal et al. (2014) [9] found similar conclusions; they assert that about 15% of couples trying to conceive are struggling with infertility. Male factors can be the reason for nearly half of such cases. Oxidative stress and overproduction of ROS damage DNA, proteins, and lipids, change the functionality of enzymes and, finally, cause cell death. Like Mathur and D’Cruz (2011) [7], Agarwal et al. (2014) [9] also affirm that certain levels of ROS are necessary for correct fertilization. In normal conditions and controlled concentrations, ROS regulate sperm maturation, stimulate signaling processes and more. However, in uncontrolled ROS overloading, there is a risk of infertility. They suggest that impairments in sperm cells arise via induction of per-oxidative damages of sperm plasma membranes (per-oxidation of lipids), as well as DNA breakages. The best way to minimize the negative effects of ROS excess is to eliminate as many factors as possible. Cessation of smoking, discontinuation of alcohol abuse, a reduced-fat diet, physical activity, and antioxidant intake (supplementation of diet with carotenoids or vitamins C, E) constitute simple tactics against oxidative stress, which patients can initiate even on their own. Thus the problems of oxidative stress and ROS overproduction may be significantly reduced by reasonable changes in lifestyle. On the other hand, routine estimations of semen ROS levels should become a standard procedure in the diagnosis of male fertility [9].
Elucidation of the destructive impact of oxidative stress and factors that stimulate the phenomenon are well presented in the studies conducted by Al-Attar (2011) [10]. He provided mice drinking water with a mixture of Pb, Hg, Cd, and Cu. After seven weeks, he assessed renal function by measuring the concentrations of creatinine, urea, and uric acid. Furthermore, he measured levels of antioxidants, including glutathione GSH and SOD in kidney and testicles. Compared to the control group (mice drinking water without heavy metals) the experimental group had considerably increased creatinine (by 152%), urea (by 83%), and uric acid (by 65%). Decreases of anti-oxidative enzymes, both in kidney and testis were significant (glutathione: 28% in kidney, 24% in testicles; SOD: 40% in kidneys, 27% in testis). Moreover, in histological examination of the testis of mice exposed to heavy metals, Al-Attar (2011) [10] noted degenerative changes in the seminiferous tubules leading to disruption of spermatogenesis. In a separate experimental group the diet was supplemented with vitamin E [10], noting insignificant changes in renal parameters and a considerably smaller downgrade in testicular anti-oxidative enzymes due to the heavy metals. Thus, research demonstrated not only a negative effect of oxidative stress, but also the positive anti-oxidative potential of vitamin E in a daily diet.

3.3. Tactics against Oxidative Stress—Antioxidative Diet

The reduction in oxidative stress markers found by [10] explored only one of several tactics which can be deployed in the fight against uncontrolled ROS. Ruder et al. (2008) [11] explored the after-effects of oxidative stress in female infertility. Researchers suggest that lifestyle and diet, rich in antioxidants, during pregnancy also play a critical role in reproductive success. They found that high oxidation levels increase the risk of disorders during successive stages in pregnancy. On the contrary, antioxidants intake, even in the simplest form, by eating fruits or vitamin supplementations, minimizes the threat of pregnancy loss. In the case of male fertility, it is valuable to know which metals bring positive effects to the reproductive condition. One of the most important chemical elements with anti-oxidative properties is zinc. It protects sperm cells against ROS, contributes to the formation of semen and stabilizes the levels of reproductive hormones (such as testosterone) and, in general, lengthens the vitality of sperm cells [14]. Therefore, zinc is widely considered as an effective antioxidant. Oteiza (2012) [76] highlighted the beneficial Zn properties of in reducing oxidative stress. It maintains the cell redox balance, regulates oxidants production, contributes to the repair of cell damage, and regulates the metabolism of glutathione and conditions of redox signaling. Furthermore, Zn mediates in the induction of Zn-binding protein metallothionein, preventing overproduction of ROS [76]. An important beneficial element is selenium, which favors the functional efficiency of sperm cells and, as a consequence, increases semen quality [14,77]. Indeed, both elements (Zn, Se) are the molecular components of important anti-oxidative enzymes. Zn is present in SOD type 1 and 3 (as well as Cu) and Se is a component of GPx. These facts clearly demonstrate their antioxidative significance [8]. Additionally, Atig et al. (2012) [14] compared Zn and Se levels in semen samples from fertile and infertile patients. Compatible with expectations, fertile men’s sperm showed higher levels of these elements compared to infertile patients. Zinc exhibits positive and significant correlations with sperm motility and sperm count. Selenium is also significantly correlated with semen motility. Selected parameters of anti-oxidative response, such as the concentration of glutathione enzymes and the quantity of malondialdehyde MDA, a lipoperoxidation end product, were also analyzed. Glutathione enzymes were considerably decreased in infertile semen and there was a greater amount of MDA in sperm from infertile patients. On the contrary, fertile semen show high levels of glutathione enzymes and only small amounts of lipoperoxidation products. Even more, researchers confirmed a positive correlation between glutathione enzymes and sperm motility. On the contrary, MDA was negatively associated with sperm motility and concentration, as well as positively correlated with the percentage of abnormal sperm. On this basis, the authors concluded that a serious decrease in seminal antioxidants (such as Zn, Se, as well as glutathione enzymes) favors the risk of impairments in sperm quality. Additionally, increased MDA reflects a diminished sperm quality and reproductive condition [14].
Zini et al. (2009) [12] stated that the sperm of infertile men contains considerably more DNA damage than in the case of fertile patients. Therefore, the authors analyzed the potential of antioxidant therapy. They found that dietary antioxidants can efficiently reduce sperm DNA damage, especially in high levels of DNA fragmentation. In their opinion, the risk of ROS overproduction is connected with unsaturated fatty acids in sperm plasma membranes. These acids are necessary for membrane fluidity, but also predispose it to free radical attacks. On the other hand, semen contains certain levels of anti-oxidative enzymes (SOD, CAT, GPx), as well as non-enzymic antioxidants (vitamin C, E, lycopene, or l-carnitine). Accordingly, researchers proved that dietary supplementation of antioxidants (e.g., vitamin C oral intake) may cause positive effects in the improvement of sperm integrity and lowering oxidation levels. However, Walczak-J?drzejowska et al. (2013) [13] described the destructive effects of oxidative stress on sperm cells including a decrease in activity of anti-oxidative mechanisms, damage to DNA and accelerated apoptosis. As a consequence they found a diminished number of sperm cells and their reduced motility. They highlighted that the large endogenous sources of reactive forms of oxygen in semen are white blood cells and immature sperm cells. This study emphasizes the physiological role of ROS in sperm maturation, but for the same reason any infection or inflammation process in the body could be considered as a moderator of oxidative radicals. However, unfavorable environmental factors may also initiate the analogous problem. Walczak-J?drzejowska et al. (2013) [13] further widened the list of potentially beneficial antioxidants, adding vitamins A and B, coenzyme Q10, carotenoids, and carnitine to the known list including glutathione, Zn, Cu, Se and SOD, CAT, and GPx. Explaining the role of vitamins E and C in the defense against oxidative stress, it can be concluded that vitamin E reduces lipoperoxidation and mainly protects sperm cell membranes, while vitamin C, preventing sperm DNA damage, is a very abundant seminal antioxidant, since it is present in concentrations about 10 times higher in seminal plasma than in blood serum. They strongly recommend the initiation of antioxidant therapy in cases of men with fertility problems. Additionally, Mier-Cabrera et al. (2009) [78] compared the levels of oxidative stress markers and concentrations of anti-oxidative enzymes among women with a high antioxidant diet and a normal diet. After four months of observation, in the group on the anti-oxidative diet, the researchers noted an increase of vitamin levels (A, C, E), as well as considerable growth in activity of SOD and GPx. Furthermore, the levels of MDA and lipid hydro-peroxides (oxidative stress markers) were relatively low in this group. Conversely, in the case of women on a normal diet there was no improvement in anti-oxidative parameters or decrease in oxidative stress markers. Thus, supplementation of the daily diet with certain antioxidants (vitamins A, C, E, or Zn) may be a simple way to overcome oxidative stress on our own. Rink et al. (2013) [79] decided to check in practice how the recommended intake of fruits and vegetables (five times a day) influenced oxidative and anti-oxidative parameters. They selected 258 pre-menopausal women, observed their diet and measured pro- and anti-oxidative parameters over a period of about two menstrual cycles. Particularly important parameters were the erythrocyte activity of SOD and GPx. They noted that eating fruits and vegetables five times a day, over a longer period, considerably diminished oxidative stress (levels of lipoperoxidation markers) and improved antioxidant status (high levels of antioxidative enzymes, as well as non-enzymatic antioxidants).
Summarizing, Aitken and Roman (2008) [15] considered oxidative stress as a major factor in the etiology of male infertility. Similarly to the previously quoted research, lipoperoxidation and DNA fragmentation were considered as the most serious damage, caused by ROS in sperm cells. Furthermore, in the testicles, oxidative stress may destabilize the process of differentiation of spermatozoa. They identified and characterized the basic anti-oxidative defense line, e.g., they noted that all three types of SOD are found in the testicles. Type I (cytoplasmic) containing Zn and Cu ions, type II (mitochondrial) with Mn and, finally, type III (extra-cellular) containing Cu and Zn. There are also various isoforms of GPx located in mitochondria and the nucleus, particularly in differentiating semen. Researchers emphasize the relationship between the activity of glutathione enzymes and the presence of selenium (lower concentration of Se is connected with a decrease in activity of GPx). Among non-enzymatic antioxidants researchers listed the essentials Zn (interrupting lipid peroxidation by displacing from catalytic sites such metals as Fe and Cu and attenuating damage in sperm DNA caused by Pb or Cd), vitamin C or E (supporting the maintenance of spermatogenesis and testosterone production), as well as melatonin and cytochrome C. Melatonin is an especially valuable protector from oxidative stress due to readily crossing the blood-testis barrier, while cytochrome C assists in the elimination of damaged germ cells [15]. On the other hand, Zareba et al. (2013) [16] analyzed the influence of regular carotenoid intake in the improvement of sperm quality in 189 young, healthy men. Researchers measured such parameters as semen volume, total sperm count, motility, and morphology. After a period on a high-antioxidant diet, they found that beta-carotene and lutein intake increased sperm motility. Lycopene improved semen morphology and a longer application caused a greater amount of morphologically normal sperm. Additionally, a healthy lifestyle (regular physical activity, non-smoking) favors assimilation of antioxidants (such as vitamins C, E, A, and carotenoids). On the contrary, the intake of alcohol or caffeine was negatively associated with antioxidants assimilation, e.g., caffeine decreased the assimilation of vitamin C [16].

4. Genetic Reasons for Spermatogenesis Disturbances: Impairments on Chromosomes Y and 7

We are currently conducting experimental studies of male infertility determinants and we found (demonstrated) that external environmental factors and so-called internal (according to World Health Organization WHO criteria) are closely related to each other. At the same time, these detailed factors generate specific changes in genetic material (i.e., genetic polymorphisms), which are just the direct cause of male infertility. Simultaneously, the review presented above clearly explained that certain factors (environmental, artificial, or just connected with individual lifestyle) may considerably depress the human reproductive condition. Most of these factors, especially heavy metal ions, chemical compounds, and active organic residues, act by stimulating overproduction of ROS. Additionally, oxidative stress is the main reason for spermatogenesis disturbances. Many authors assert that long-lasting oxidative stress seriously damages human DNA [12,13,15]. Furthermore, genetic factors are considered responsible in at least 10–15% of cases of male infertility [80]. Therefore, it is necessary to analyze external and internal environmental genetic reasons for male infertility, as aside from the most common phenotypes.
Azoospermia is defined as a condition where a man has no measurable level of sperm cells in the semen [81]. There are various reasons for this condition, including underdevelopment of the testicles, obstruction of the spermatic ducts or, a typical genetic cause, deletions in the AZF region of chromosome Y [36]. Additionally, cystic fibrosis is an autosomal recessive disease, common in Caucasian races (with frequency of occurrence of 1/2500 live births). The genetic reasons for cystic fibrosis are mutations in the CFTR gene on chromosome 7. The most common mutation is the deletion of three nucleotides resulting in the loss of phenylalanine in position 508 of the protein (F508del). Approximately 70% of cases are determined by this mutation [21,22]. The manifestation of cystic fibrosis results in the production of a thick, sticky mucus in all organs containing mucous glands, coupled with pathological changes in the respiratory system (recurring pneumonia, bacterial infections) and the alimentary system (cholelithiasis, clogging of salivary glands). In the reproductive system cystic fibrosis causes an accumulation of mucus in the spermatic ducts and, as a consequence, their total obstruction [23].

4.1. Microdeletions in the Azoospermic Factor AZF Region

The first reported association between Y chromosome deletions and abnormal spermatogenesis was reported in 1976 by Tiepolo and Zufardi [82]. The AZF region (called azoospermia factor) was described as located in the long arm of the human Y chromosome (Yq11) and consists of the three genetic domains azoospermic factor of region “a” AZFa (proximal), azoospermic factor of region “b” AZFb (intermediate), and azoospermic factor of region “c” AZFc (distal). AZFc is one of the most genetically dynamic regions (c) in the human genome, possibly serving as counter against the genetic degeneracy associated with the lack of a partner chromosome during meiosis. Since the AZF region contains genes essential for proper spermatogenesis, microdeletions in the range of particular domains were implicated in spermatogenic impairments [17,18,83,84]. Many authors consider not three but four AZF domains as associated with spermatogenesis disturbances. This classification is based on structural observation which found that AZFb and c partially overlapped. This region of overlap is now called azoospermic factor of region “d” AZFd and is located between AZFb and AZFc [84,85]. Depending on the location of the AZF microdeletion, the phenotypes vary from mild (<15 × 106 spermatozoa × mL−1) or severe (<5 × 106 spermatozoa × L−1) oligozoospermia to azoospermia (complete lack of sperm cells in ejaculation) [19,81]. The complete deletion of AZFa leads to azoospermia and Sertoli Cell Only Syndrome SCOS while microdeletions in AZFb are connected with azoospermia due to the failure of sperm maturation usually at the spermatocyte/spermatid stage (subsequently there is practically no sperm in the testis of such patients). The AZFc deletion is connected with various possible seminal damages, but usually in patients a small amount of semen is present in the ejaculate (up to 60% of cases). Such patients are classified as azoospermic or oligozoospermic [18,83]. Microdeletions in AZFd lead to a mild form of oligozoospermia and abnormal sperm morphology [35,84]. Among infertile men the prevalence of AZF microdeletions is estimated at 7–8%, with a wide variation across populations [81,86]. Massart et al. (2012) [86] estimated the world frequency of Yq microdeletions among infertile men at 7.4%, based on over 90 articles, including over 13,000 patients suffering from infertility in different populations. Some researchers stated that the prevalence of Yq microdeletions is higher in azoospermic men (9.7%) than in oligozoospermic (6.0%). Moreover, they estimated the average frequency of microdeletions in particular domains. Complete deletion of AZFa is rare, responsible for a maximum 7% of all AZF incidents, while microdeletions in AZFb are twice as frequent, i.e., accounting for 14% of cases. AZFc impairments are considered the most common accounting for 69% of all AZF microdeletions. The rest of the pool (10% of AZF cases) is made up of a mixture of microdeletions in several domains, such as AZFa+b, AZFb+c, or AZFa+b+c [86]. Amongst the various AZF genes, the DAZ gene family (essential for regulation of spermatogenesis) is reported as the most frequently deleted AZF candidate [35]. DAZ genes are located within the AZFc domain, which undergoes deletion most commonly [36]. However, the exact frequency of AZF microdeletions among infertile men is difficult to determine. The differentiation in prevalence among patients from various populations ranges from 1% to as much as 35%. It has been estimated as 15% in Spain and Italy, 1–4% in Germany and France, 10% in China and the USA, 8% in India and Netherlands, and 12% in Tunisia and Mexico [20,80,83]. Furthermore, ethnic mutability in modern populations tends to increase the incidence making the matter more complex [81,86]. As a result, research teams usually concentrate on respective regions of the world and individual populations.
Wang et al. (2010) [19] generally regarded chromosome Y as structurally variable and susceptible to duplications, inversions and deletions. As it was mentioned, microdeletions in the AZF region are quite frequent among infertile male patients leading to spermatogenesis disruption (for instance as a consequence of sperm arrest). Therefore, Wang et al. (2010) [19] investigated the frequency of AZF microdeletions in infertile men from Northeastern China. In the experimental group, which consisted of 305 patients, researchers diagnosed 28 cases of AZF microdeletions. Their frequency was in following order; AZFc+d, AZFc, AZFb+c+d, with AZFa being least common. These authors also stated that the observed frequency of AZF microdeletions in the region they investigated, paralleled the levels in neighboring regions of the world. Additionally, Balkan et al. (2008) [35] conducted a similar analysis with 80 infertile men from Southeast Turkey. Most of them were azoospermic (54) and oligozoospermic (25). The researchers found chromosomal abnormalities in nine cases. Among them, Klinefelter syndrome was diagnosed in seven patients. Two patients had balanced autosomal rearrangements. In addition, AZF microdeletions were localized in one patient (with apparently normal karyotype and azoospermia) both in the AZFc and the AZFd regions [35]. These authors did not observe any cases of impairments in the AZFa or AZFb domains. Simultaneously, [80] examined the frequency of AZF microdeletions in a central Indian population: 156 patients (95 with oligozoospermia and 61 with azoospermia). Thirteen showed deletions in the AZF region (eight from the azoospermic subgroup and five from the oligozoospermic subgroup). They reported the most frequent deletions in the AZFc, followed by the AZFb and AZFa regions. Küçükaslan et al. (2013) [84] focused their study on a similar population which included 3650 infertile Indian men (combining patients from their own experimental group with other described cases of Yq deletions in India). They reported 215 cases with Yq microdeletions. Impairments in the AZFc domain predominated both in oligozoospermic and azoospermic patients. However, the frequency of AZF microdeletions differed significantly between regions in India.
Hellani et al. (2006) [87] claimed that among the genetic reasons for spermatogenesis disruption microdeletions in chromosome Y represent one of the most common causes. They conducted an analysis of the frequency of AZF microdeletions in the Kingdom of Saudi Arabia. Among 257 male patients with various forms of spermatogenesis disturbances (from oligozoospermia to azoospermia), 10 had chromosomal rearrangements, while in the remaining 247, eight men had microdeletions in AZF. Six of them in AZFc, one in AZFb, and one in AZFa+c. Moreover, Khabour et al. (2014) [20] identified several reasons for male infertility, such as hormonal abnormalities, the presence of antispermic antibodies, erectile disfunction, testicular cancer, and exposure to radiation and chemical agents. Thus, infertility is usually connected with complex etiology. They mentioned that nearly 40% of cases of male infertility are idiopathic. Amongst genetic causes, they still place chromosomal abnormalities as the number one reason for infertility (e.g., aneuploidy in sex chromosomes), however, AZF microdeletions are, in their opinion, the second most common reason. Therefore, similar to previously quoted studies, Khabour et al. (2014) [20] analyzed the frequency of AZF microdeletions, this time in the Jordanian population. His analysis included infertile men with azoospermia and oligozoospermia. They found partial AZF deletions in three patients from the azoospermic subgroup, two with microdeletions in the AZFc domain and one in AZFb+a+c domains.
The majority of authors agree that deletions in chromosome Y, particularly in the AZF region are one of the most important factors causing spermatogenesis disturbances and male infertility. The majority of analyses confirmed that microdeletions in AZFc are the most frequent and mostly connected with spermatogenic failure. Alongside karyotype abnormalities (affecting about 15% of azoospermic and 6% of oligozoospermic patients), AZF microdeletions are widely considered as the second most common genetic reason for male infertility [17,18,20]. It is more and more accepted to use AZF microdeletions as a specific marker of male infertility. Immense advantage results from the fact that small Yq deletions cannot be visualized in standard karyotype analysis. Therefore, their detection may explain the reason of infertility among men with apparently normal karyotypes [17,18,87]. The detection of AZF microdeletions is also recommended prior to assisted reproduction procedures such as intra-cytoplasmic sperm injection ICSI or testicular sperm extraction TESE. It is critically important in the case of patients with AZFc microdeletions, which are able to produce a certain amount of normal sperm during ejaculation and may achieve reproductive success using these techniques. Since AZF microdeletions transmit to male offspring, such patients should be advised of the possible consequences of assisted reproduction [35,83,84]. Therefore, screening for AZF microdeletions is becoming one of the first steps in diagnostics of potential causes of male reproductive problems. Typical AZF analysis includes DNA extraction (usually from peripheral blood) analyzed by polymerase chain reaction PCR-multiplex procedure with special markers for AZF microdeletions, i.e., sequence-tagged sites STS [80,85]. Ultimately, the detection of AZF microdeletions can be useful both in explaining idiopathic cases of male infertility as well as in genetic consulting prior to assisted reproduction [87]. In the case of idiopathic infertility (30–40% cases of male infertility) a genetic cause is a usually suspected [35]. Therefore, the analysis of the AZF region of the Y chromosome is necessary for accurate diagnosis.

4.2. Cystic Fibrosis and Congenital Bilateral Absence of the Vas Deferens

As mentioned previously, cystic fibrosis may also play a critical role in infertility (due to complete obstruction of spermatic ducts). As well as the congenital bilateral absence of the vas deferens CBAVD, Klinefelter and Kallmann syndromes are all connected with spermatogenesis disruptions [36]. CBAVD is manifested as aplasia of the spermatic ducts. Similarly to cystic fibrosis, CBAVD is caused by mutations in the CFTR gene. As a consequence it has been considered as an expression of cystic fibrosis or as a separate disease [21,23,24], estimated that CBAVD appeared in 99% of adult men with cystic fibrosis. However, in their analysis they concentrated on congenital bilateral absence of the vas deferens among young boys with cystic fibrosis aged 2–12. In the examined group which consisted of boys there were two subgroups identified. The first one contained children with pancreatic insufficiency and the second contained pancreatic sufficient boys. In five boys with congenital bilateral absence of vas deferens CBAVD seminal vesicles were observed. Furthermore, testicular micro-lithiasis was diagnosed in the subgroup with pancreatic insufficiency. They concluded that genital impairments in cystic fibrosis may appear at a very early age. Such manifestations were less common in young patients than in adults and appeared more frequently among youngsters with pancreatic insufficiency [24]. Moreover, Xu et al. (2014) [25] consider CBAVD as an abnormality in the male reproductive system, directly connected with the obstruction of sperm outflow into the urethra. On the basis of data review, the authors concluded that this impairment is responsible for 2% of cases of male infertility. They assert that in about 97% of male patients with cystic fibrosis, CBAVD is also diagnosed (comparable to that estimated by [24]). This fact is explained by the common genetic background, both for cystic fibrosis and CBAVD, namely mutation in the CFTR gene on chromosome 7. Abnormalities in the expression of CFTR also contribute to reduced functionality of the respiratory system, sweat glands, and reproductive system (a classical set of anomalies in cystic fibrosis patients). Thus, Xu et al. (2014) [25] confirmed the relationship between the most common variations of CFTR and CBAVD. Their results also suggest that certain CFTR variations are responsible for the more frequent occurrence of CBAVD in some populations, e.g., variation 5T creates a threat of CBAVD among French, Spanish, Japanese, Chinese, Iranian, Indian, Mexican and Egyptian populations, whilst variation of deltaF508 creates a risk for Slovenians, Canadians, Iranians, and Egyptians.
Simultaneously, Du et al. (2014) [88] considered CBAVD as a reason of nearly 6% of cases of obstructive azoospermia. Furthermore about 75% of CBAVD cases were direct manifestations of CFTR mutations F508del, 5T, and R117H (types of mutations in CBAVD). Accordingly, the observation that mutations of the CFTR gene (F508del, as well as 5T allele of the intron 8 of CFTR) are connected with CBAVD parallels with the results of [25]. Additionally, variations of the TG-repeats (TG13T5 or TG12T5; type of mutations in CBAVD), in their opinion, also play a part in the manifestation of CBAVD [88]. However, Massart et al. (2012) [86] noticed that about 88% of patients with two CFTR mutations carry severe mutation transformed to a mild mutation (respectively no CFTR function or residual CFTR function), whilst only 12% carry two mild mutations. Bareil et al. (2007) [89] investigated the connections between CBAVD and cystic fibrosis, while checking the participation of polymorphisms of transforming growth factor TGFB1 and endothelin receptor type A EDNRA in CBAVD manifestation. They suggest that both factors contribute to the lung manifestation of cystic fibrosis. This confirmation of the contribution of TGFB1 or EDNRA to CBAVD could point to another common link between cystic fibrosis and CBAVD. Du et al. (2014) [88] analyzed DNA samples from 80 patients with CBAVD (experimental group) and 51 healthy men as a control group. They indicated that polymorphism of the EDNRA may be connected with the manifestation CBAVD. Additionally, Havasi et al. (2010) [90] stated that nearly 98% of men with cystic fibrosis also suffered from CBAVD and infertility, while in 80–97% of CBAVD cases the disease were caused by at least one defective CFTR allele and in 50–93% of cases they detected two abnormal CFTR variants. These data support the statements of Bareil et al. (2007) [89].
Moreover, Noone and Knowles (2001) [22] characterized cystic fibrosis as a recessive genetic disease caused by mutations on both CFTR alleles. They described a standard set of symptoms including sino-pulmonary disease, male infertility, pancreatic exocrine insufficiency, and abnormal sweat electrolytes adding that the classic form of cystic fibrosis can be easily diagnosed in early life by conducting a sweat test (detection of abnormal chlorine and sodium levels) or by CFTR mutation analysis. They found that two-thirds of patients in the USA carry at least one copy of the deltaF508 mutation (one of the most common mutations in cystic fibrosis). However, they explain that the spectrum of possible impairments in the CFTR is extremely variable and, therefore, many phenotypes are described depending on the severity of the mutations involved (severe, mild, or atypical sets of symptoms). Therefore, about 7% of cystic fibrosis patients are still not diagnosed by the age of 10 or 15 years [22]. These researchers more recently ascribed the CFTR gene to the production of a trans-membrane protein securing epithelial cell functionality, especially in ion and water transport. Thus, the formation of thick, sticky mucus in the respiratory, alimentary, and reproductive systems is directly connected with inappropriate water distribution and chloride deficiency (major contributors to mucus consistency). In normal conditions the excess mucus is easily eliminated, while in cystic fibrosis the sticky mucus are clogs the pathways making it difficult to remove the mucous (due to its abnormal consistency). Furthermore, a wide range of bacteria, fungi, and acari can stick to the mucus and cannot be eliminated. This results in reoccurring pneumonia and other bacterial infections, typically found in cystic fibrosis [21,23,36]. Additionally, Almeida et al. (2013) [91] analyzed the testicular tissue after biopsies from patients displaying abnormal spermatogenesis to describe the role of apoptosis in azoospermia. They conducted testicular treatment biopsies from 27 male patients. Five were cases with previously diagnosed oligozoospermia, nine with obstructive azoospermia (among them four patients with CBAVD), and in 13 cases non-obstructive azoospermia (5 men with hypo-spermatogenesis, there cases with sperm maturation arrest and five with Sertoli cell syndrome). These data focused on the activity of certain caspases: 8 and 9 which inaugurate the apoptotic pathways, as well as caspase 3, which determines the point of no return in apoptosis of cells. They found an increased activity of caspase 3 in Sertoli cell syndrome and germ cells with higher activity of caspases in hypo-spermatogenesis. In secondary obstructive disorders they noted diversified caspase activity, while in oligozoospermia significantly higher activity of caspase 9 in comparison to caspase 8 in spermatogonia was noticed. Finally, in primary obstructive disorders and hypo-spermatogenesis, caspases 3 and 9 showed significantly increased activity. That is why the importance of caspase-signalling pathways in human spermatogenesis is significant [91]. These authors point out that germ cells apoptosis is even necessary for normal spermatogenesis. The problems arise when the rate of sperm apoptosis is too high. The concentration of sperm decreases and abnormal seminal motility appears. Thus, these studies confirm a direct relationship between the apoptosis of germ cells and the failure of spermatogenesis.

4.3. Other Genetic Diseases Connected with Infertility: Klinefelter Syndrome and Kallmann Syndrome

Klinefelter syndrome and Kallmann syndrome are also considered common reasons for male infertility. Both diseases are connected with impairments of the X chromosome. The presence of an extra X chromosome in men, karyotype (XXY), is responsible for Klinefelter syndrome (47-XXY or XXY, i.e., the set of symptoms that occurs in two or more X chromosomes in males). The condition was first described in 1942. The symptoms include fibrosis of spermatic ducts, small testicles, azoospermia, and a decay of potency. In biochemical analysis Klinefelter syndrome patients display high levels of gonadotrophins and low levels of testosterone [28,36,92]. In Kallmann syndrome there are several possible mutated genes involved in pathogenesis. Mutations of the KAL1 gene located on the X chromosome are most important. KAL1 gene is located on the X chromosome at Xp22.3 and is affected in males with Kallmann syndrome. This gene codes for a protein of the extra-cellular matrix, anosmin-1, which is involved in the migration of nerve cell precursors (neuro-endocrine GnRH-cells). Deletion or mutation of this gene results in loss of the functional protein and affects the proper development of the olfactory nerves and olfactory bulbs. Neural cells that produce GnRH fail to migrate to the hypothalamus. However, other mutated genes are important, mainly fibroblast growth factor receptor 1 FGFR1, known as basic fibroblast growth factor receptor 1, fms-related tyrosine kinase-2/Pfeiffer syndrome, and CD331, as a receptor of tyrosine kinase, whose ligands are specific members of the fibroblast growth factor family. FGFR1 has been shown to be associated with Pfeiffer syndrome. Moreover, the fibroblast growth factor 8 FGF8 is a protein that is encoded by the FGF8 gene, and protein coding gene PROKR2 (prokineticin receptor 2) encodes a protein expressed in the supra-chiasmatic nucleus SCN circadian clock that may function as the output component of the circadian clock, and also WDR11 (WD repeat domain 11), known as bromodomain and WD repeat-containing protein 2 (BRWD2), a protein that is encoded by the WDR11 gene. WDR11 is a protein coding gene and PROKR2; a G protein-coupled receptor encoded by the PROKR2 gene. Prokineticins are secreted proteins that can promote angiogenesis and induce smooth muscle contraction. These proteins encoded by PROKR2 gene are membrane protein, which G protein-coupled receptor for prokineticins may contribute to manifestation of the condition. The symptoms of Kallmann syndrome include disorders of reproductive system (hypogonadism) with anosmia [32,34]. Thus while PROK2 is type of gene mutation (protein coding gene; this gene encodes a protein expressed in the SCN circadian clock that may function as the output component of the circadian clock), PROKR2 is a type of gene mutation (prokineticin receptor 2; a G protein-coupled receptor encoded by the PROKR2 gene in humans). The protein encoded by this gene is an integral membrane protein and G protein-coupled receptor for prokineticins.)

4.3.1. Klinefelter Syndrome

Høst et al. (2014) [30] defined Klinefelter syndrome as the most abundant sex-chromosome disorder, connected with hypogonadism and infertility. They state that this disease affects one in 600 men, but because of its high diversification in clinical presentation only 25% of men with Klinefelter syndrome are diagnosed with the disease. Among the typical symptoms of the condition they noted azoospermia, as well as various psychiatric problems (manifesting for instance in learning difficulties). However, the long term manifestations may encompass degradation in muscle mass and bone mineral mass, increased risk of diabetes type 2 and the threat of metabolic syndrome. In Klinefelter syndrome the loss of germ cells begins during the fetal period, continuing through infancy and intensifying in puberty. Fibrosis of the seminiferous tubules and a reduction in testis size are accompanied by long-lasting germ cell degradation [30]. Subsequently, the researchers described the appearance of adult patients with this syndrome as above average height, sparse body hair (due to androgen deficiency), narrow shoulders, broad hips, and small, firm testicles, while adding that deviations from that description are quite frequent. Nieschlag (2013) [29] remarked that the Klinefelter syndrome karyotype (47, XXY, aneuploidy of sex chromosomes) appears in up to 0.2% of male infants (one of the most frequent types of congenital chromosomal impairment). Among psychiatric aspects connected with the disease, they observed verbalization difficulties and problems with socialization among the youngsters. Furthermore, they described several pathological conditions accompanying Klinefelter syndrome including a lack of libido, erectile dysfunction, azoospermia, as well as gynecomastia, osteoporosis, thrombosis, and even epilepsy. Nieschlag (2013) [29] also mentioned that treatment of the disease is based on testosterone supplementation, instigated where low testosterone levels occur. He maintained that without proper treatment, as well as without treatment of the conditions accompanying Klinefelter syndrome (type 2 diabetes, varicose veins, embolism), the length of life of those patients may be up to 11 years shorter than the average age of male population. Simultaneously, Molnar et al. (2010) [26] stated that behavioral problems and learning delays in children often appear as the first step in this syndrome recognition. As proof the authors described the case of an 18 year old Somali boy with Klinefelter syndrome: recognition of the disease started with the observation of behavioral problems at school. During further investigation (determination of prolactine, testosterone, follicle-stimulating hormone, and luteinizing hormone levels, as well as the analysis of thyroid functionality and measurement of testis size) this syndrome was confirmed. Therefore, Molnar et al. (2010) [26] suggested that in cases of boys with learning problems, physicians should consider this syndrome as a possibility in their diagnosis. Some authors describe a range of treatment methods available for patients with Klinefelter syndrome who desire to have offspring. Certain amounts of testicular sperm can be retrieved surgically from the testis of adult men with this syndrome (testicular sperm extraction and intra-cytoplasmic sperm injection). There are also several techniques employed to increase testosterone levels, while classical testosterone supplementation supposedly even improves cognitive abilities in patients [26,30].
Gi Jo et al. (2013) [28] stated that Klinefelter syndrome is present in about 10% of azoospermic men. The frequency of morbidity amounts to 0.1–0.2% in general population whilst in 0.15–0.17% cases of the syndrome is recognized in prenatal diagnoses. The researchers tested over 18,000 pregnant women to detect Klinefelter syndrome in their offspring at the fetal stage. Twenty-two fetuses had Klinefelter syndrome, which was 0.12%, while after restriction of the group to only male features the proportional incidence was 0.23%. In the interpretation of their results Gi Jo et al. (2013) [28] note that fetal frequency of syndrome was higher than commonly observed. The researchers suspect that the possible reason for the occurrence of such a high syndrome level in features in their study was the advanced maternal age of mothers (over 35 years). They suggested that the risk of Klinefelter syndrome in offspring may increase with maternal age. Moreover, Turriff et al. (2011) [27] focused on psychiatric impairments accompanying this syndrome. They examined 310 participants of diverse age, from 14–75 years old. They analyzed the attitude of participants to such problems as perception of stigmatization, perceived negative consequences of karyotype XXY, and the matter of having children. Karyotype XXY is a Klinefelter syndrome known as 47, XXY or XXY, i.e., the set of symptoms that result from two or more X chromosomes in males. These authors established that nearly 70% of men with this syndrome displayed symptoms of depression and described several psychiatric manifestations associated with Klinefelter syndrome, including depression, anxiety, schizophrenia, psychoses, hallucinations, and paranoid delusions. They concluded that both adolescents and adults with this syndrome have an increased risk of psychiatric disorders. In their opinion, depression was the most important psychiatric symptom, appearing in syndrome, a condition which significantly decreases the quality of life of patients and may even lead to suicide [27]. Accardo et al. (2015) [92] considered the risk of testicular cancer in men with Klinefelter syndrome; adult patients with show testicular abnormalities such as fibrosis of the seminiferous tubules, hyperplasia of the interstitium, diffuse hyanilization, and cryptorchidism with a six times higher frequency than in the general male population. In addition to destructive changes in the testis, the authors describe several other diseases, possibly accompanying syndrome including venous disease, leg ulcers, and a higher morbidity due to certain malignant tumors, for instance malignancies in the lungs. These data analyzed the risk of testicular cancer in patients with Klinefelter syndrome. They measured several markers, such as serum levels of lactate dehydrogenase and alpha-fetoprotein. They conducted testicular ultrasound and in certain cases magnetic resonance imaging, and did not find increased signs of testicular cancer [92]. Accordingly, despite the risk of pathological conditions accompanying Klinefelter syndrome, the threat of testicular cancer appears to be low.
Additional disorders accompanying Klinefelter syndrome including abdominal obesity and metabolic syndrome were found by [93]. Eighty-nine adult patients had a higher risk of these conditions, but the researchers focused on younger patients, pre-pubertal boys, aged from 4–12.9 years old (measurements included height, weight, waist circumference, blood pressure, the concentrations of insulin, fasting glucose, and lipids). Compared to healthy controls, children with Klinefelter syndrome had wider waist circumference and engaged in less physical activity. Furthermore, in over one third of children, increased LDL cholesterol was noted, nearly one fourth had insulin resistance, and 7% fulfilled the criteria for metabolic syndrome diagnosis. Thus, Bardsley et al. (2011) [93] confirmed that certain disorders, which usually accompany this syndrome, may appear in youngsters. Additionally, Van Rijn et al. (2012) [94] examined the cognitive disorders which commonly appear in Klinefelter syndrome stating that the analysis of cognitive functionality of patients’ brains may deliver valuable information about neural mechanisms involved in social processing. In an experiment conducting a task based on judging facial expressions, men with this syndrome and healthy men were asked to assess faces as trustworthy or untrustworthy and asked to guess the age of the faces. During the first part of the task men obtained a lower valuation in several brain activities, including poorer screening of socio-emotional information (amygdala), poorer subjective emotional experience (insula), and poorer perceptual face processing (fusiform gyrus and superior temporal sulcus). During the second part of the task the perceptual face processing was also reduced in men with this syndrome. The studies elucidated direct relationships between abnormal social behaviors accompanying Klinefelter syndrome and a reduced functionality of the neural network [94,95,96].

4.3.2. Kallmann Syndrome

Klinefelter syndrome, because of its relatively high frequency of occurrence in the human population, is well characterized. On the other hand, another genetically-determined condition, resulting in infertility, is Kallmann syndrome. This disease is caused by mutations of the KAL1 gene, located on the X chromosome. The symptoms appearing in men include small testicles, underdevelopment of the penis, delayed maturation, and a lack of a sense of smell. However, the maintenance of fertility in patients is possible [36,97,98]. Additionally, Quaynor et al. (2011) [33] stated that Kallmann syndrome is often connected with hypogonadotropic hypogonadism and anosmia. The fundamental impairments arise from low levels of sex steroids and low concentration of gonadotropins. In their opinion gonadotropin-realizing hormone GnRH appeared to be the most important hormone involved. It influences the hypothalamic-pituitary-gonadal axis functionality, playing an essential role in processes at puberty. When the secretion or the activity of GnRH is disturbed, pubertal disorders and reproductive impairments result. Both Laitinen et al. (2011) and Quaynor et al. (2011) [32,33] explained the reason for atrophy in the sense of small in the Kallmann syndrome. It is caused by cessation of GnRH neuronal migration within the meninges (GnRH, as well as olfactory neurons not reaching the hypothalamus). Furthermore, they expanded the list of possible manifestations of Kallmann syndrome to idiopathic hypogonadotropic hypogonadism. They added several impairments which were not connected with fertility, such as dental agenesis, midline facial defects, and even hearing loss. Laitinen et al. (2011) [32] admitted that an exact estimation of the incidence of Kallmann syndrome in human populations is difficult because the syndrome is clinically and genetically diversified. Nevertheless it seems to be 3–5 times more frequent in men than women. These researchers examined the Finnish population collating the phenotypic and genotypic features among patients with this syndrome, as well as the incidence of the disease in Finland. The frequency of Kallmann syndrome was different among men and women, being one case in 30,000 men versus one case in 125,000 women. They assessed the phenotypic reproductive features accompanying syndrome in a group of 25 men and five women. The phenotypes found were heterogeneous, ranging from partial puberty to severe hypogonadotropic hypogonadism. In an genetic analysis the authors focused on genes possibly contributing to this syndrome manifestation, i.e., KAL1, FGFR1, FGF8, PROK2, PROKR2, CHD7 (chromodomain-helicase-DNA-binding protein 7, known as ATP-dependent helicase CHD7, is an enzyme that in humans is encoded by the CHD7 gene). CHD7 is an ATP-dependent chromatin remodeler homologous to the Drosophila trithorax-group protein Kismet and WDR11, a type of gene mutation (WD repeat-containing protein 11, known as bromo-domain and WD repeat-containing protein 2 (BRWD2) is a protein that in humans is encoded by the WDR11 gene). KAL1 mutation was detected in men, while FGFR1 mutation was noted in women and men. The results confirmed that it is difficult to give a clear diagnosis of Kallmann syndrome, because of the multitude of genetic factors contributing to the syndrome pathogenesis [32]. It goes far beyond these possible genes and is still waiting for further exploration.
On the other hand, Pedersen-White et al. (2008) [31] mentioned that the molecular basis for most cases of Kallmann syndrome and idiopathic hypogonadotropic hypogonadism is still unknown. Many mutations contributing to the disease remain undiagnosed. They suggested that the gonadotropin-releasing hormone receptor GNRHR gene (apart from KAL1 and FGFR1) could also be related to Kallmann syndrome, but in their opinion mutations in the GNRHR, KAL1, and FGFR1 genes account for only 15–20% of all possible reasons of idiopathic hypogonadotropic hypogonadism and Kallmann syndrome (GNRHR is a protein that is encoded by the GNRHR gene, which encodes the receptor for type 1 gonadotropin-releasing hormone). Pedersen-White et al. (2008) [31] conducted a screening study including 54 patients (men and women) with Kallmann syndrome and idiopathic hypogonadotropic hypogonadism. The results found that KAL1 deletions appeared in 4 cases. After the restriction of the experimental group to anosmic men only, the result was four out of 33 patients. Thus, these researchers suggest that KAL1 mutations are one of the most common reasons for Kallmann syndrome, but impairments in the other tested genes may also participate in the disease [31]. Similarly, Dodé and Rondard (2013) [34] remarked that the phenotype of Kallmann syndrome results from interruptions in the nerve fibers located in the nasal region, the olfactory, vomero-nasal, and terminal. The impact of these impairments is manifested as disturbances in the migration of gonadotropin-releasing hormone synthesizing cells between the nose and the brain. They discussed all genes connected with Kallmann syndrome that had been previously described, including KAL1, FGFR1, PROKR2, PROK2, FGF8, CHD7, WDR11, heparan sulfate 6-O-sulfotransferase 1 HS6ST1, and semaphorin-3A SEMA3A (a protein SEMA3A that in humans is encoded by the SEMA3A gene). HS6ST1 is the protein encoded by the gene HS6ST1 and is a member of the heparan sulfate biosynthetic enzyme family. Heparan sulfate biosynthetic enzymes are key components in generating a myriad of distinct heparan sulfate fine structures that carry out multiple biological activities. This enzyme is a type II integral membrane protein and is responsible for 6-O-sulfation of heparan sulfate. This enzyme does not share significant sequence similarity with other known sulfotransferases). Dodé and Rondard (2013) [34] described the essential roles of these genes and assessed the proportion of Kallmann syndrome cases connected with their mutations. They found that KAL1 contributes to an increase in the extra-cellular matrix glycoprotein anosmin-1, while FGF8 and FGFR1 encode fibroblast growth factor-8 and fibroblast growth factor receptor-1. PROKR2 and PROK2 are responsible for the generation of prokineticin receptor-2 and prokineticin-2. According to these authors’ assessment, mutations in KAL1 appear in about 8% of cases of Kallmann syndrome, FGF8 and FGFR1 both appear in about 10% of cases and mutations both in PROKR2 or PROK2 are responsible for about 9% of cases. In addition, mutations in the CHD7 gene lead to CHARGE syndrome (coloboma, heart defects, choanal atresia, retarded growth and development, genital abnormalities, and ear anomalies) in many patients accompanying Kallmann syndrome [34]. CHARGE syndrome, known as CHARGE association, is a rare syndrome caused by a genetic disorder. First described in 1979, the acronym CHARGE came into use for newborn children with the congenital features of coloboma of the eye, heart defects, atresia of the nasal choanae, retardation of growth and/or development, genital and/or urinary abnormalities, and ear abnormalities and deafness. These features are no longer used in making a diagnosis of CHARGE syndrome, but the name remains. About two thirds of cases are due to a CHD7 mutation. Ultimately, practically all researchers agreed that, despite the estimated prevalence of this syndrome of one in 8000 men and nearly five times lower than this in women, the real frequency of the disease may be higher since so many of the genes potentially involved in Kallmann syndrome remain unexplored [31,32,33,34].

5. Summary and Conclusions

The data quoted in this review would agree that the pool of factors harmful to human health which has accumulated in the environment, is very large. Most of these factors affect the human reproductive system and fertility adversely [5,6]. Pb, Cd, Hg, Mo, and other heavy metals appear to be detrimental to sperm concentration and quality [1,52]. The authors expound a list of sperm and spermatogenesis depressors, describing the negative effects of dioxins, pesticides, phthalates, industrial solvents, as well as traffic fumes and food additives [4]. Obviously even house dust can modify reproductive hormone levels [3]. Researchers noted close relationships between many of the harmful substances mentioned above and increased oxidative stress. The problem of overproduction of ROS is usually connected with decreasing activity of certain antioxidative enzymes, such as catalase, superoxide dismutase, and glutathione peroxidase [7,10]. Many of these authors noticed certain behaviors that people can easily initiate on their own, such as a cessation of smoking or introducing a low-fat diet, can considerably reduce oxidative stress and improve reproductive condition [9]. A large pool of research has described the role of an anti-oxidative diet as an effective tactic in reducing oxidative stress. Beta-carotene, vitamin A, C, E, B complex, and lycopene have all been considered as beneficial factors in the lowering of oxidative stress markers and the improvement of anti-oxidative defense [12,13,15,16,78]. Another strategy aiding sperm quality appears to be supplementation of Zn and Se, which both improve semen concentration and motility [14].
Reactive forms of oxygen may cause destructive changes on a genetic level, for instance through DNA breakages and genetic factors were estimated to contribute to at least 5–10% of cases of male infertility [8,80]. We analyzed common genetic factors in male infertility, focusing on impairments in chromosomes Y, X, and 7. With respect to the Y chromosome, authors richly described the AZF region and microdeletions in domains AZFa, AZFb, AZFc, and AZFd [17,18,84]. It appears that a relatively minor manifestation of such deletions causes a lowering in the amount of sperm cells in semen, while the most serious deletions cause azoospermia [19,20,80]. The phenotypes vary between populations but micro-deletion and AZFc deletions are definitely the most frequent [86]. Male infertility also occurs in cystic fibrosis and the congenital bilateral absence of the vas deferens, both caused by mutations in the CFTR gene, located on chromosome 7. Obstruction of spermatic ducts by sticky mucus is a feature of cystic fibrosis, while aplasia of spermatic ducts applies to CBAVD. Regarding the common genetic cause of these conditions, CBAVD has been described as a form of expression of cystic fibrosis [22,23,25,36,89]. Finally, with respect to disorders associated with the X chromosome, Klinefelter syndrome, as one of the most frequent genetic causes of male infertility (1 in 600 men), is well characterized. The authors described genetic pathogenesis, the presence of an extra chromosome X in the male karyotype, as well as phenotypic manifestations, including small testis, azoospermia, degeneration of spermatic ducts, as sometimes coupled with psychiatric impairments and learning delays [26,27,28,29,30,93,94]. A well-characterized genetic disorder is Kallmann syndrome, where the condition results from mutations in various genes, including KAL1, FGFR1, or FGF8. It manifests as a combination of reproductive impairments (small testicles and delayed maturation) and the lack of a sense of smell [31,32,33,36]. The prevalence of this syndrome among male patients is estimated at 1 in 8000 but many genes possibly implicated in this disease are still unknown [34].
This review demonstrates that male health and fertility are directly connected with environmental conditions. We are exposed to various, potentially harmful, factors which intensify oxidative stress and decrease the natural defenses of the body. Subsequently, ROS damages the reproductive system and other essential systems and even causes impairments on a genetic level [8,97]. Further research should be undertaken to broaden our understanding of these environmental sources of immunogenetic disorders accompanying male infertility, in decreasing both lipoperoxidation and antioxidative activity. This will help determine the distribution and prevalence of potential risk factors in different regions. The results of future analysis should definitely improve the prevention of male infertility, as well as widen the diagnostic possibilities.
Summarizing: (1) Genetic factors are implicated in at least 10% of cases of male infertility [80]; (2) Amongst infertile men the frequency of AZF microdeletions is estimated at 7–8%, with a wide variation across populations [81,87]; (3) Alongside karyotype abnormalities (15% of azoospermic, 6% oligozoospermic cases), AZF microdeletions are considered as the second most common genetic reason of spermatogenic failure [18,20,83]; (4) Amongst various AZF genes the DAZ gene family is reported as the most frequently deleted AZF candidate [35]; (5) Screening of AZF microdeletions can be useful in explaining idiopathic cases of male infertility as well as in genetic consulting prior to assisted reproduction [87]; (6) An exact evaluation of how seriously pollutants and the destabilization of the elemental balance of the human organism lessen the quality of sperm and reduce male fertility should be conducted; (7) Studies of the induced oxidative stress and negative immunogenetic changes in the human reproductive system caused by toxic chemicals are important; (8) An evaluation of the significance of polymorphisms correlated with changes in reproductive potential and pro-anti-oxidative mechanisms as markers of pathophysiological disturbances of the male reproductive condition needs to be performed; (9) The inference from the relationships between environmental degradation and the occurrence of genetic diseases, connected with infertility, needs to be established.

Author Contributions

All authors (P.K., J.B., I.J., B.P.K., E.N.-C., M.P., M.S., A.W., and W.K.) jointly participated in the experimental studies on the environmental conditions of male infertility (currently, original research is being submitted, and more is underway). They developed and participated in the development of the research problem and participated in the design of this review. All authors discussed the main theses of this review and improved the working version of the manuscript. They co-edited and improved the final version of the manuscript, conceived of each part of the review article, participated in its design and coordination, and helped to draft each part of the manuscript. P.K. covered editorial staff. All authors have read and agreed to the published version of the manuscript.

Funding

This research received no external funding. The publication cost (Journal APC) was funded by the University of Zielona Góra, Licealna St. 9, PL 65-417 Zielona Góra, Poland.

Acknowledgments

We thank Joerg Boehner (Univ. Berlin, Germany) for his help with improving English.

Conflicts of Interest

The authors declare no conflict of interest.

References

  1. Meeker, J.D.; Rossano, M.G.; Protas, B.; Diamond, M.P.; Puscheck, E.; Daly, D.; Paneth, N.; Wirth, J.J. Cadmium, Lead, and Other Metals in Relation to Semen Quality: Human Evidence for Molybdenum as a Male Reproductive Toxicant. Environ. Health Perspect. 2008, 116, 1473–1479. [Google Scholar] [CrossRef] [PubMed]
  2. Meeker, J.D.; Rossano, M.G.; Protas, B.; Padmanabhan, V.; Diamond, M.P.; Puscheck, E.; Daly, D.; Paneth, N.; Wirth, J.J. Environmental exposure to metals and male reproductive hormones: Circulating testosterone is inversely associated with blood molybdenum. Fertil. Steril. 2010, 93, 130–140. [Google Scholar] [CrossRef] [PubMed]
  3. Meeker, J.D.; Stapleton, H.M. House Dust Concentrations of Organophosphate Flame Retardants in Relation to Hormone Levels and Semen Quality Parameters. Environ. Health Perspect. 2010, 118, 318–323. [Google Scholar] [CrossRef] [PubMed]
  4. Vaiserman, A. Early-life Exposure to Endocrine Disrupting Chemicals and Later-life Health Outcomes: An Epigenetic Bridge? Aging Dis. 2014, 5, 419–429. [Google Scholar]
  5. Manahan, S.E. Toksykologia ?rodowiska. Aspekty Chemiczne i Biochemiczne; PWN-Pol. Sci. Publ.; Wydawnictwo Naukowe PWN: Warsaw, Poland, 2006; 530p. [Google Scholar]
  6. Sharpe, R.M. Environmental/lifestyle effects on spermatogenesis. Philos. Trans. R. Soc. Lond. B Biol. Sci. 2010, 365, 1697–1712. [Google Scholar] [CrossRef]
  7. Mathur, P.P.; D’Cruz, S.C. The effect of environmental contaminants on testicular function. Asian J. Androl. 2011, 13, 585–591. [Google Scholar] [CrossRef]
  8. Bartosz, G. Druga Twarz Tlenu. Wolne Rodniki w Przyrodzie; PWN-Pol. Sci. Publ.; Wydawnictwo Naukowe PWN: Warsaw, Poland, 2009; 448p. [Google Scholar]
  9. Agarwal, A.; Virk, G.; Ong, C.; du Plessis, S.S. Effect of Oxidative Stress on Male Reproduction. World J. Men’s Health 2014, 32, 1–17. [Google Scholar] [CrossRef]
  10. Al-Attar, A.M. Antioxidant effect of vitamin E treatment on some heavy metals-induced renal and testicular injuries in male mice. Saudi J. Biol. Sci. 2011, 18, 63–72. [Google Scholar] [CrossRef]
  11. Ruder, E.H.; Hartman, T.J.; Blumberg, J.; Goldman, M.B. Oxidative stress and antioxidants: Exposure and impact on female fertility. Hum. Reprod. Update 2008, 14, 345–357. [Google Scholar] [CrossRef]
  12. Zini, A.; Gabriel, M.S.; Baazeem, A. Antioxidants and sperm DNA damage: A clinical perspective. J. Assist. Reprod. Genet. 2009, 26, 427–432. [Google Scholar] [CrossRef]
  13. Walczak-J?drzejowska, R.; Wolski, J.K.; S?owikowska-Hilczer, J. The role of oxidative stress and antioxidants in male fertility. Centr. Eur. J. Urol. 2013, 66, 60–67. [Google Scholar] [CrossRef] [PubMed]
  14. Atig, F.; Raffa, M.; Habib, B.A.; Kerkeni, A.; Saad, A.; Ajina, M. Impact of seminal trace element and glutathione levels on semen quality of Tunisian infertile men. BMC Urol. 2012, 12, 6. [Google Scholar] [CrossRef] [PubMed]
  15. Aitken, R.J.; Roman, S.D. Antioxidant systems and oxidative stress in the testes. Oxid. Med. Cell. Longev. 2008, 1, 15–24. [Google Scholar] [CrossRef] [PubMed]
  16. Zareba, P.; Colaci, D.S.; Afeiche, M.; Gaskins, A.J.; Jørgensen, N.; Mendiola, J.; Swan, S.H.; Chavarro, J.E. Semen Quality in Relation to Antioxidant Intake in a Healthy Male Population. Fertil. Steril. 2013, 100, 1572–1579. [Google Scholar] [CrossRef] [PubMed]
  17. Navarro-Costa, P.; Gonçalves, J.; Plancha, C.E. The AZFc region of the Y chromosome: At the crossroads between genetic diversity and male infertility. Hum. Reprod. Update 2010, 16, 525–542. [Google Scholar] [CrossRef]
  18. Navarro-Costa, P.; Plancha, C.E.; Gonçalves, J. Genetic Dissection of the AZF Regions of the Human Y Chromosome: Thriller or Filler for Male (In)fertility? J. Biomed. Biotechnol. 2010, 2010, 936–956. [Google Scholar] [CrossRef]
  19. Wang, R.X.; Fu, C.; Yang, Y.P.; Han, R.R.; Dong, Y.; Dai, R.L.; Liu, R.Z. Male infertility in China: Laboratory finding for AZF microdeletions and chromosomal abnormalities in infertile men from Northeastern China. J. Assist. Reprod. Genet. 2010, 27, 391–396. [Google Scholar] [CrossRef]
  20. Khabour, O.F.; Fararjeh, A.S.; Alfaouri, A.A. Genetic screening for AZF Y chromosome microdeletions in Jordanian azoospermic infertile men. Int. J. Mol. Epidemiol. Genet. 2014, 5, 47–50. [Google Scholar]
  21. Korf, B.R. Genetyka Cz?owieka—Rozwi?zywanie Problemów Medycznych; PWN-Pol. Sci. Publ.; Wydawnictwo Naukowe PWN: Warsaw, Poland, 2003; 365p. [Google Scholar]
  22. Noone, P.G.; Knowles, M.R. CFTR-opathies: Disease phenotypes associated with cystic fibrosis transmembrane regulator gene mutations. Respir. Res. 2001, 2, 328–332. [Google Scholar] [CrossRef]
  23. Bradley, J.R.; Johnson, D.R.; Pober, B.R. Genetyka Medyczna. Notatki z Wyk?adów; PZWL: Warsaw, Poland, 2009; 178p. [Google Scholar]
  24. Blau, H.; Freud, E.; Mussaffi, H.; Werner, M.; Konen, O.; Rathaus, V. Urogenital abnormalities in male children with cystic fibrosis. Arch. Dis. Child. 2002, 87, 135–138. [Google Scholar] [CrossRef]
  25. Xu, X.; Zheng, J.; Liao, Q.; Zhu, H.; Xie, H.; Shi, H.; Duan, S. Meta-analyses of 4 CFTR variants associated with the risk of the congenital bilateral absence of the vas deferens. J. Clin. Bioinform. 2014, 4, 11. [Google Scholar] [CrossRef] [PubMed]
  26. Molnar, A.M.; Terasaki, G.S.; Amory, J.K. Klinefelter syndrome presenting as behavioral problems in a young adult. Nat. Rev. Endocrinol. 2010, 6, 707–712. [Google Scholar] [CrossRef] [PubMed]
  27. Turriff, A.; Levy, H.P.; Biesecker, B. Prevalence and Psychosocial Correlates of Depressive Symptoms among Adolescents and Adults with Klinefelter Syndrome. Genet. Med. 2011, 13, 966–972. [Google Scholar] [CrossRef] [PubMed]
  28. Gi Jo, D.; Tae Seo, J.; Shik Lee, J.; Yeon Park, S.; Woo Kim, J. Klinefelter Syndrome Diagnosed by Prenatal Screening Tests in High-Risk Groups. Korean J. Urol. 2013, 54, 263–265. [Google Scholar]
  29. Nieschlag, E. Klinefelter Syndrome The Commonest Form of Hypogonadism, but Often Overlooked or Untreated. Dtsch. Arztebl. Int. 2013, 110, 347–353. [Google Scholar]
  30. Høst, C.; Skakkebæk, A.; Groth, K.A.; Bojesen, A. The role of hypogonadism in Klinefelter Syndrome. Asian J. Androl. 2014, 16, 185–191. [Google Scholar]
  31. Pedersen-White, J.R.; Chorich, L.P.; Bick, D.P.; Sherins, R.J.; Layman, L.C. The prevalence of intragenic deletions in patients with idiopathic hypogonadotropic hypogonadism and Kallmann syndrome. Mol. Hum. Reprod. 2008, 14, 367–370. [Google Scholar] [CrossRef]
  32. Laitinen, E.M.; Vaaralahti, K.; Tommiska, J.; Eklund, E.; Tervaniemi, M.; Valanne, L.; Raivio, T. Incidence, Phenotypic Features and Molecular Genetics of Kallmann Syndrome in Finland. Orphanet J. Rare Dis. 2011, 6, 41. [Google Scholar] [CrossRef]
  33. Quaynor, S.D.; Kim, H.G.; Cappello, E.M.; Williams, T.; Chorich, L.P.; Bick, D.P.; Sherins, R.J.; Layman, L.C. The prevalence of digenic mutations in patients with normosmic hypogonadotropic hypogonadism and Kallmann syndrome. Fertil. Steril. 2011, 96, 1424–1430. [Google Scholar] [CrossRef]
  34. Dodé, C.; Rondard, P. PROK2/PROKR2 Signaling and Kallmann Syndrome. Front. Endocrinol. 2013, 4, 19. [Google Scholar] [CrossRef]
  35. Balkan, M.; Tekes, S.; Gedik, A. Cytogenetic and Y chromosome microdeletion screening studies in infertile males with Oligozoospermia and Azoospermia in Southeast Turkey. J. Assist. Reprod. Genet. 2008, 25, 559–565. [Google Scholar] [CrossRef] [PubMed]
  36. Drewa, G.; Ferenc, T. (Eds.) Genetyka Medyczna. Podr?cznik dla Studentów; Elsevier, Urban & Partner: Wroc?aw, Poland, 2011; 962p. [Google Scholar]
  37. Wo?czyński, S.; Kuczyńki, W.; Styrna, J.; Szamatowicz, M. Molekularne Podstawy Rozrodczo?ci Cz?owieka i Innych Ssaków; Kurpisz, M., Ed.; TerMedia: Poznań, Poland, 2002; 384p. [Google Scholar]
  38. Sinclair, S. Male infertility: Nutritional and environmental considerations. Altern. Med. Rev. 2000, 5, 28–38. [Google Scholar] [PubMed]
  39. Aitken, R.J. The human spermatozoon—A cell in crisis? J. Reprod. Fertil. 1999, 115, 1–7. [Google Scholar] [CrossRef] [PubMed]
  40. Oosterhuis, G.J.E.; Mulder, A.B.; Kalsbeek-Batenburg, E.; Lambalk, C.B.; Schoemaker, J.; Vermes, I. Measuring apoptosis in human spermatozoa: A biological assay for semen quality? Fertil. Steril. 2000, 74, 245–250. [Google Scholar] [CrossRef]
  41. Zdrojewicz, Z.; Wi?niewska, A. Rola cynku w seksualno?ci m??czyzn. Adv. Clin. Exp. Med. 2005, 14, 1295–1300. [Google Scholar]
  42. Beroff, S. Male Fertility Correlates with Metal Levels; WB Saunders Co.: New York, NY, USA, 1996; Volume 3, pp. 15–17. [Google Scholar]
  43. Skoczyńska, A.; Stojek, E.; Górecka, H.; Wojakowska, A. Serum vasoactive agents in lead-treated rats. Med. Environ. Health 2003, 16, 169–177. [Google Scholar]
  44. Chia, S.E.; Ong, C.N.; Chua, L.H.; Ho, L.M.; Tay, S.K. Comparison of zinc concentrations in blood and seminal plasma and the various sperm parameters between fertile and infertile men. J. Androl. 2001, 21, 53–57. [Google Scholar]
  45. Giller, R.M.; Matthews, K. Natural Prescription; Dr. Giller’s Natural Treatments and Vitamin Therapies for Over 100 Common Ailments; Carol Southern Books, Random House Inc.: New York, NY, USA, 1994; 370p. [Google Scholar]
  46. Mohan, H.; Verma, J.; Singh, I.; Mohan, P.; Marwah, S.; Singh, P. Interrelationship of zinc levels in serum and semen in oligospermic infertile patients and fertile males. Pathol. Microbiol. 1997, 40, 451–455. [Google Scholar]
  47. Badmaev, V.; Majeed, M.; Passwater, R.A. Selenium: A quest for better understanding. Altern. Ther. Health Med. 1996, 2, 59–67. [Google Scholar]
  48. Holben, D.H.; Smith, A.M. The diverse role of selenium within selenoproteins: A review. J. Am. Diet. Assoc. 1999, 99, 836–843. [Google Scholar] [CrossRef]
  49. Ursini, F.; Heim, S.; Kiess, M.; Maiorino, M.; Roveri, A.; Wissing, J.; Flohe, L. Dual function of the selenoprotein PHGPx during sperm maturation. Science 1999, 285, 1393–1396. [Google Scholar] [CrossRef]
  50. Luca, G.; Lilli, C.; Bellucci, C.; Mancuso, F.; Calvitti, M.; Arato, I.; Falabella, G.; Giovagnoli, S.; Aglietti, M.C.; Lumare, A.; et al. Toxicity of cadmium on Sertoli cell functional competence: An in vitro study. J. Biol. Regul. Homeost. Agents 2013, 27, 805–816. [Google Scholar] [PubMed]
  51. Mancuso, F.; Arato, I.; Lilli, C.; Bellucci, C.; Bodo, M.; Calvitti, M.; Aglietti, M.C.; dell’Omo, M.; Nastruzzi, C.; Calafiore, R.; et al. Acute effects of lead on porcine neonatal Sertoli cells in vitro. Toxicol. In Vitro 2018, 48, 45–52. [Google Scholar] [CrossRef] [PubMed]
  52. Siu, E.R.; Mruk, D.D.; Porto, C.S.; Cheng, C.Y. Cadmium-induced Testicular Injury. Toxicol. Appl. Pharmacol. 2009, 238, 240–249. [Google Scholar] [CrossRef] [PubMed]
  53. Buck Louis, G.M.; Sundaram, R.; Schisterman, E.F.; Sweeney, A.M.; Lynch, C.D.; Gore-Langton, R.E.; Chen, Z.; Kim, S.; Caldwell, K.; Barr, D.B. Heavy Metals and Couple Fecundity, the LIFE Study. Chemosphere 2012, 87, 1201–1207. [Google Scholar] [CrossRef]
  54. Bonda, E.; W?ostowski, T.; Krasowska, A. Metabolizm i toksyczno?? kadmu u cz?owieka i zwierz?t. Kosmos 2007, 56, 87–97. [Google Scholar]
  55. O’Flaherty, C. The Enzymatic Antioxidant System of Human Spermatozoa. Adv. Androl. 2014, 2014, 626374. [Google Scholar] [CrossRef]
  56. Gladyshev, V.N.; Arnér, E.S.; Berry, M.J.; Brigelius-Flohé, R.; Bruford, E.A.; Burk, R.F.; Carlson, B.A.; Castellano, S.; Chavatte, L.; Conrad, M.; et al. Selenoprotein Gene Nomenclature. J. Biol. Chem. 2016, 291, 24036–24040. [Google Scholar] [CrossRef]
  57. Sallmen, M.; Lindbohm, M.L.; Anttila, A.; Taskinen, H.; Hemminki, K. Time to pregnancy among the wives of men occupationally exposed to lead. Epidemiology 2000, 11, 141–147. [Google Scholar] [CrossRef]
  58. el Feki, A.; Ghorbel, F.; Smaoui, M.; Makni-Ayadi, F.; Kammoun, A. Effects of automobile lead on the general growth and sexual activity of the rat Gynecol. Obstet. Fertil. 2000, 28, 51–59. [Google Scholar]
  59. Ga?ecka, E.; Jacewicz, R.; Mrowicka, M.; Florkowski, A.; Ga?ecki, P. Antioxidative enzymes–structure, properties, functions. Enzymy antyoksydacyjne-budowa, w?a?ciwo?ci, funkcje. Pol. Merk. Lek. 2008, 25, 266–268. [Google Scholar]
  60. Ga?ecka, E.; Mrowicka, M.; Malinowska, K.; Ga?ecki, P. Role of free radicals in the physiological processes. Wolne rodniki tlenu i azotu w fizjologii. Pol. Merk. Lek. 2008, 24, 446–448. [Google Scholar]
  61. Ga?ecka, E.; Mrowicka, M.; Malinowska, K.; Ga?ecki, P. Chosen non-enzymatic substances that participate in a protection against overproduction of free radicals. Wybrane substancje nieenzymatyczne uczestnicz?ce w procesie obrony przed nadmiernym wytwarzaniem wolnych rodników. Pol. Merk. Lek. 2008, 25, 269–272. [Google Scholar]
  62. Hsieh, Y.Y.; Sun, Y.L.; Chang, C.C.; Lee, Y.S.; Tsai, H.D.; Lin, C.S. Superoxide dismutase activities of spermatozoa and seminal plasma are not correlated with male infertility. J. Clin. Lab. Anal. 2002, 16, 127–131. [Google Scholar] [CrossRef]
  63. Zini, A.; de Lamirande, E.; Gagnon, C. Reactive oxygen species in semen of infertile patients: Levels of superoxide dismutase- and catalase-like activities in seminal plasma and spermatozoa. Int. J. Androl. 1993, 16, 183–188. [Google Scholar] [CrossRef]
  64. Siciliano, L.; Tarantino, P.; Longobardi, F.; Rago, V.; De Stefano, C.; Carpino, A. Impaired seminal antioxidant capacity in human semen with hyperviscosity or oligoasthenozoospermia. J. Androl. 2001, 22, 798–803. [Google Scholar]
  65. Sharma, R.K.; Pasqualotto, A.E.; Nelson, D.R.; Thomas, A.J., Jr.; Agarwal, A. Relationship between seminal white blood cell counts and oxidative stress in men treated at an infertility clinic. J. Androl. 2001, 22, 575–583. [Google Scholar]
  66. Asada, H.; Sueoka, K.; Hashiba, T.; Kuroshima, M.; Kobayashi, N.; Yoshimura, Y. The effects of age and abnormal sperm count on the nondisjunction of spermatozoa. J. Assist. Reprod. Genet. 2000, 17, 51–59. [Google Scholar] [CrossRef]
  67. Black, L.D.; Nudell, D.M.; Cha, I.; Cherry, A.M.; Turek, P.J. Compound genetic factors as a cause of male infertility. Hum. Reprod. 2000, 15, 449–451. [Google Scholar] [CrossRef]
  68. Krawczyński, M.R. Genetyczny mechanizm determinacji p?ci u cz?owieka. Post. Androl. 2002, 4, 143–150. [Google Scholar]
  69. Matheisel, A.; Babińska, M.; ?ychska, A.; Mrózek, K.; Szczurowicz, A.; Niedoszytko, B.; Iliszko, M.; Mrózek, E.; Mielnik, J.; Midro, A.T.; et al. Wyniki badań cytogenetycznych u pacjentów z wywiadem obci??onym niepowodzeniami rozrodu. Gin. Pol. 1997, 68, 74–81. [Google Scholar]
  70. Midro, A. Znaczenie badań chromosomowych w andrologii klinicznej. Post. Androl. 2000, 3, 1–10. [Google Scholar]
  71. Kurpisz, M.; Szczygie?, M. Molekularne podstawy teratozoospermii. Gin. Pol. 2000, 9, 1036–1041. [Google Scholar]
  72. Jakubowski, L.; Jeziorowska, A. Aberracje chromosomów X i Y w wybranych przypadkach zaburzeń rozwoju cielesno-p?ciowego. Endokrynol. Pol. 1995, 46 (Suppl. 1), 77–95. [Google Scholar]
  73. Wojda, A.; Korcz, K.; J?drzejczak, P.; Kotecki, M.; Pawe?czyk, L.; Latos-Bieleńska, A.; Wolnik-Brzozowska, D.; Jaruzelska, J. Importance of cytogenetic analysis in patients with azoospermia or severe oligozoospermia undergoing in vitro fertilization. Ginekol. Pol. 2001, 11, 847–853. [Google Scholar]
  74. McCallum, T.J.; Milunsky, J.M.; Cunningham, D.L.; Harris, D.H.; Maher, T.A.; Oates, R.D. Fertility in men with cystic fibrosis. Chest 2000, 18, 1059–1062. [Google Scholar] [CrossRef]
  75. Viville, S.; Warter, S.; Meyer, J.M.; Wittemer, C.; Loriot, M.; Mollard, R.; Jacqmin, D. Histological and genetic analysis and risk assessment for chromosomal aberration after ICSI for patients presenting with CBAVD. Hum. Reprod. 2000, 15, 1613–1618. [Google Scholar] [CrossRef]
  76. Oteiza, P.I. Zinc and the modulation of redox homeostasis. Free Rad. Biol. Med. 2012, 53, 1748–1759. [Google Scholar] [CrossRef]
  77. Kehr, S.; Malinouski, M.; Finney, L.; Vogt, S.; Labunskyy, V.M.; Kasaikina, M.V.; Carlson, B.A.; Zhou, Y.; Hatfield, D.L.; Gladyshev, V.N. X-ray fluorescence microscopy reveals the role of selenium in spermatogenesis. J. Mol. Biol. 2009, 389, 808–818. [Google Scholar] [CrossRef]
  78. Mier-Cabrera, J.; Aburto-Soto, T.; Burrola-Méndez, S.; Jiménez-Zamudio, L.; Tolentino, M.C.; Casanueva, E.; Hernández-Guerrero, C. Women with endometriosis improved their peripheral antioxidant markers after the application of a high antioxidant diet. Reprod. Biol. Endocrinol. 2009, 7, 54. [Google Scholar] [CrossRef]
  79. Rink, S.M.; Mendola, P.; Mumford, S.L.; Poudrier, J.K.; Browne, R.W.; Wactawski-Wende, J.; Perkins, N.J.; Schisterman, E.F. Self-report of Fruit and Vegetable Intake that meets the 5 A Day Recommendation is Associated with Reduced Levels of Oxidative Stress Biomarkers and Increased Levels of Antioxidant Defense in Premenopausal Women. J. Acad. Nutr. Diet. 2013, 113, 776–785. [Google Scholar] [CrossRef] [PubMed]
  80. Ambulkar, P.S.; Sigh, R.; Reddy, M.V.R.; Varma, P.S.; Gupta, D.O.; Shende, M.R.; Pal, A.K. Genetic Risk of Azoospermia Factor (AZF) Microdeletions in Idiopathic Cases of Azoospermia and Oligozoospermia in Central Indian Population. J. Clin. Diagn. Res. 2014, 8, 88–91. [Google Scholar] [PubMed]
  81. Sen, S.; Pasi, A.R.; Dada, R.; Shamsi, M.B.; Modi, D. Y chromosome microdeletions in infertile men: Prevalence, phenotypes and screening markers for the Indian population. J. Assist. Reprod. Genet. 2013, 30, 413–422. [Google Scholar] [CrossRef] [PubMed]
  82. Yu, X.-W.; Wei, Z.-T.; Jiang, Y.-T.; Zhang, S.-L. Y chromosome azoospermia factor region microdeletions and transmission characteristics in azoospermic and severe oligozoospermic patients. Int. J. Clin. Exp. Med. 2015, 8, 14634–14646. [Google Scholar] [PubMed]
  83. Choi, D.K.; Gong, I.H.; Hwang, J.H.; Oh, J.J.; Hong, J.Y. Detection of Y Chromosome Microdeletion is Valuable in the Treatment of Patients with Nonobstructive Azoospermia and Oligoasthenoteratozoospermia: Sperm Retrieval Rate and Birth Rate. Korean J. Urol. 2013, 54, 111–116. [Google Scholar] [CrossRef]
  84. Küçükaslan, A.S.; Çetinta?, V.B.; Alt?nta?, R.; Vardarl?, A.T.; Mutlu, Z.; Uluku?, M.; Semerci, B.; Ero?lu, Z. Identification of Y chromosome microdeletions in infertile Turkish men. Turk. J. Urol. 2013, 39, 170–174. [Google Scholar] [CrossRef]
  85. Zheng, H.Y.; Li, Y.; Shen, F.J.; Tong, Y.Q. A novel universal multiplex PCR improves detection of AZFc Y-chromosome microdeletions. J. Assist. Reprod. Genet. 2014, 31, 613–620. [Google Scholar] [CrossRef]
  86. Massart, A.; Lissens, W.; Tournaye, H.; Stouffs, K. Genetic causes of spermatogenic failure. Asian J. Androl. 2012, 14, 40–48. [Google Scholar] [CrossRef]
  87. Hellani, A.; Al-Hassan, S.; Iqbal, M.A.; Coskun, S. Y chromosome microdeletions in infertile men with idiopathic oligo- or azoospermia. J. Exp. Clin. Assist. Reprod. 2006, 3, 1. [Google Scholar] [CrossRef]
  88. Du, Q.; Li, Z.; Pan, Y.; Liu, X.; Pan, B.; Wu, B. The CFTR M470V, Intron 8 Poly-T, and 8 TG-Repeats Detection in Chinese Males with Congenital Bilateral Absence of the Vas Deferens. Biomed. Res. Int. 2014, 2014, 689–695. [Google Scholar] [CrossRef]
  89. Bareil, C.; Guittard, C.; Altieri, J.P.; Templin, C.; Claustres, M.; des Georges, M. Comprehensive and Rapid Genotyping of Mutations and Haplotypes in Congenital Bilateral Absence of the Vas Deferens and Other Cystic Fibrosis Transmembrane Conductance Regulator-Related Disorders. J. Mol. Diagn. 2007, 9, 582–588. [Google Scholar] [CrossRef] [PubMed]
  90. Havasi, V.; Rowe, S.M.; Kolettis, P.N.; Dayangac, D.; ?ahin, A.; Grangeia, A.; Carvalho, F.; Barros, A.; Sousa, M.; Bassas, L.; et al. Association of cystic fibrosis genetic modifiers with congenital bilateral absence of the vas deferens. Fertil. Steril. 2010, 94, 2122–2127. [Google Scholar] [CrossRef] [PubMed]
  91. Almeida, C.; Correia, S.; Rocha, E.; Alves, A.; Ferraz, L.; Silva, J.; Sousa, M.; Barros, A. Caspase signalling pathways in human spermatogenesis. J. Assist. Reprod. Genet. 2013, 30, 487–495. [Google Scholar] [CrossRef] [PubMed]
  92. Accardo, G.; Vallone, G.; Esposito, D.; Barbato, F.; Renzullo, A.; Conzo, G.; Docimo, G.; Esposito, K.; Pasquali, D. Testicular parenchymal abnormalities in Klinefelter syndrome: A question of cancer? Examination of 40 consecutive patients. Asian J. Androl. 2015, 17, 154–158. [Google Scholar]
  93. Bardsley, M.Z.; Falkner, B.; Kowal, K.; Ross, J.L. Insulin resistance and metabolic syndrome in prepubertal boys with Klinefelter syndrome. Acta Paediatr. 2011, 100, 866–870. [Google Scholar] [CrossRef]
  94. Van Rijn, S.; Swaab, H.; Baas, D.; de Haan, E.; Kahn, R.S.; Aleman, A. Neural systems for social cognition in Klinefelter syndrome (47, XXY): Evidence from fMRI. Soc. Cogn. Affect Neurosci. 2012, 7, 689–697. [Google Scholar] [CrossRef]
  95. Lai, H.Y.; Yang, B.C.; Tsai, M.L.; Yang, H.Y.; Huang, B.M. The inhibitory effects of lead on steroidogenesis in MA-10 mouse Leydig tumor cells. Life Sci. 2001, 68, 849–859. [Google Scholar]
  96. Bertin, G.; Averbeck, D. Cadmium: Cellular effects, modifications of biomolecules, modulation of DNA repair and genotoxic consequences (a review). Biochimie 2006, 88, 1549–1559. [Google Scholar] [CrossRef]
(責(zé)任編輯:佳學(xué)基因)
頂一下
(0)
0%
踩一下
(0)
0%
推薦內(nèi)容:
來了,就說兩句!
請自覺遵守互聯(lián)網(wǎng)相關(guān)的政策法規(guī),嚴(yán)禁發(fā)布色情、暴力、反動(dòng)的言論。
評價(jià):
表情:
用戶名: 驗(yàn)證碼: 點(diǎn)擊我更換圖片

Copyright © 2013-2033 網(wǎng)站由佳學(xué)基因醫(yī)學(xué)技術(shù)(北京)有限公司,湖北佳學(xué)基因醫(yī)學(xué)檢驗(yàn)實(shí)驗(yàn)室有限公司所有 京ICP備16057506號-1;鄂ICP備2021017120號-1

設(shè)計(jì)制作 基因解碼基因檢測信息技術(shù)部

欧美精品中文字幕在线视| 国产欧美日韩丝袜在线视频| 久久久久久久人妻无码中文字幕爆| 精品人妻毛片久久久久久| 久一蜜臀av亚洲一区| 东京热久久综合日韩精品| 亚洲911精品成人18网站| 久久ee热这里只有精品| 国产色哟哟免费在线观看 | 波多野结衣绝顶高潮喷水| 亚洲男女羞羞无遮挡久久丫 | 久久久久久久久久99精品| av天堂东京热无码专区| 日韩亚AV无码一区二区三区 | 九九热线视频精品99| 秋霞伦理电院网伦霞| 强开小嫩苞一区二区三区网站| 先锋+视频+国产精品| 亚洲人成综合网站7777香蕉| 国产亚洲午夜精品一区二区久久| 久久精品国产亚洲av高清蜜臀| 国产精品岛国久久久久久| 93人妻人人做人碰人人爽| 亚洲精品无码播放| 亚洲色欲久久久久综合网| 在线观看人成视频网站不卡| 99久久国产综合精品女同| 99久久精品无免国产免费| 久久国产精品伦理片国产乱| 男人的天堂亚洲中文字幕| 亚洲精品乱码久久久久久花季| 日韩欧美AⅤ综合网站发布| 免费一级特黄特色毛片久久看| 亚洲欧洲国产日韩在线不卡| 丁香五月激情综合亚洲| 少妇激情av一区二区| 男人天堂亚洲国产都在搜| 嫩草影院在线观看高清完整版| a亚洲va欧美va国产综合| 99国内视频免费在线观看| 亚洲综合视频在线看一区二区三区| 中文字幕精品亚洲无线码一区 | 亚洲一区二区观看| 国产精品呻吟高潮久久久 | 精品视频一区二区三区| 久成人免费精品xxx| 亚洲欧美日韩在线不卡| 强硬进入岳A片69| 亚洲中文字幕乱码av波多ji| 神马影院手机在线观看| 最新国产精品好看的精品| 美女在线视频黄色免费网站| 国语+人妻+磁力链接| 麻花免费观看nba高清在线| 精精国产xxxx视频在线野外| 人妻美妇疯狂迎合系列视频| 亚洲欧美日韩中文加勒比| 精品国产亚洲av麻豆gif| av网站在线观看不卡| 91av福利视频| 久久男人av资源网站无码| 岛国+激情+无码| 日韩丰满少妇无吗视频激情内射 | 国产免费观看高清电视剧在线观看| 九九热线有精品视频86| 99re6热在线精品视频播放| 亚洲男人天堂一区在线观看| 日韩+欧美+国产精品| 久久午夜国产精品www忘忧草| 亚洲精品免费观看| 中文字幕Aⅴ人妻一区二区| 高潮+喷水+免费| 国产自偷在线拍精品热| 成人做爰100部片免费下载| 伊人国产精品影院在线观看| 日韩美女后入式在线视频| 欧美成人+精品一区+在线观看| 国产一区二区三区成人欧美日韩在线观看 | 国产精品久久久精品三级18| 黄色精品视频一区二区三区| 国产福利视频一区二区三区| 国产精品96久久久| 国产理论视频在线观看| 污污视频网站在线| 97色婷婷综合缴情在线播放| 善良娇妻让公泄欲| 黄色网页在线观看| 天天澡天天揉揉av无码| 国产成人午夜福利高清在线观看| 八十路で初撮り老熟妇中国| 亚洲视频欧美视频中文字幕| 天海翼精品久久久久中文字幕| 日韩人妻无码精品无码中文字幕| 4k岛国精品午夜高清在线观看| 18+成人免费视频| 久久受www免费人成| 欧美热在线视频精品999| 欧美又粗又大又硬久久久| 国产精品成人精品久久久| 日本免费一区二区三区中文字幕 | 一区二区久久精品66国产精品| 成人做爰黄AA片免费看李晨视频| 午夜福利+麻豆+国产| 热久久国产欧美一区二区精品| 国产女精品视频网站免费| 国产精品丝袜一区二区| 女人17片毛片90分钟| 国产97在线乱码中文乱码| 亚洲欧洲精品专线| 亚洲成av人片在线观看天堂无| 老司机在线精品视频网站| 久久人妻少妇嫩草av红粉| sao货妓女的yin荡生活| 久久精品国产—精品国产| 99热这里只有精品九九9| 91亚洲国产成人精品久久久| 波多野结衣无码一区二区| 97超级精品综合网| 久久夜色精品国产噜噜亚洲SV| 乱码精品国产成人观看免费| 欧美亚洲高清一区二区三区不卡| 国产+午夜福利+久久精品| 丁香花在线高清视频完整版观看| 亚洲成人国产精品| 草莓污视频+导航+网站你懂的| 亚洲欧美日韩国产一区二| 亚洲熟女av天堂| 日韩视频在线国产成人| 欧美黑人xxxx又粗又长| 98精品偷拍视频一区二区三区| 亚洲成人视频在线观看| 国产精品av久久久久久无| 国产女主播精品大秀系列| 窝窝影院在线播放免费观看电视剧 | 最新黄色在线观看一区二区三区 | 亚洲欧美另类激情| 国产免费三级现现频在线观看| 磁力bt天堂在线www搜索| 岛国精品123区无码| 亚洲午夜精品一区二区三区国产| 亚洲桃色在线播放国产精品| 国产精品18久久久首页| 国产伦子伦一级A片免费看小说| 一人玩两女双飞视频| 熟女老阿V8888AV| 中文在线字幕免费观看电视剧日剧| 黑人巨鞭波多野结衣| 337p日本欧洲噜噜噜噜| 日本熟妇50乱偷交尾| 134vcc影院免费观看| 欧美、另类亚洲日本一区二区| 国产精品卡一卡二卡三| 精品美女一区二区| 在线播放五十路熟妇| 免费无遮挡在线观看视频网站| 在线看片免费人成视频播| 九色porny视频| 成人动漫在线观看免费| 99精品视频99| 国产精品玖玖玖在线| 女同一区二区三区在线观看 | 中文字幕+乱码+中文在线| 办公室制服丝祙在线播放| 亚洲+欧美+视频| 一卡二卡不卡免费视频观看| 久久91精品国产91久久蜜月| 国产一区二区三区在线视频观看 | 日本xxxx色视频在线播放| 日韩精品久久久久久希崎杰西卡| 无码AV波多野结衣久久| 五月婷婷综合在线观看| 亚洲十八禁深夜福利| 日韩永久在线观看免费视频| 婷婷在线精品视频免费观看| 日韩亚洲av人人夜夜澡人人爽| 国产毛片久久久久久久18| 黄色av网站免费观看| 伊人久久久久久久久| 亚洲国产精品av在线播放| 免费啪视频在线观看| 天海翼精品久久久久中文字幕 | 日韩人妻不卡一区二区三区 | 国产精品中文字幕一区二区| 国产精品免费观看调教| 尤物97国产精品久久精品国产| 伊人久久精品亚洲午夜| 国产精品一卡2卡三卡4卡| 国产精品线在线精品| 磁力链接+日韩高清无码| 亚洲欧美另类激情| 国产成人久久精品流白浆| 开心五月激情五月俺亚洲| 国产乱xxxxx978国语对白| 国产女同一区二区三区久久| 久久精品国产68国产精品亚洲| 国产99久久精品一区二区| 国产男生午夜福利免费网站| 亚洲最新中文字幕成人| 青青草国产免费国产是公开| maturetube乱熟| 中文字幕+乱码+www| 精精国产xxxx视频在线野外| 9九色桋品熟女内射| 亚洲欧美日韩一区二区三区在线| 久久久久夜色精品国产老牛91| 日韩成人无码v清免费| 亚洲精品久久久久午夜福禁果tⅴ| 久久国产精品——国产精品| 国产无人区码一码二码三mba| 天堂√最新版中文在线地址| 久久久麻豆精品一区二区| 色婷婷一区二区三区四区 | 五月丁香久久丫婷婷一区不卡| 国产精品欧美一区二区三区喷水| 亚洲国产成人精品女人久久久久| 亚洲精品高潮呻吟久久av| 久久丫精品国产亚洲AV| 亚洲国产欧美一区二区三区丁香婷 | 亚洲中文字幕欧美日韩在线| 国产成a人亚洲精品在线观看| 综合色区无码一区| 不卡+一区二区视频+日本| 色综合久久久久久| 开心+婷婷+五月天| 淫语骚话高潮脏话HD| 免费无遮挡无码永久视频| 国内偷自第一区二区三区| 亚洲最大av在线| 亚洲+日本+专区| 亚洲国产精品第一区二区三区| 亚洲一区二区影视| 国产乱码人妻一区二区三区四区| jizz国产免费| 天堂中文在线免费观看视频| 亚洲欧美日韩另类在线| 欧美+国产+麻豆| 国产成人精品亚洲一区二区麻豆 | 亚洲欧洲成人a∨在线观看| 亚洲乱亚洲乱妇无码麻豆 | 一区二区激情av| 国产人妻精品久久久久野外| 91久久香蕉国产日韩欧美9色| 曰韩亚洲av人人夜夜澡人人爽| 亚洲天堂2017无码| 亚洲综合日韩久久成人av| 台湾亚洲精品一区二区tv| 亚洲色一色噜一噜噜噜| 成人无码WWW爽爽爽| 特级西西444www无码视频免费看| 亚洲+欧美+麻豆视频| 九一麻花传剧mv免费观看影视大全 | 国产99精品最新在线播放| 久久精人人槡人妻人人玩| 日本免费一级特黄⊙大片欧美| 国产欧美拍视频免费在线观看| 成人污污污www网站免费| WWW亚洲色大成网络.COM| 韩国巜干柴烈火〉床戏| 国产薄丝脚交视频在线观看| 一级做a爰片久久毛片a| 在线免费观看黄网| 亚洲综合无码av一区二区三区| 超碰97国产精品人人cao| 善良娇妻让公泄欲| 美女互摸视频一区二区三区 | 一本大道久久a久久精品综合1| 蜜桃又黄又粗又爽av免| 国产成人三级一区二区在线观看一| 亚洲欧美日韩综合在线免费观看| 精品国产无乱码一区二区| 粉嫩BBBBBBBBB精品| 国产盼盼私拍福利视频99| 八戒青柠影院观看免费高清电视剧| 国产69精品久久久久777| 久久无码一级免费| va在线看国产免费| 曰韩亚洲av人人夜夜澡人人爽| 日韩在线中文字幕| 亚洲+国产+图片| 亚洲+视频+免费| 高清毛片aaaaaaaaa片| 国产+欧美+日本在线观看| 亚洲成a∨人片在线观看不卡| 成人精品一区二区户外勾搭野战 | 色五月丁香五月综合五月4438| 国产一区二区三区四区五区六区| 国产在线观看香蕉视频网| 成人在线观看你懂的| 亚洲成a人v在线蜜臀| 国产一区二区三区免费在线| 亚洲无线观看国产精品| 永久免费未满蜜桃| 国产精品夜间视频香蕉酒店| 欧美老妇bbbwwbbbww| 无翼乌18禁全肉肉无遮挡彩色| 日日噜噜夜夜狠狠久久丁香五月| 亚洲av片一区二区三区久久 | 国内精品自线一区二区三区| 亚洲国产欧美在线人成人| 无码囯产精品一区二区免费| 欧美日本一区二区三区| www.免费在线不卡av| 日本一区二区三区四区18| 97国产爽爽爽久久久| 国产日韩欧美亚洲一区二区三区| 中文字幕无码一区二区免费| av网站高清在线免费观看| 国产福利一区二区三区在线视频| 国产99久9在线视频传媒| 综合久久婷婷综合久久| 中文字幕亚洲无线码| 国产国产成人久久精品| 国产成a人亚洲精品在线观看| 风流少妇一区二区三区91| 影音先锋+无码高清| 亚洲天堂2017无码| 双乳奶水饱满少妇视频| 亚洲一卡二卡三卡四卡免费视频 | 亚洲综合色区另类av| 国产高清在线不卡| 欧美一区午夜精品久久福利| 亚洲狠狠婷婷综合久久久久图片| 午夜福利试看120秒体验区| 91麻豆精品国产自产在线91| 久久老熟女一区二区福利蜜臀| 91精品一区二区中文字幕| 中文字幕在线日韩欧美在线观看| 中文字幕乱码一区av久久不卡| 中文字幕av一区中文字幕天堂 | 色偷偷噜噜噜亚洲男人| 日本精品一卡二卡三卡四卡视| 成全在线观看免费完整| 成人做爰A片AAA毛真人| 成人在线手机视频| 欧美+成人精品+高清视频| 免费+高清+在线观看| 偷玩邻居醉酒人妻| 97久久超碰国产精品最新| 欧美.日韩在线一区二区三区| 亚洲精品制服丝袜四区| 亚洲一级视频在线观看视频| 国产一区二区精品久久| 亚洲国产高清久久久久久久久| 蜜臀精品国产高清在线观看| 情人伊人久久综合亚洲| 欧美日韩中文国产| 国产自产21区在线观看| 国产精品久久久久久影视不卡| 国产免费看又黄又粗又硬| 18+免费视频下载| 免费视频在线观看网站| 尤物精品国产第一福利网站| _97夜夜澡人人爽人人喊_欧美| 亚洲不乱码卡一卡二卡4卡5| 欧美国产日韩在线观看视频一区 | 日韩国产精品一区二区三区| 一本加勒比hezyo爆乳| 亚洲免费视频一区二区| 贵州小少妇BBAABBAA视频| 天堂日韩人妻一区二区三区 | 日本高清不卡a免费观看| 日韩人妻系列无码专区| 在线一区二区三区| 国产精品视频在视频| 在线观看精品日中文字幕| 国产精品黄色在线免费观看 | 久久精品国产亚洲av水果派 | 婷婷久久精品国产色蜜蜜麻豆| 国产精品亚洲αv| 91亚洲欧美中文精品按摩| 足疗店熟女一88AV| 一个本道久久综合久久88| 成人+免费+在线观看| 中文在线字幕观看电视剧hd| 1024国产成人精品视频| 午夜dy888理论久久| 国产精品亚洲а∨天堂2021| 破了女学生小嫩苞A片| 在线视频中文字幕一区二区三区| 成年免费视频黄网站在线观看| 97午夜理论片影院在线播放| [无码破解]AV破解版| 高潮毛片无遮挡高清免费视频网站 | 亚洲欧美日韩国产成人精品影院| 久久99精品无码一区二区| 日韩精品一区二区在线观看网址 | 丰满少妇高潮在线观看| 色综合色天天久久婷婷基地 | 国产午夜草莓视频在线观看| 亚洲www久久久| 久久久久久久国产精品免费 | 欧美日韩亚洲精品成人片区| 四川寡妇搡BBB爽爽爽| 亚洲理论中文字幕| 亚洲精品字幕在线观看1| 一本大道久久a久久综合婷婷| 99热精国产这里只有精品| 肉大榛一进一出免费视频| 国产精品免费观看久久| 蜜乳av中文字幕| 交换一区二区三区va在线| 很黄的视频国产在线观看| 少妇高潮喷水视频| 大地资源网在线观看入口| 人妻av中文无码| 中文娱乐网2222官网入口| 久久久久久亚洲精品成人| 国产色99精品9i| 欧美不卡一区二区视频在线观看| 桃花岛成人在线观看| 97精品无人区乱码在线观看| 精品多人p群无码| 国产精品一区二区久久精品| 最好看的2018中文在线观看电视| 国产片淫级awww| 亚洲十八禁深夜福利| 精品国产美女av久久久久| 精品亚洲成熟女人www| 国产免费不卡的在线视频| 国产精品黑色丝袜在线观看| 一区二区免费视频| 欧美肥臀大乳一区二区免费视频| 亚洲国产成人久久精品大牛影视| 婷婷91麻豆精品国产红杏| 精品午夜福利在线视在亚洲| 亚洲精品第一国产综合野| 美女互摸视频一区二区三区 | 少妇搡xxxx少妇搡xxxx| 午夜免费福利视频| av黄色免费观看| 亚洲精品无码久久不卡| 在线人人车操人人看视频| 青青草无码精品伊人久久蜜臀| 最日本中文字幕中文翻译歌词| 国产成人精品午夜福利软件| 国产在线视频不卡一二| 亚洲综合色区另类小说| 精品一区二区国产免费av| 久久中文字幕无码一区二区| 国产精品美女久久久久久久久 | 夜夜躁狠狠躁日日躁视频| 国产精品综合久久久精品综合蜜臀| 日韩视频中文字幕精品偷拍| 亚洲av人人夜夜澡人人| 国产亚洲视频免费播放| 99久久久久久99国产精品免| 躁老太老太骚BBXXHD| 国产精品久久久91| 怡春院国产精品视频| 四虎成人精品永久网站| 试镜床戏(巨肉高h)| 少妇荡乳情欲办公室毛片一区二区| 亚洲啪啪aⅴ一区二区三区9色| 亚洲成AV人片一区二区密柚| 中出素人久久久久久国产精品 | 99香蕉国产精品偷在线观看| 日韩精品人妻2022无码中文字幕 | 真人做爰片免费观看播放第09集| 91精品视频一区二区三区| 影音先锋+中文+人妻| 亚洲国产欧美日韩精品久久久| 久久精品亚洲国产av麻豆| 18+免费观看视频| 美女精品a网站又爽又色| 久久精品一区二区三区四区毛片| 女人抽搐喷水高潮国产精品| 国产+麻豆+免费| 97人伦色伦成人免费视频| 九色视频在线免费观看| 免费+精品+国产| 亚洲精品久久久久久久久久久| 国产乱码一区二区三区观看 | 亚洲精品午夜国产va久久成人| yjizz视频网| 国产+精品+喷水| 日韩永久精品视频免费wwwa | 一本一道色欲综合网| 亚洲综合色区另类av| 久久夜色撩人精品国产小说| 福利在线视频导航| 欧美污视频免费在线观看| 亚洲欧美日韩国产成人精品| 国产又爽又猛又粗的视频a片| 日本一区二区不卡黄色视频 | 野花社区视频在线观看| 亲子乱一区二区三区的解决方法| 在线黄色av网站| 欧美老妇bbbwwbbbww| 亚洲制服丝袜中文字幕国产| 裸体+光屁屁+露胸| 国产精品爆乳在线播放| 国产又色又爽又黄的网站在线| 国产亚洲欧美精品一区| 91这里只有精品| 成人免费国产精品视频| 欧美黄视频在线观看| 日本无码一区二区| 熟妇人妻无乱码中文字幕真矢织江 | 年轻内射无码视频| 视频二区精品中文字幕| 久久黄色免费视频| 国产精品六九久久久久不卡| 精品无码免费专区毛片| 国产中文字幕在线观看| 欧美日韩一区三区| 天堂在线视频免费| 欧美一区二区三区四| essuess免费观看播放| 翁含着我的奶边摸边做小视频| 亚洲不卡av一区二区三区| 成人午夜视频在线观看| 亚洲国产97久久精品无色| 中文字幕av久久激情亚洲精品| 欧美精品黄片一区二区三区| 一本色道88久久加勒比精品 | 无翼乌18禁全肉肉无遮挡彩色| 国产精品永久免费av观看| 国产+免费+日韩欧美| 久久这里只有精品首页| 久久精品国产亚洲av成人婷婷 | 久久男人高潮av女人天堂| 肉体公尝HD中文字幕| 日韩精品专区av无码| 国产色婷婷亚洲99精品小说| xxx日本一区二区免费| 日韩黄色一级网站| 亚洲欧美在线一区中文字幕| 国产一区日本二区在线观看 | 99久久伊人精品综合观看| 色猫咪免费人成网站在线观看| 亚洲视频一区二区在线免费观看| 国产成本人视频在线观看| 国产精品欧美亚洲| 美女+人妻+日韩毛片| 国产综合色在线精品| 在线一区二区三区视频| 久久黄色免费视频| 中日韩无砖码一线二线| 国产一区二区精品久久| 134vcc影院免费观看| 亚洲精品无码久久久久不卡网址| 安徽少妇BBB凸凸凸BBB| 毛片+免费视频在线看| 亚洲日本高清成人aⅴ片| 日本欧美成人精品在线观看| 亚洲精品中文字幕国产精品 | 日韩+国产+在线高清| 国产真实强被迫伦姧女在线观看| 中文字幕+乱码+中文字幕无忧| 婷婷丁香五月激情综合| 热99国产精品久久久久久久| 可以免费观看的毛片| 国产精品久久久久久久久久| 秋霞久久久久久一区二区| 车上拨开岳裙子猛进入| 日韩又大又长又粗又硬又爽视频| 亚洲色成人网站www永久尤物| 中文字幕在线免费观看一区二区| 久久99精品久久久久久园产越南| 日本+超碰+专区| 亚洲欧洲日韩综合| 午夜丰满极品美女A片| 中文在线8资源库| 亚洲成人动漫在线观看| 色悠久久久久综合网+香蕉| 真人做爰视频成人观看| 国产精品igao视频网| 99国产精品污污污网站免费看| 欧美婷婷六月丁香综合区| 青青草无码精品伊人久久蜜臀| 国产成人精品无缓存在线播放| 国产国产成人久久精品| 亚洲中文字幕欧美日韩在线| 免费国产精品一区二区三| 精品久久久久国产一区二区| 欧美高清狂热视频+视频| 成av免费大片黄在线观看| 亚洲熟妇AV一区二区三区| av无码av天天av天天爽仙踪林| 久久99国产精一区二区三区| 毛片黄色美女视频观看| 少妇人妻偷人精品视频免费| 中文人妻av久久人妻18| 98精品偷拍视频一区二区三区| 国产精品18久久久久白浆软件| 国产蝌蚪视频在线观看| 国产精品1000夫妇激情啪| 蜜桃臀久久久蜜桃臀久久久蜜桃臀| 国精产品国语对白东北| 日韩熟妇中文色在线视频| 又粗又猛又黄又爽视频| 国产日本欧美一区二区在线观看| 日韩亚洲国产中文字幕欧美| 丰满少妇人妻久久久久久| 欧美一区二区三区午夜视频| 亚洲十八禁深夜福利| www日韩avcom| 国产在线精品一区二区三区不卡| 一个人看www在线视频| 日韩免费无码专区精品观看| 中文字幕在线播放第一页| japanese国产在线看| 美女在线视频黄色免费网站 | 国产va免费精品高清在线| 成人网站www污污污网站| 久久久99久久久国产自输拍| 香蕉久久久久久久AV网站| 日本丰满少妇毛茸茸| 视频在线一区二区| 少妇无码一区二区三区| 真人做爰片免费观看播放第09集| 欧美v国产在线一区二区三区| 亚洲一区二区观看| 强伦少妇A片视频| 日本三级中文字幕在线观看| 国产高潮又爽又刺激的视频免费| 日本精品婷婷久久爽一下| xxx日本一区二区免费| 久久婷婷狠狠综合激情| 精品国产乱码久久久久久蜜柚 | 国产又黄又爽又猛视频在线观看| 国产+日韩+欧美视频| 老牛嫩草一区二区三区消防| 久久久av高清一区二区| 国产免费激情视频在线观看| 亚洲国产精品自在线一区二区| 日本欧美大码a在线观看| 99精品在线观看中文字幕| 日韩欧美国产一区二区三区久久| 日韩欧美精品一区二区三区四区 | 成人免费毛片AAAAAA片| 日本一区二区视频| 99久久人妻精品免费二区| 国产又大又长又粗又硬又爽| 成人免费黄色大片| 亚洲三区在线观看无套内射| 在线播放亚洲第一字幕| 免费+无码+av网| 国产又黄又爽又大免费视频| 亚洲综合国产精品一区| 日韩高清在线亚洲专区小说| www久久精品亚洲国产| 亚洲永久精品国产xxxx| 少妇精品综合无码| 巨大荫蒂视频欧美另类大| 午夜福利啪啪体验区| 天堂√最新版中文在线地址| 亚洲码欧美码一区二区三区| 国产伦理五月av一区二区| 免费国产视频一区二区三区| 国产的av在线免费观看| 最新国产精品好看的精品| 成人免费看黄网站在线观看 | 国产精品午夜自在在线精品| 一本色道久久综合狠狠躁邻居 | 欧美在线视频在线观看一区| 久久无码人妻一区二区三区午夜| 国产模特嫩模私拍视频在线| 成人+高潮+国产| 777米奇色888狠狠俺去啦| 清纯粉嫩极品夜夜嗨av| 国产一区精品视频| 久久婷婷国产剧情内射白浆| 加勒比色综合久久久久久久久| 一区二区三区在线观看视频免费 | 亚洲+群p+在线| 秋霞久久久久久一区二区| 成人国产精品免费网站| 免费福利视频网站一区二区三区 | 久久精品99久久香蕉国产色戒| 中文国产成人精品久久一区| 粉嫩小泬无遮挡久久久久久 | 又黄又爽又粗又硬又免费的视频 | 色综合天天综合欧美综合| 亚洲一区二区免费在线观看| av天堂中av世界中文在线播放| 窝窝影院在线观看免费高清电视剧下 | 狠狠色丁香婷婷久久综合蜜芽| 92国产精品午夜福利免费| 亚洲天堂av一区二区三区| 免费国产一级特黄久久| 国产成人在线一区二区| 人体极品粉鮑欣赏91| 最新国产福利在线观看精品| 国产尤物精品自在拍视频首页| 色久悠悠婷婷综合在线亚洲 | 国产专区在线视频| 国产在线视频不卡一二| 日韩午夜福利无码专区a| 999久久久国产精品视频| 四川乱子伦农村露脸| 亚洲色欲色欲www在线看小说| 国精品午夜福利视频不卡| 黄色av网站免费观看| 色678黄网全部免费| 亚洲人成伊人成综合网小说| 国产+成人+欧美| 青青草国产在线视频综合| 欧美一区二区三区四| 国产成人精品18禁三区 | 欧美一区二区激情视频| 麻豆妓女爽爽一区二区三| 亚洲精品一区二区三区香蕉| 日日鲁夜夜如影院| 日本一区二区免费黄色视频| 少妇bbw搡bbbb搡bbbb| 无码一区二区波多野播放搜索| 亚洲丝袜制服在线观看视频| 国产噜噜噜精品免费视频| 国产+在线观看+免费| 亚洲精品国产精品国自产小说| 丰满的熟妇岳中文字幕| 久久99精品久久久久久HB无码| 天堂岛视频在线观看欧美日韩| 邪恶肉肉全彩色无遮盖| 最好看的2018中文在线观看电视| 国产美女视频免费观看www| www.免费在线不卡av| 日韩三级成人av在线网| 精品人妻久久久久久888| 成人免费高清视频| 五十路豊満の交尾在线| 国产精品亚洲欧美日韩在线观看 | 大地资源二中文在线官网| 在线日韩中文字幕av网站| 美女精品a网站又爽又色| 成人免费淫片aa视频免费| 人妻在厨房被色诱| 91tv国产成人福利| 欧美精品在线观看第一页| 国产精品4huwww| 最新黄色在线观看一区二区三区| 懂色av一区二区三区四区五区| www久久久久久久久| 99er热精品视频| 久久国产福利播放| 熟妇人妻无乱码中文字幕| 久久久国产精品一级夜夜爽| 亚洲男女啪啪视频一区二区| 日韩黄a三级三级三级看三级少妇 欧美人妻456aⅴ中文字幕 | 国内精品久久久久久久小说| 蜜桃久久一区二区三区| 日韩精品+巨乳人妻+一区二区| 999久久久国产精品视频| 国产最新精品自产在线观看| 亚洲三级在线观看| 亚洲男女内射在线播放| 国产又色又爽无遮挡免费动态图 | 四川寡妇搡BBB爽爽爽| 国产麻传媒精品国产av| 日本xxxxl码在中国是几码| 亚洲精品无码播放| 国产精品免费视频网站| 成人+欧美+日本| 在线最新av免费费观看| 一区二区三区免费看| 国产精品亚洲综合久久系列| 少妇又色又爽又刺激视频| rmvb+下载+在线播放| 国产+欧美+欧洲| 色色色色色五月丁香婷婷 | 亚洲乱码在线观看| 蜜桃臀久久久蜜桃臀久久久蜜桃臀| 国产av午夜精品一区二区入口| bt在线www天堂网在线| 欧美日韩免费不卡激情在线视频| 中文字幕丰满孑伦无码专区| 亚洲国产中文一区二区99re| 野花成人免费视频| 欧洲日韩亚洲无线在码| 久草在线免费资源| 国产+欧洲+日本| 91精品视频在线看| 李宗瑞91在线正在播放| 亚洲自偷自偷在线成人网址| 北条麻妃99精品久久朝桐光| 小12萝裸体自慰出白浆| 亚洲精品女人久久久久| 法国色情巜卧室肉欲| 成人H动漫精品一区二区无码软件 摁着她干了好几次嫩B | essuess免费观看播放| 国产色A∨在线看精品| 《表妺3》伦理hd| 日产精品一二三四区国产| 国产一区二区三区导航| 久久亚洲精品中文字幕波多野结衣| 少妇高潮喷水视频| 亚洲一区二区美女在线观看| 99国产精品国产精品精品| 亚洲精品乱码久久久久久按摩 | 欧美+日本+国产| 日日噜噜夜夜狠狠久久丁香五月| 久久综合婷婷成人网站| 337p日本欧洲亚洲大胆精蜜臀 | 丰腴饱满的极品熟妇| 伊人色综合久久天天五月婷| 亚洲人成人网色www| 日韩人妻无码精品无码中文字幕| 在线观看jizz| 四虎影视永久无码精品| 亚州国产av一区二区三区伊在| 国产人免费人成免费视频| 北条麻妃99精品久久朝桐光| 国产精品久久久福利| 永久免费精品精品永久| 久久久91精品国产一区二区精品| 亚洲自拍高清免费| mm131亚洲国产美女久久| 中文字幕99免费精品视频网| 久久久久久久国产精品免费| 国产黄a三级三级三级av在线看| 少妇人妻无码专区毛片| 人妻精品一区二区三区| 中文字幕无码视频专区| 1234区中文字幕在线观看| 日韩精品视频在线观看三区| 97久久综合区小说区图片区| 懂色av一区二区三区四区五区| 藏精阁成人免费观看在线视频| 内射白浆一区二区在线观看| 国产成a人亚洲精品在线观看| 亚洲中文字幕精品久久久久久动漫| www久久精品亚洲国产| 中文字幕在线影视| 丫丫影院免费观看电视剧| 国产不卡在线播放| 99久久99热这里只有精品| 亚洲国产精华液网站w| 国产精品国产精品国产| 又黄又粗又爽的免费视频 | 欧美日韩一区二区三区aa| 国产+高潮+免费| 国产欧美日韩视频在线观看| 欧美+国产+动漫卡通| 国内精品伊人久久久久影院麻豆| 国产成a人亚洲精品在线观看| 久久亚洲精品国产亚洲老地址| 授乳喂奶av中文在线| 国产成人啪精品视频网站| 国产福利久久一区二区久久| 人小说网站在线观看| 日韩成人免费视频| 天天综合色天天综合色h | 国产三级精品三级在线专区1| 免费观看mv大片高清| 日韩欧美一区二区三区五区| 国产+欧美+日韩在线| 17c一.起草看片| 久久中文字幕av一区二区不卡| 近親伦一区二区三区| 欧美国产三级一区二区三区| 久久香蕉国产线熟妇人妻| 一区二区三区在线观看视频免费| 国产精品欧美二区66| 日本精品巨爆乳无码大乳巨| 成人做爰高潮A片免费视频| 中文在线8资源库| 欧美+国产+韩国| 久久夜色撩人精品国产小说| 无码av大香线蕉伊人久久| 亚洲美女视频一区二区三区| 中文人妻av久久人妻水密桃| 日本+国产+欧美| 国产美女91呻吟求| 国产三级国产精品专区50| 中文字幕一区二区三区乱码图片| 成人国产热播资源| 韩国巜干柴烈火〉床戏| 中文字幕一卡二卡三卡| 国产精品点击进入在线影院高清| 国产欧美日韩综合精品一区二区| 午夜一区二区三区视频观看| 99re6热在线精品视频播放| 国产伦精品一区二区三区综合网| 4k岛国精品午夜高清在线观看| 国产伦精品一品二品三品的更新时间| 欧美日本一区二区三区免费| 高H荤爽肉欲文〈np〉宝玉| 少妇高潮惨叫久久久久| 日本熟妇50乱偷交尾| B老骚B老熟B老太中国老骚B| 亚洲熟女综合色一区二区三区| 啪啪视频最新地址发布页| 中文字幕淑女丝袜人妻在线| 窝窝午夜看片+成人精品| 久久精品国产第一区| 91av福利视频| 99久久精品久久久久久动态片| 日韩18中文字幕欧美在线| 欲香欲色天天综合久久| 91最新视频在线观看网址| 国产亚洲精品自拍| 亚洲AV人无码激艳猛片| 国产免费av综合片在线观看| 久热99精品视频免费观看免费| 国产精品偷伦视频观看免费| 欧美又粗又大又硬久久久| 毛片网站免费在线观看| 成人欧美一区二区三区在线观看| 亚洲精品免费视频| 亚洲精品午夜视频| 在线观看免费高清视频大全追剧| juliaann一区二区三区| 成人毛片视频免费看| 亚洲精品第一国产综合野| 日本69精品久久久久999小说| 18成人福利网站在线观看| 日本片黄在线观看免费| 亚洲女同精品一区二区| 97成人做爰A片无遮挡直播 | 国产乱子经典视频在线观看| 偷拍激情视频一区二区三区| 国产+口爆+绿帽| 九九综合va免费看| 天天狠天天添日日拍捆绑调教| 日本欧美一区二区三区乱码 | 在线亚洲综合欧美网站首页| 亚洲国产综合一区二区精品| 西西888WWW大胆无码| 亚洲日韩av无码不卡一区二区三区 | 一区二区三区国产网站麻豆| 午夜理论欧美理论片| 国产+日本+另类| 国产第一页浮力影院草草| 亚洲精品久久久久午夜福禁果tⅴ| 中文字幕免费高清电视剧网站| 国产精品一级AA毛片不收费| 久热这里只有精品99国产6| 人人澡人人澡人人看添| 欧美日本久久综合网站点击 | 亚洲人成网址在线播放| 欧美成人一区二区三区蜜臀| 一夲到东京熬加勒比| 久久国产乱子伦精品免费女人| 麻豆果冻国产剧情av在线播放| 国产在线无遮挡免费观看| 人人鲁人人莫一区二区三区| 成人免费视频大全| 精品亚洲国产成人av| 亚洲欧美日韩中文加勒比| 国产一级久久久久av片| 夜夜高潮夜夜爽精品欧美做爰| 香蕉久久国产超碰青草| 亚洲欧美国产一区二区三| 国产高清在线一区| 欧美狠狠入鲁的视频| 青草伊人婷婷精品视频在线观看| 亚洲一区二区视频在线观看网站| 久久精品免费网站| 国产情人综合久久777777| 亚洲国产精品久久久毛片| 国产女人18毛片水18精品软件| 亚洲国产天堂视频在线播放| 天天色香色欲影视| 亚洲国产精品国自产拍色欲av| 特级淫片裸体免费看视频| 四虎成人精品永久网站| 手机在线免费观看毛片av| 蜜臀精品国产高清在线观看| 国产黄色片在线播放| 亚洲一区二区观看| 国产精品区一区二区三| 日韩一区二区在线观看视频| 蜜乳av中文字幕| 亚洲综合免费视频| 精品国产av一区二区三区蜜臀| 熟女人妻av五十路六十路| 巨乳+群p+在线| 一本一道av无码中文字幕﹣百度| 亚洲精品一区二区三区香蕉| 一本加勒比HEZYO爆乳| 欧美成人亚洲综合第一页| 亚洲国产精品婷婷玖玖色| 久久综合九色综合欧美狠狠| 亚洲永久免费播放片国产| 久久久久亚洲AV无码专不卡| 一本色道久久精品| 18+sexvideos| 又爽又色禁片1000视频免费看| 精品99久久久久久| 婷婷综合久久一区二区三区武松| 天天综合亚洲综合网天天αⅴ| 精品久久久久一区二区国产| 中文字幕老妇昭和肉欲| www.五月婷婷.com| 久久精品麻豆一区二区三区美女| 超碰香蕉人人网99精品| 欧美污视频在线播放网址| 日韩一级二级视频| 国产+在线观看+免费| 久青草国产在线视频_久青草免| 欧美综合在线观看视频| 国产成人高清在线观看视频| 成人高清免费观看| 淫语骚话高潮脏话HD| 日韩av三四级在线观看| 久久国产乱子伦精品免费乳及| 国产欧美日韩视频一区二区三区| 国产亚洲综合一区二区三区 | 欧美v欧美v视频在线观看视频 | 中文字幕av导航| 成人18+免费视频| 色久综合影视天天综合网| 日韩欧美一区二区在线视频| 国产精品欧美一区乱破| 在线视频中文字幕一区二区三区| 在线精品亚洲观看不卡欧| 四川少妇高潮无套毛片| 手机免费av在线| 风间由美+五十路| 国产啊v在线观看| 亚洲国产高清在线一区二区三区| 成人欧美一区二区三区白人| 国产精品久久久久久久久久妇女| 亚洲+变态+欧美| 污18禁污色黄网站免费观看| www.国产成人在线免费看| 日本毛片高清免费视频| 可以在线看的av网站| 三年在线观看大全免费高清| 高清无码视频18| 久久99国产综合精品免费99| 亚洲欧洲精品成人久久av18| 国产成人久久精品流白浆| 日韩av在线一区二区三区| 91精品成人免费国产片| 久久天天躁狠狠躁夜夜av不卡| 极品少妇被后入内射视| 免费无码一区二区三区蜜桃| 亚洲精品精华液一区二区| 婷婷久久精品国产色蜜蜜麻豆 | 国产精品人人妻人人爽人人牛| 成人免费毛片男人用品| 高清无套内精线观看456| 亚洲精品一区三区三区在线观看 | 少妇毛片一区二区三区| 一级黄色大片免费观看| 国产高清成人免费视频在线观看| 91香蕉精品在线观看视频| 黄页免费观看一区二区三区| 殴美亚洲精品182| 国产精品无需播放器在线观看 | 99久久综合精品五月天| 炕上肉交亲伦69XX| 国产日产成人免费视频在线观看| 国产曰又深又爽免费视频| 蜜桃视频在线观看免费网址入口| 国产真实乱偷精品视频| 中国做爰国产精品视频| 国产又黄又爽又大免费视频| 国产a视频精品免费观看| 亚洲人妻在线播放| 天天看片+天天av+免费观看| 精品人妻系列乱码一区二区三区 | 综合久久综合久久| 国产成人三级三级三级97| 三级慰安女妇威狂放播| 中文字幕一级二级三级| 深夜福利在线播放| 少妇张慧献身1一5集在线播放 | 人+国产片+综合| 免费看国产一级特黄aa友片| www.日韩免费观看视频| 91精品国产色综合久久不卡98| 国产精品青草久久久久婷婷| 下岗美妇的肉唇1一7章视频| 人妻熟女一区二区av| 少妇无码av无码专区线y| 韩国无码精品1区| 18禁国产精品久久久久久网站| 亚洲人妻av理论琪琪在线| 99国产拍偷久400部热久久| 欧美一区二区日韩| 美里麻衣无码番号| 重囗味sM群虐一区二区| 日韩欧美一级视频在线观看| 四川寡妇搡BBB爽爽爽| 久本草在线中文字幕亚洲欧美 | 人妻共享互换多p| 亚洲vr国产美女精品久久久久 | 久久久橹橹橹久久久久| 国产精品久久免费观看spa| 国产福利视频一区二区三区| 亚洲精品第一国产综合野 | 日本在线a一区视频| 久久精品www人人做人人爽| 伊人久久大香线蕉午夜av| 91精品视频在线| 亚洲熟妇AV日韩熟妇在线 | 男女车车的车车网站w98免费| 国内精品在线观看看| 久久半精品国产99精品国产| 久久嫩草影院免费看| 双乳奶水饱满少妇视频| 日韩中文字幕在线观看一区二区| 无码少妇高潮浪潮av久久| 日本一卡二卡三卡在线观看| 久久精品国产精品青草app| 国产实拍会所女技师在线观看| 国产一区二区四区在线观看| 日韩内射人妻1区2区3区 | 国产+精品+在线观看| 国产欧美日韩美女精品一区| 中文字幕欧美亚洲视频免费| 亚洲一区二区三区高清视频播放| 国产真实自在自线免费精品 | 亚洲精品区午夜亚洲精品区| 亚洲福利国产网曝| 精品久久久久久久久久熟女 | 特级西西444www无码视频免费看| 伊大人香伊大人香蕉在线视频999| 一区二区三区精品视频| 国产又黄又爽又色的免费| 达达兔欧美午夜国产亚洲| 欧美一区二区三区在线视频观看| 色偷偷色噜噜狠狠网站30根| 欧美成人手机视频| 手机av中文字幕| 亚洲国产日韩视频观看| 久久99国产综合精品女下载同| 亚洲av成人一区国产精品一| 午夜视频一区二区三区| 国产免费国语一级特黄aa大片| 黑人重囗味sM群虐| 国产一级真人做受| 国产一区二区三区四区五区六区| 亚洲毛片在线免费观看| 日本丰满老熟妇乱子伦| 99久久精品免費看國產| 国产蝌蚪视频在线观看| av一区二区在线观看| xfplay+无码| 中文字幕亚洲一区视频在线观看| 国产无套白浆视频在线观看| xxx日本一区二区免费| 九九九九大陆成人综合精品| 理论片+亚洲+欧美| 成人做爰高潮片免费视频| 激情+国产+精品| 亚洲欧美中文字幕变态另类| 欧洲av+成人+久久| 国产+激情+喷水| 韩国巜干柴烈火〉床戏| 98av精品一区二区三区| 欧美成人手机在线| 亚洲乱码日产精品bd在观看| 久久国产精品萌白酱免费| 国产精品高清一区二区不卡片| 一个人看的国产精品视频 | 国产一级久久久久av片| 夜夜躁狠狠躁日日躁2022| 狠狠躁夜夜躁人人爽天天bl| 大粗鳮巴征服尤物老师| 国产亚洲在线观看| 免费观看av网址| 少妇苏霞肉欲第501章| а√8天堂资源在线官网| 欧美日韩一区二区免费视频| 真实乱子伦厨房A片| 婷婷五月六月激情综合色中文字幕| 亚洲人妻在线播放| 亚洲+欧洲+国产精品| 黄页免费视频网站国产一区| 97国产人妻人人爽人人澡| 国产高清精品久久久久久久 | 又色又爽又黄的免费网站aa| 91久久香蕉国产日韩欧美9色| 国产成人福利av综合导航| 国产精品女同久久免费观看| 亚洲午夜影院在线观看视频| 日韩av一二三四区| 国产精品二区一区二区aⅴ污介绍 欧美精品v欧洲高清视频在线观看 | 亚洲AV日韩AV永久无码网站| 日韩av在线第一页| 日本一区二区三区四区18| 亚洲综合久久一本伊一区| 日本一卡二卡三卡在线观看| 久久99热狠狠色一区二区| 亚洲国产午夜精品理论片妓女| 免费av男人天堂亚洲天堂| 国产av亚洲精品久久久久久 | 欧美一级a视频免费在线观看| 精品麻豆AV影院| 亚洲制服国产丝袜综合四季av| 欲求不满的岳中文字幕| 亚洲AV无码一区二区二三区∝| 亚洲美女视频之国产精品 | 中文字幕在线影视| 99精产国品一二三产品香蕉| 粉嫩av一区二区三区四区免费| 一级成人欧美一区在线观看| 成人资源在线观看| 99久久超碰国产精品蜜臀 | 免费人成激情视频在线观看冫| 日本高清色本在线WWW| 国产+高潮+真人| 国产Av一区二区三区| 国产妇女馒头高清泬20p多毛| 国产尤物精品自在拍视频首页| 亚洲精品国偷拍自产在线| 国产免费看又黄又粗又硬| 国产乱淫av蜜臂片免费| 久久视频免费在线观看| 91精品国产色综合久久不8| 亚洲s久久久久一区二区| 亚洲第一狼人伊人av| 久久国产精品伦理片国产乱| 青草久久久国产线免观| 丁香婷婷六月综合交清| 免费成人网一区二区三区| 蜜桃久久一区二区三区| 中文字幕亚洲欧美日本懂色| www久久久久久久久| 久久午夜国产精品www忘忧草| 日韩+欧美+国产精品| www.delisava.com| 五月激激激综合网色播| 国语做受对白xxxxx在线| 大桥未久+无码+bt| 精品免费国产一区二区三区四区介绍 | 精品老熟妇一区二区三区| 无遮挡无码h纯肉动漫在线观看| 亚洲精品1卡2卡3卡| 欧美在线看片a免费观看| 亚洲国产精品久久又爽av| 国产一级av国片免费| 亚洲精品在看在线观看高清| 婷婷成人综合一区二区三区| 天堂网www最新版官网| 亚洲老熟女乱综合一区二区| 人妻の乳を揉んで痴汉| 亚洲AV欲女久久天天躁| 国产成人精品午夜福利软件| 久久天天躁夜夜躁狠狠躁综合| 最近最新mv字幕免费观看| 中国女人黄色大片| 亚洲国产香蕉视频精品一区 | 久久一区二区三区四区| 狠狠躁夜夜躁人人爽天天bl| 中文字幕在线日韩欧美在线观看| 国产精品久久久福利| 四lllBBBB槡BBBB视频| 国产精品久久久久久av福利| 国产91精品一区二区麻豆网站| 欧美成人看片一区二区| 国产片淫级awww| 国产成人一区视频在线播放| 国产爽视频在线观看视频| 成人av在线资源| 91精品国产综合久久久蜜臀九色| 亚洲成a人蜜臀av在线播放| 国产精品一区二区麻豆| 欧美成人在线网站| 日本一区二区三区专线| 青青草草青青草久久草| 久热99精品视频免费观看免费| 日本欧美国产一区二区在线观看| 亚洲乱码国产乱码精品精姦| 国产在线麻豆在拍91精品| 国产精品美女久久久久久av爽 | jjzzjjzz在线观看| 办公室制服丝祙在线播放 | 国产成人一区视频在线播放| 国产又黄又猛又粗又爽的久久久 | 午夜福利人妻专区一区二区| 日本视频在线免费| 亚洲+欧洲+国产一区| 无码夜色一区二区三区| 新大地资源在线影视观看| 上海熟搡BBB搡BBBB| 最新欧美激情视频一区二区三区| 国产+激情+在线观看| 国产精品人人爽人人做av片| 国产亚洲欧美日韩在线一区| 亚洲成a人一区二区三区| 思思久热精品在线| 精选一区二区三区免费在线观看| 日韩国产一区二区三区| 韩国无码精品1区| 欧美国产三级一区二区三区| 精品一区二区国产免费av| 丰满人妻被黑人中出849| 国产日韩欧美一区在线播放| 国产在线观看精品一区二区三区| 亚洲第一毛片18我少妇| 青椒国产97在线熟女| 日日摸夜夜添夜夜添无码免费视频| 国产内射xxxxx在线| 久久婷婷综合99啪69影院| 美日韩熟女与少妇精品激情| 国产chinese中国xxxx| 伊人69久久久久久综合国产| 在线观看一区二区三区四区 | 精品亚洲成熟女人www| 亚洲日韩精品一区二区三区| 日韩内射人妻1区2区3区| 国产xxxxx在线观看免费| 色欲香天天天综合网站| 国产日韩欧美亚欧在线| 亚洲欧美天堂在线观看视频| 亚洲亚洲人成网站网址| 亚洲国产人成一区二区精品区| 国产+高潮+在线观看| 国产亚洲精品福利视频在线观看| 国产91麻豆一区二区在线| 窝窝午夜精品国产| 国产视频一区二区在线播放| 日韩特黄一级片一区二区三区| 大伊香蕉精品视频在线| 日本成人午夜视频| 国产黄又爽免费在线观看的视频| 国产区在线观看视频| 99国产综合精品| 四个人妻互换不戴套| 午夜国产精品入口| 探花风韵犹存少妇88AV| 免费国产又色又爽又黄的网站| 亚洲欧美日韩国产综合一区小说| 精品欧美一区二区精品久久 | 久久综合狠狠色综合伊人| 亚洲一区二区三区日韩在线视频| 永久www成人看片| 久久久久久一区国产精品| 日韩精品欧美国产精品亚| 国产一级视频在线| 久久精品亚洲国产av麻豆| 一区二区三区四区欧美极品| 日韩欧美AⅤ综合网站发布| 国产精品二区视频| 亚洲AV欲女久久天天躁| 亚洲精品久久久久久蜜臀 | 国产精品+亚洲+欧美| 国产又色又爽无遮挡免费| 玖玖热麻豆国产精品图片 | 伊大人香伊大人香蕉在线视频下载| 国产成人精品午夜福利软件| 鸭子tv国产在线永久播放| 漫蛙漫画(网页入口)| 日韩精品人成在线播放| 免费观看mv大片高清| 青草av久久免费一区| 日韩一区二区三区无码影院| 国产精品三级在线波多野在线| 国产精品porn| 免费国产精品黄色一区二区 | 久久99国产综合精品女下载同| 风韵饥渴少妇在线观看| 国产午夜福利精品一区二区三区| 一本加勒比HEZYO熟女| 国产成a人亚洲精品在线观看| 国产成人精品成人a在线观看| 久久综合狠狠色综合伊人| 野花社区视频在线观看| 国产婷婷一区二区三区久久| 一卡二卡亚洲视频在线观看| 97人妻系列高清一区二区| 国产一区二区三区在线| 国产成人久久精品亚洲小说| 在线观看国产精品冒白浆| 九九九久久国产免费| 日日摸日日碰人妻无码| 免费毛片全部不收费app下载| 亚洲欧美熟妇综合久久久久 | 久久香蕉综合网精品视频| 99久久夜色精品国产网站| 亚洲视频在线免费| 久久精品国产亚洲七七| 美女粉嫩极品国产在线2021| 2020中文字字幕在线不卡| 欧美+国产+精品| wwwcom日本| 玩弄japan白嫩少妇hd小说| 日本黄色美女视频| 久久精品嫩草影院| 黄页免费观看一区二区三区| 无码+磁力+日本| 成人免费无码大片a毛片18| 欧美黄视频在线观看| 国产精品爽爽久久久久久豆腐| 亚洲日韩精品一区二区三区| 中文字幕大看蕉在线观看| 国产精品99久久久久久董美香 | 国产乱女淫av麻豆国产| 亚洲精品国产精品国自产中出| 中日精品无码一本二本三本| 久久婷婷综合99啪69影院| 四虎精品美女国产在线观看| 国产精品妇女久久久久久| 亚洲精品乱码久久久久久按摩| 国产婷婷av片在线观看| 激情五月婷婷久久| 亚洲人成在线播放网站| 国产黑丝在线观看| 国产+高潮+中出| 粗大的内捧猛烈进出少妇| 国产av亚洲第一女人av| 亚洲欧洲成人精品av97 | 不卡av中文字幕| 97在线视频观看| 日韩精品无码一本二本三本色 | 欧美在线视频免费观看综合一区| 国产欧美日韩一区二区三区搜索| 一个人在线观看免费视频www| 国产精品毛片在线完整版| 日本猛少妇色XXXXX猛叫| 免费视频播放片一二三四五| 偷窥+国产+综合| 午夜福利国产小视频在线| www.四虎.com| 不卡一区二区在线视频观看| 已满十八岁免费观看电视剧软件下载 | 1000部丰满熟女富婆| 国产精品+女人呻吟+在线观看| 老熟妇乱子伦牲交视频欧美| 精品国产一区二区三区日日嗨| 亚洲天堂2017无码| 妺妺窝色77777777野大粗| 午夜精品a片一区二区三区老狼| 天堂av2020| 成人区精品一区二区婷婷| 国产+欧美+激情| 超清中文乱码字幕在线观看| av一区二区无人区在线观看| 国精品午夜福利视频不卡| 成人免费无码大片a毛片小说| 迅雷+无码+椎名| 久久精品国产亚洲七七| av动漫在线观看一区二区| 国产97在线观看| www.91自拍| 狠狠色狠狠人格综合| YY4480青苹果乐园免费播放电视剧| 欧美丝袜诱惑一区二区三区| 欲色影视天天一区二区三区色香欲 | 亚洲色成人网站www永久四虎| 人妻懂色av粉嫩av浪潮av八戒| 九九九久久久精品| 亚洲AV成人噜噜无码网站| 四虎视频在线精品免费网址| 亚洲人成色99999在线观看| 日日操日日射日日摸欧美| 鲁大师影院在线观看| 人妻激情乱人伦视频| 日韩精品区一区二区三vr| 亚洲欧美日韩中文加勒比| 最新国产福利在线观看精品| 橘梨纱连续高潮在线观看| 在线观看日韩欧美综合黄片| 免费在线观看国产你懂的| 日韩+欧美+毛片| 韩国精品一区二区三区在线观看 | 国产+裸体+视频| 日日摸夜夜添夜夜添无码免费视频| 中文字幕在线视频第一区二区| 精品久久久噜噜噜久久| 国产精品久久国产| 洋妞+国产+在线播放| 狠狠躁天天躁无码中文字幕图| 亚洲精品精华液一区二区| 小夫妻高潮偷拍合集| 绯色AV色窝窝无码久久免费酒店| 精品欧美无人区乱码毛片| 懂色av绯色av密臀av| 女人高潮抽搐潮喷视频开腿| 24小时日本mv在线视频| 亚洲av蜜桃永久无精品| 黄色毛片一级黄色| www.97色色| 亚洲av乱码国产精品观看麻豆| 日韩av在线第一页| 亚洲国产精品久久久久婷婷青年 | 夜夜高潮次次欢爽av女| 欧美国产精品国产三级国产AⅤ下载 | 色偷偷噜噜噜亚洲男人| 亚洲va欧美va国产综合久久| 久久男人高潮av女人天堂| 52熟女露脸国语对白视频| 在线人成免费视频69国产| 国产在线一卡2卡三卡4卡免费| eeuss鲁片一区二区三区| gogogo高清国语完整| 国产精品成人av免费观看| av中文天堂在线| 国产精品久久免费成年大片| 夜夜爽8888免费视频| 中文天堂在线www最新版官网| 亚洲精品国产精品国自产中出| 白嫩少妇无套内谢视频| 国产在线观看99| 日韩又大又长又粗又硬又爽视频| 漫画免费观看漫画大全| 国产又黄又大视频| 亚洲综合激情国产一区| 广东少妇大战黑人34厘米视频 | 免费一级欧美片在线观看欧美 | 免费人妻一区二区三区免费视频| 国产精品vr虚拟专区| 国产成人三级在线观看| 亚洲精品少妇影院| 青青草视频在线观看亚洲 | 黄色av网址在线| 亚洲国产手机免费在线观看| 国产精品一区二区三区精品视频| 亚洲免费视频在线观看| 樱花在线视频免费观看电视剧网站| 国产成人久久精品二区三区| 国产农村妇女精品一二区| 一道本av免费不卡播放| 白浆+高潮+喷水| 鲁大师大地影院免费观看视频 | 动漫成年美女h漫网站漫画| 亚洲国产综合一区二区精品| 成人+动漫+日韩毛片| 青草视频在线观看视频| 日本久久久久久科技有限公司| 中文字幕日韩一区二区不卡| 欧美一级视频在线观看三级| 午夜免费福利美女刺激视频| 午夜免费观看体验区入口av| 国产欧美成人xxx视频| 亚洲精品综合在线| 精品久久国产字幕高潮一| 激情国产欧美一区二区三区| 国产精品久久99精品毛片三a| 99国内视频免费在线观看| 国产+欧美在线观看| 国产成人免费高清在线观看| 在线观看视频中文字幕| 52熟女露脸国语对白视频| 亚洲女教师丝祙在线播放| 成人午夜高潮毛片| 老熟妇乱子交视频一区| 亚洲欧美日本国产| 蜜乳AV一区二区三区| 婷婷激情五月天综合丁香社区| 国产伦精品一区二区三区四区| 偷玩邻居醉酒人妻| 久久久国产丝袜美女| 成人免费区一区二区三区| 亚洲欧美一区二区三区四区五区 | 热久久6只有精品444777| 真实国产乱子伦一区二区三区 | 成人免费淫片aa视频免费| 99久久婷婷国产一区二区| 蜜乳av中文字幕| 极品老熟妇av一区二区| 久久人人97超碰国产亚洲人| 六月丁香婷婷综合| 成人国产精品久久久按摩| 久久男人av资源网站无码软件| 老司机在线精品视频网站| 国产乱码卡二卡三卡老狼| 校园春色亚洲色图| 国产高清精品久久久久久久| 日韩+国产+欧美成人| 521av在线视频中文字幕| 玩两个丰满老熟女久久网| 一个人看的视频www中文字幕 | 四虎影视国产精品永久在线| 欧美在线观看免费播放视频| 猫咪www免费人成网站无码| 国产sm重味一区二区三区| 国产成人精品1沈娜娜| 亚洲中文成人中文字幕| 欧美一级一区二区三区| 国产高清精品久久久久久久 | 国产成人av三级在线观看 | 国产精品自拍在线观看| 欧美日韩国产成人| 欧美黑人xxxx又粗又长| 日本人乱人乱亲乱色视频观看| 国内自拍av手机在线免费观看| 中文字幕一区二区三区波野结| 免费观看又污又黄在线观看| 国产精品国产精品久久久久 | 91亚洲高清视频在线观看| 国产精品亚洲精品日韩动图| 亚洲精品乱码久久久久久日本| 朋友的妻子+先锋影音| 国产1024成人精品视频| 国产精品区一区二区三| 精品国产一区二区三区四| 成人又黄又爽又色的网站| 亚洲天堂男人在线视频精品| 影音先锋+在线+国内| 欧美精品v欧洲高清视频在线观看| 免费欧美视频一区二区三区| 天堂中文在线免费观看视频| 69大片视频免费观看视频| 国产亚洲精品香蕉网九色| 国产免费又爽又色又粗视频| 99热精品国产三级在线观看 | japanese少妇jav| 777久久久风间由美中出| 一区三区在线专区在线| 我要看欧美一级黄色录像| 日韩乱码人妻无码中文字幕久久| 免费人成激情视频在线观看冫 | 女人18a级毛片精品人妻| 99久久综合狠狠综合久久AⅤ| 成全影视免费观看| 色婷婷亚洲婷婷7月| 最新国产精品高清在线观看| 国产真实伦在线观看视频| 伊人久久综合精品无码AV专区| 亚洲国产99精品国自产拍| 91麻豆国产精品91久久久久| 国产+女女+喷水| 高清无套内精线观看456| 精品女同一区二区三区免费站| 2021年国产精品自线在拍| 日本在线观看免费| 国产一区精品va在线播放| 无遮挡又色又刺激的视频+黄| www.日韩精品在线观看| 婷婷色九月综合激情丁香| 自在自线亚洲а∨天堂在线| 精品无码综合一区二区三区| 最新国产成人av网站网址麻豆| 網友分享色婷婷色99国产综合精品心得| star+433+影音先锋| 国产成人精品三级在线影院| 国产绿帽精黑人X88AV| 久久国产精品久久喷水| 第一页中文字幕在线观看| 波多野结衣中文字幕一区二区三区 | 久久99国产综合精品免费| 人妻无码一区二区不卡无码av| 亚洲精品久久久久久婷婷| 男女做爽爽爽网站| 九色琪琪久久综合网天天| 在线观看日本午夜高清美女| 国产av一区二区三区高潮蜜 | 精品多毛少妇人妻AV免费久久| 肉欲+中文字幕+迅雷| 国产毛片乡下农村妇女bd| 98精品偷拍视频一区二区三区| 国产精品99久久久久久久久久久久 | 欧美激情一区二区三区视频| 久久亚洲精品国产精品紫薇| 熟女服务区免费一区二区三区| 久久免费视频精品在线| TokyoKoT大交乱| 四虎影视在线永久免费观看| 久久av+高潮+搞| 精品国产又粗又猛又爽又黄| 国产av巨作丝袜秘书| 成人做爰高潮片免费视频| 片涩涩涩的视频网站视频| 91麻豆国产福利在线观看| 午夜福利理论片高清在线观看| 2020狠狠狠狠久久免费观看| 羞羞影院午夜男女爽爽免费| 在线视频中文字幕一区二区三区| 久久综合精品视频| 国产一区日韩二区欧美三区| 日本精品婷婷久久爽一下| 国产一区日本二区在线观看| 久章草这里只有精品| 国产少女免费观看高清电视剧大全可 | 久久久精品国产sm调教网站| 国产精品一av一免费爽爽| 色噜噜狠狠狠狠色综合久不| 亚洲天堂在线观看视频| 亚洲欧洲国产日韩在线不卡| 日本精品不卡免费在线播放| 午夜精品一区二区不卡二卡| 最新精品国偷自产在线老年人| 天干夜啦天干天干国产免费| 推油少妇久久99久久99久久| 欧美一区二区激情| 无码人妻精品一区二区三区免费| 成人免费国产精品视频| 色综合久久久久综合99| 亚洲aaaaaaa| 成人羞羞视频在线观| 《美丽的小蜜桃2》女主是谁| 6080午夜福利视频在线观看免费| 熟女老阿8888AV| 欧美日本国产韩国在线不卡| 天天澡天天狠天天天做| 亚洲乱码国产乱码精品精软件| 八戒八戒在线www视频中文| 欧美阿v高清资源不卡在线播放 | 久久国内精品自在自线图片| 黄色一区二区三区在线观看| 国产精品免费观看调教网| 亚洲欧洲国产成人综合在线观看| 亚洲寝取熟女av一区二区三区| 日韩成人在线视频| 男女做www免费高清视频网站 | 天天鲁一鲁摸一摸爽一爽| 另类+女同+影音先锋| 国产精品二区视频| 91丨九色丨黑人外教| 四十路の完熟豊満无码| 黄页免费观看一区二区三区| 色婷婷香蕉在线一区| 偷拍+剧情+影音先锋| 狠狠色噜噜狼狼狼色综合久| 免费观看成年人网站| 亚洲专区在线91福利网| 久久久久久久久人妻a免费看| 国产日本欧美一区二区在线观看 | 欧美经典影片视频欧美一级网站 | 18+在线视频网站| 国产午夜一区二区三区 | 亚洲+日韩+专区| 欧美+国产+在线观看| 亚洲国产精品久久久久秋霞蜜臀| 午夜久久久久久久| 97久久综合区小说区图片区| 国色天香成人一区二区| 中文在线字幕观看电视剧hd| 96精品伊人久久久大香线蕉| 大地资源二中文官网| 91精品视频在线| 女人做爰高潮全黄| 午夜看片在线观看| 中文字幕+乱码+中| 992成人做爰视频| 99久久精品6在线播放| 女同av女同一区二区三区| 黄色一级大片在线免费看产| 人妻中文字系列无码专区| 国产一线天粉嫩馒头极品av| 中文字幕av一区中文字幕天堂| 痉挛高潮喷水av无码免费| 久久久精品成人免费影院| 伊大人香伊大人香蕉在线视频999| 亚洲欧美中文字幕手机在线观看| 男人操女人免费看网站亚洲欧美 | 免费看的av网站| 白又丰满大肉唇BBW| 四虎国产精品永久免费网址| 永久免费不卡在线观看黄网站| 色偷偷尼玛图亚洲综合| 又黄又爽全无遮挡的免费视频| 精品久久久久久亚洲综合网站| 国语对白刺激精彩久久精品| 成人在线观看你懂的| 成人免费高清视频| 欧洲一区二区成人| 男女一进一出超猛烈的视频| 国产人交视频xxxcom| 一本大道AV伊人久久综合| 久久综合精品亚洲| 国产欧美日韩精品一区二区三区| 中文字幕AV一区二区三区| 欧美亚洲另类日韩在线网页| 日韩精品a片一区二区三区妖精| 亚洲乱码中文字幕手机在线| 一级黄色免费大片| 亚洲精品成人av| 蜜桃人妻无码AV天堂二区| 黄频视频在线观看| essuess免费观看播放| gav成人网免费免播放器播放| 国产网红主播一区二区视频| 97久久精品亚洲中文字幕无码| 亚洲色欲色欲www成人网| 91亚洲国产一区二区三区欧美| 久久久久波多野结衣高潮| 欧美激情精品久久久久久| 鲁大师大地影院免费观看视频| 天堂久久av无码亚洲一区小说| 无码无套少妇毛多69xxx| 91看片在线播放| 国产精品一区二区三区精品视频| 国产精品久久久久久久成人av| 热久久这里只有精品18| 麻豆国产网站入口| 无码人妻丰满熟妇区网站| 精品无码免费专区毛片| 久久这里只有是精品17| 久久99热这里只有精品23| 女人被狂c到高潮视频网站| 日日摸天天摸97狠狠婷婷| 一区二区三区成人免费频| 《表妺3》伦理hd| 亚洲国产欧美日本视频| 国产l精品国产亚洲区在线观看 | 久蜜av色av熟女一区| 四虎影视国产精品永久在线| 国产日韩欧美综合精品一区二区| 欧美成人精品三级网站视频| 亚洲欧美日韩综合久久久久久| 天堂а√在线中文在线新版| 你懂的国产高清在线播放视频| 亚洲国产精品一区二区999| 调教驯服丰满美艳麻麻在线视频| 美日韩熟女与少妇精品激情| 国产+日产+欧美视频| 国产成人JVID在线播放| 国产免费不卡av黄色一级片| 窝窝影院在线观看免费播放电视剧| 小黄鸭+av导航+在线| 亚洲丶国产丶欧美一区二区三区| 台湾妹子中文娱乐网| 日韩在线亚洲综合| 国产一区二区三区免费观看在线| 欧美视频+在线观看| 日本一区二区三区四区18| 久久久橹橹橹久久久久手机版| 销魂美女一区二区三区视频在线| 嗯高阿宾福利视频| 国产超爽人人爽人人做人人爽| 91亚洲欧美中文精品按摩| 91久久国产综合精品女同国语| 亚洲国产麻豆精品系列av| 黑人巨大国产9丨视频| 美女免费高清观看影视大全| 欧美日韩在线视频播放| 国产免费无遮挡吃奶视频| 日韩精品+一区二区+在线观看| 国产精品jk白丝蜜臀av小说| 亚洲人成色99999在线观看| 18+国产在线拍揄自揄视精品| 欧美亚洲日韩国产人成在线播放 | 欧美日韩+在线观看+不卡| 国产99久久久久久免费看| 48手+真人+无码| 桃花岛成人在线观看| 亚洲中文字幕阿阿视频在线| 色拍自拍亚洲综合图区| aaaaaa毛片| 午夜免费福利在线| 亚洲中国国产av| 国产精品欧美一区二区三区不卡| 午夜免费观看视频| 永久综合精品网站在线免费观看| 夜夜躁狠狠躁日日躁2022| 国产成av人片久青草影院| 国产一级特黄毛片在线毛片| 日本道免费精品一区二区| 精品久久国产字幕高潮| 思思久热精品在线| 玖玖精品在线视频| 人妻共享互换多p| 少妇特黄一区二区三区| 亚欧美黄片免费高清不卡| 色噜噜人妻丝袜av先锋影音先| 亚洲无线一二三四区手机| 国产精品美女www爽爽爽软件| av一区二区在线观看| 国产亚洲欧美专区精品| 一区二区三区欧美| 国产成人午夜福利在线观看| 丁香婷婷综合激情五月色| 欧美在线99香蕉在线视频| 午夜久久久久久久久久一区二区| 三年大全免费大片三年大片第一集| 亚洲精品丝袜国产自在线| 亚洲视频一卡二卡三卡四卡| 国产va免费精品高清在线| 免费国产污网站在线观看不要卡| 窝窝影院在线观看免费播放电视剧| 最新av偷拍av偷窥av网站| 国产又色又爽又黄又免费软件| 日韩精品一区二区三区中文| 一区二区日韩视频| 奇米第四声中文字幕| 中文字幕亚洲精品一区| 美女+高潮+国产| 97国语精品自产拍在线观看| 国产av亚洲aⅴ一区二区| 亚洲婷婷天堂在线综合| 国产精品久久久夜夜高潮夜夜爽| 国产精品久久久久久久久久98| 国产69精品久久久久男男系列| 69国产成人精品二区| 97人妻在线视频免费观看| 欧美天堂一区二区三区| 乖女早晨含精吞精h正常吗视频| 操老女人一区二区三区视频tv| 欧美日韩中文国产| 亚洲国产中文字幕2020| 一本加勒比HEZYO爆乳| 99久久精品无码一区二区三区| 日本欧美一级aaaaa毛片 | 激情五月婷婷久久| 亚洲欧美日韩一区二区三区在线| 亚洲精品国产一区二区在线观看| 欧美日本日韩aⅴ在线视频| 国产av大陆精品一区二区三区| 中文无码一区二区不卡AV| 99久久精品免費看國產| 99精品视频99| 夜夜嗨人妻av一区二区三区| 午夜丰满极品美女A片| 亚洲AV无码一区二区二三区∝ | 美女网站免费福利视频| 日本欧美成人片AAAA| 久久无码无码久久综合综合| 日韩特级无码av中文字幕| 亚洲人成色在线观看 | 中文字幕免费播放| 福利丝袜视频一区二区三区 | 国产二区交换配乱婬| 老伦熟女一区二区三区红豆| 精品无码久久久久久尤物| 高潮+喷水+调教| 草草久久97超级碰碰碰| 精品午夜福利在线观看| 国产suv精品一区二区69| 国产免费踩踏调教视频| www.五月婷婷.com| 亚洲aaaaaaa| 大香蕉国产在线视频| 丁香开心五月婷婷精品伊人| 国产精品成年片在线观看| 久久人人97超碰国产亚洲人| 黑人外教人妻HD中字| 人妻丰满熟av无码区HD| 一区二区三区国产日韩欧美在线 | 亚洲va久久噜噜噜久久| 亚洲av人人夜夜澡人人| 国产精品色婷婷久久99精品 | 亚洲国产精彩中文乱码av| 韩国一级精品毛片| 日本在线看片免费人成视频 | 不卡视频一区二区三区| 欧美精品三级黄片| 真人一级毛片全部播放| 欧美激情中文字幕综合八区 | 欧美XXXBBB| 久久精品免费网站| 超碰夫妻91无码免费播放器| 欧美日韩国产一区二区三区播放| 国产成年码av片在线观看| 西西888WWW大胆无码| 亚洲成色A片77777在线小说| 大地影视中文资源3| 欧美日韩综合精品无人区| 欧美亚洲日本一区| www.超碰在线观看| 国产一区二区三区在线观看网站| 国语对白刺激真实精品91| gogogo手机高清视频免费观看| 无码色情巜肉欲办公室3| 视频一区二区三区在线观看| 日日噜噜噜夜夜爽爽狠狠视频| 天堂va蜜桃一区二区三区| 伊人婷婷六月狠狠狠去| 国产无精乱码一区二区三区| 亚洲+欧洲+国产成人av| 亚洲欧美他妈的射| 国产男女视频在线免费观看| 久久久久免费看成人影片| 黄色av网站在线看| 熟妇大肉唇BB肥| 懂色av一区二区三区四区五区| 免费成人在线网站| 在线观看免费人成视频色| 久久久麻豆精品一区二区| 少妇乳大丰满高潮喷水| 成人网站国产在线视频内射视频| 日韩精品中文在线一区二区| 午夜免费福利美女刺激视频| aaa欧美色吧激情视频| 国产乱人激情h在线观看| 国产色婷婷亚洲99精品小说| 男人午夜免费视频观看在线| 日韩国产高清在线| 亚洲国产欧美人成| 97精品人妻一区二区视频| 亚洲中文字幕无码爆乳AV| 无码h黄肉动漫在线观看网站| 免费看60分钟涩涩视频| 久久99精品国产麻豆婷婷| 国产淫语对白说脏话aV| 精品亚洲精品第—区| 1000部丰满熟女富婆| 成人+国产+免费| 亚洲精品久久久久久久久久久| 52avavjizz亚洲精品| 在线日韩中文字幕| 国产av丝袜一区二区三区| 国产亚洲一卡2卡3卡4卡网站| 国产精品久久久91| 高清欧美精品xxxxx| 午夜国产精品入口| 国产91精品久久久久久精华液| 国产伦久视频免费观看视频| 你懂的欧美一区二区三区| 国产精品一区二av18款| 日本中文字幕中出在线| 美女羞羞视频网站| 国产精品久久久精品影院| 在线天堂中文最新版资源| 亚洲欧美中文字幕在线观看| 亚洲欧美自拍另类| 国产精一品亚洲二区在线播放| 久久亚洲精品无码观看不| 国产国拍亚洲精品永久软件 | 日韩人妻无码一区二区三区综合| 懂色av色吟av夜夜嗨| 在线观看免费人成视频播放| 97人伦色伦成人免费视频| 亚洲+欧洲+久久av| 邪恶肉肉全彩色无遮盖| 国产一区二区三区在线视頻| 永久黄网站免费在线观看 | 欧美在线播放一区二区欧美馆| 亚洲欧洲成人a∨在线观看| 18+免费观看视频| 亚洲综合视频在线看一区二区三区| 婷婷青草丁香精品视频在线观看| 日韩精品中文在线一区二区| 亚洲国产中文字幕| 亚洲一区二区三区四区五区黄| 伊人色综合久久天天网| 欧美在线观看一区二区三区| 99久久综合伊人东京热| 亚洲欧美日韩国产一区二区在线| 中文字幕av手机版| 国产五月色婷婷六月丁香视频| 久久久www成人免费毛片女| 色综合久久久天天综合网| 在线+免费+欧美| www.在线观看麻豆| 国产日产成人免费视频在线观看| 国产成人精品午夜福利在线观看 | 亚洲大乳av成人天堂精品| 普通话老太婆日B| 欧美又粗又大又硬久久久| 免费成人进口网站| 99久久综合国产一区二区| 国产999久久高清免费观看| 久久久久久久国产精品免费| 无码综合天天久久综合网| 夜夜国自一区+1080P| 日本一区二区最黄最色视频| 美女视频黄的全免费视频网站| 国产精品一区在线观看www| 香蕉久久国产超碰青草| 成人精品综合免费视频| 日本久久www成人免| 成·人免费午夜无码视频| 亚洲色精品三区二区一区| 91pornyⅰ九色| 扒开女人内裤猛进猛出流出白液 | 亚洲成av人片不卡无码| 日韩在线亚洲欧美另类青青| 欧美日韩视频在线观看一区| 亚洲亚洲人成网站77777| 亚洲成a人v欧美综合天堂麻豆 | 日本熟妇无码一区二区| 久久久久人妻一区精品果冻| 亚洲综合五月天婷婷丁香| 99热门精品一区二区三区无码| 9九色桋品熟女内射| 另类国产ts人妖高潮系列视频 | 午夜精品久久久久久久久久| 无码人妻精品一区二区三区66 | 武则天被狂躁C到高潮| 国产91精品久久久久91黄色| 国产免费不卡的在线视频| 一个人看的免费高清视频www| 国产成人精品一区二区在线观看| 无码人妻一区二区三区AV| 欧美成人黄色免费在线网站| 人人妻人人添人人爽欧美一区| 精品视频中文字幕| 国产又色又爽无遮挡免费动态图 | 79年熟女大胆露脸啪啪对白p| 国产在线精品一区二区夜色| 欧美成a人片在线观看久| 国产精品亚洲一区二区在线观看 | 日本欧美成人片AAAA| 国产伦精品一区二区三区妓女原神| 成人国产热播资源| 国模大尺度福利视频在线| 久久99久国产麻精品66| 久久国产免费直播| 试镜床戏(巨肉高h)| 极品+普通话+磁力链接| 国产免费又爽又色又粗视频| 18+漫画美女+日韩毛片| 成全在线观看免费完整| 国产精品综合在线| 窝窝午夜看片+成人精品| 天堂av国产夫妇精品自在线| 蜜臀国产在线观看激情网| 91丨九色丨黑人外教| 国产a∨国片精品白丝美女视频| 国产+欧美+日产| 91精品情国产情侣高潮对白文档| 日韩精品一区在线观看视频| 久久精品视频国产| 久久综合亚洲欧美成人| 欧美视频免费观看午夜在线| 精品午夜福利1000在线观看| 一区二区三区四区亚洲不卡| 日韩成人在线视频| 国产日韩在线欧美一区二区| 午夜精品第一区第二区第三区| 国产女主播精品大秀系列| 97这里有精品久久97| 小早川怜子大战三黑人| 亚洲国产精品一区二区999 | 欧美综合一区二区三区在线播放 | 粉嫩一区二区三区四区公司1| 亚洲国产日韩视频观看| 国产精品4huwww| 国产乱人伦精品一区二区在线观看| 欧美+在线+亚洲| 天天看片+天天av+免费观看| 风韵饥渴少妇在线观看| 天天av天天爽无码中文| 免费欧美久久国产| 又大又黄又粗高潮免费| 伊人久久大香线蕉综合影院首页| 国产成人在线精品| 国产+高潮+护士| 亚洲日韩精品看片无码| 国产女爽爽爽爽精品视频| 夜夜摸日日躁欧美视频| 影音先锋+川上优| 中文字幕+下载+人妻| 白浆+高潮+喷水| 国语对白刺激真实精品91| 懂色av绯色av密臀av| 亚洲国产福利成人一区| 精品国产_亚洲人成在线| 国产又黄又猛又粗又爽的久久久| 手机在线视频国产第二页| 久久无码无码久久综合综合| 免费在线观看a级片毛片| 日韩av在线播放+免费| 国产成人精品日本亚洲麻豆| 四川女人毛多水多A片| 天天爽夜夜爽视频精品| 亚洲人成综合网站7777香蕉| 可以在线观看免费av的网站| 国产亚洲精久久久久久叶玉卿| 苍老师在线观看免费播放电视剧中文| 亚洲欧美制服另类国产二区| 亚洲综合无码一区二区三区不卡| 国产69精品久久久久熟女| 午夜福利黄色小视频| 午夜精品久久久久9999高清| 91在线91拍拍在线91| 一本大道久久香蕉成人网| 天天澡天天揉揉av无码| 欧美丝袜诱惑一区二区三区| 亚洲爆乳成av人在线蜜芽| 国内av一区二区| 国产美女的第一次好痛在线看| 在线看片免费人成视久网不卡| 婷婷91麻豆精品国产红杏| 香蕉丝瓜草莓樱桃草莓榴莲污| 亚洲国产婷婷香蕉久久久久久| 亚洲+日韩一区二区| 91九色porny首页最多播放 | 日韩激情免费视频一区二区| 巨爆乳无码视频二区涩漫| 国产+女女+喷水| 中文字幕一区二区在线看www| 特级精品一α级毛片视频| 欧美成人三级在线观看| 偷柏自拍亚洲综合在线| 国产亚洲综合一区二区三区 | 国产精品女同一区二区久久夜| 手机中文字幕在线免费视频| 久久精人人槡人妻人人玩| 牛牛视频一区二区三区| 国内精品国产成人国产三级粉色| 国产又爽又猛又粗的视频a片| 丰满大乳班主任趴下让我玩视频| a毛片终身免费观看网站| 日韩毛片+18+成人网| 国产精品96久久久| 天堂岛国av无码免费无禁网站| 中文字幕AV一区二区三区| 精品人妻伦一二三区久久竹夫人| 久久精品中文字幕无码| 青青国内精品视频免费观看| 精品亚洲永久免费aaaa| AV剧情麻豆映画国产在线观看 | 亚洲精品一区二区三天美| 欧美在线观看免费播放视频| 高清不卡亚洲日韩av在线| 国产午夜福利在线观看红一片| 国产精品久久久久av一区| 看黄a大片爽爽影院免费无码| 91久久久久久久久久久久| 国产国产午夜精华| 欧美日韩视频在线观看一区| 97久久精品亚洲中文字幕无码| 国产一本一道久久香蕉| 黄页网站免费视频大全9| 成年人免费看的视频| 182在线观看视频| 精品福利视频一区二区三区| 国产精品自拍在线观看| 一道本高清一区二区av| 97国语精品自产拍在线观看| 亚洲综合久久一本伊一区| 欧美在线看片a免费观看| 国产一区二区三区成人欧美日韩在线观看| 国产精品美女久久久久av爽李琼| 精品美女www爽爽爽在线| 久久亚洲精品人成综合网| 国产毛片乡下农村妇女bd| 日本中文字幕一区二区高清在线 | 国产成人在线一区二区| 美女主播一区二区不卡视频| 熟妇人妻系列AV无码一区二区| 探花风韵犹存少妇88AV| 亚洲国产手机免费在线观看| 成人做爰A片免费看黄冈宾馆| 亚洲处破女av一区二区中文| 91久久国产精品视频| 尤物在线观看网站视频免费播放| 成人黄色手机在线| 亚洲婷婷天堂在线综合| 久久99国产精品久久99软件 | 国产精品三级三级三级| 日本+欧洲+国产| 成人午夜高潮a∨猛片| 人妻美妇av一区二区精品| 免费av资源网站在线观看| 久久精品国产亚洲av水密被窝| 久久精品国产自清天天线| 亚洲狠狠婷婷综合久久久久图片| 无码精品人妻一区二区三区av | 粉嫩av一区二区三区四区五区| 在线看片免费人成视频国产片| 国产亚洲午夜精品一区二区久久| 精品国产鲁一鲁一区二区三区| 中文字幕国内自拍| 黄色片网站在线播放| 黄色成人av网站| 国产又色又爽又黄的网站在线| aaa欧美色吧激情视频| 国产成人精品一区二区在线观看 | 国产亚洲一区二区三区综合片| 亚洲+日韩+专区| 国产a国产片国产| 精品无码成人久久久久久| 亚洲日韩精品一区二区三区| 一区二区三区精品视频| 国产成人JVID在线播放| 午夜影视在线观看免费| 国产婷婷一区二区三区久久| 91精品福利视频| 精品久久久久久免费观看| 亚洲乱码日产精品bd在观看| 久久精品国产清高在天天线| 亚洲精品久久久久久中文传媒| 免费精品国产一区二区三区| 午夜免费视频观看| 免费看日产一区二区三区| 四川少妇大战4黑人| 国产+亚洲+欧洲| 黄页+国产+在线观看| 无码av中文一区二区三区| 99久久精品费精品国产| 亚洲+国产+专区| 国产aaaaaa| 狠狠色狠狠色合久久伊人| 精品国产不卡一区二区三区| 美女精品a网站又爽又色| 免费国产黄网站在线观看| 精品免费产品日亚韩二区 | 久久久福利视频免费观看| 亚洲国产成人va在线观看天堂| 在线观看国产免费高清不卡| 国产成人精品1沈娜娜| 精品一区二区福利视频| 视频一区二区三区亚洲天堂网 | 精品久久久久国产一区二区 | 中文字幕精品亚洲无线码一区| 亚洲综合色自拍一区| 久久天天躁狠狠躁夜夜爽| 国产真实露脸精彩对白| 不卡视频一区二区三区| 国产成人亚洲欧美一区综合| 亚洲国产99精品国自产拍| 国产淫语骚话叫床视频| jiZZjiZZjiZZ亚洲熟女| 丰满人妻熟妇乱又仑精品| 强迫凌虐淫辱の牝奴在线观看| 太骚了全程淫语!| 免费人成视频x8x8日本| 亚洲国产成人手机在线观看| 日本最新免费二区| 日韩精品一区在线观看视频| 精品一区二区三人妻视频| 国内精自线一二三四在线看| 91久久久久久久久久久久| 欧美日韩另类图片亚洲视频| 成人免费看黄网站在线观看| 天堂久久av无码亚洲一区小说| 99久久有精品国产婷婷外女| 欧美一级a视频免费在线观看 | 美女视频一区二区| 女人爽到喷水的视频免费看| 日韩av在线第一页| 2020久久香蕉国产线看观看| 午夜dy888理论久久| 在线观看+国产+免费| 亚洲制服丝袜中文字幕国产| 有码+日韩+在线观看| 国产+高潮+免费视频| 在线а√天堂中文官网| 中文字幕欧美精品一区二区三区 | 强伦少妇A片视频| 视频一区视频二区制服丝袜| 无码AV免费一区二区三区试看| 国产美女视频免费观看的软件 | 日韩色在线精品视频观看| 亚洲国产黄在线观看| 俺去啦俺来也五月天| 国产又大又硬又粗的视频| 亚洲+视频+免费| 国产一区二区三区视频在线播放 | 亚洲AⅤ无码国精品中文字慕| 欧美三级在线高清不卡| 人人超碰91尤物精品国产| av无码av天天av天天爽仙踪林| 野花社区视频在线观看| 亚洲国产精品自在线一区二区| 你懂的国产高清在线播放视频| 少妇高潮喷水久久久久久久久久| 中文字幕av九五月天| 国产成人精品无缓存在线播放| 熟妇诱惑一区二区三区四区| 安徽丰满少妇BBBBBB| 国产精品欧美二区66| 亚洲国产精品一区二区制服换脸| 精品久久久久久国产免费| 亚洲v无码一区二区三区四区观看| 国产亲子乱婬一级A片| 日韩成人在线视频| 亚洲精品综合在线观看| 国产明星精品一区二区刘亦菲| 亚洲一级福利专区成人在线视频| 中文字幕有码免费在线观看| 久久国产精品免费视频| 国产成a人片在线观看麻豆| 女人高潮抽搐潮喷视频开腿| 邪恶肉肉全彩色无遮盖| 亚洲精品国产精品乱码在线观看 | 欧美人妻456aⅴ中文字幕| 精品国产乱码久久久久久口爆网站| 成人av婷婷一区二区三区| 久久精品国产亚洲av水果派| 篠田优人妻与黑人BD在线| 太骚了全程对白Spa69| 久久男人av资源网站无码软件| 精品国产自在精品国产浪潮| 少妇9999九九九九在线观看| 亚洲国产剧情在线精品视| 日本日本熟妇中文在线视频| 一个本道久久综合久久88| 91久久精品国产| 国产午夜福利精品一区二区三区| 三年在线观看中文免费观看| 中文字幕欧美一区二区在线| 中文在线字幕观看电视剧hd| 2020国产精品久久久| 久草在线免费资源| 国产探花视频在线观看网址| 窝窝影院在线播放免费观看电视剧| 一本色道久久88综合日韩精品| 日韩欧美亚洲国产第一页| 一区二区三区欧美| 亚洲中文字幕一区二区麻豆| 中文字幕制服丝袜第57页| 日韩亚AV无码一区二区三区| 99久久精品久久久久久动态片| 欧美视频日韩视频亚洲视频 | 99pao在线视频国产| 色狠狠成人综合网| 免费+无码+av网| 亚洲国产成人福利在线视频播放| 成人免费区一区二区三区| 四虎国产精品永久免费网址| 亚洲精品9999久久久久| 伊人精品久久久久中文字幕 | 亚洲欧美日韩中文久久 | 亚洲国产精品久久久久秋霞小| 国产成人精品日本亚洲77美色| 亚洲国产中文字幕2020| 国产精品一区二区免费| 日韩亚洲欧美中文高清在线| 一卡二卡不卡免费视频观看| 国产精品久久久久久粉嫩影视| 欧美国产日韩在线观看视频一区 | 91啦丨露脸丨熟女| 九九热线视频精品99| 丁香色欲久久久久久综合网| 久久婷婷国产麻豆91| 99久久国产综合精品五月天喷水| 亚洲精品久久久久久不卡精品小说 | 精品国产一区二区三区日日嗨| 柳州莫菁菁av一区| 在线观看av网站永久免费观看| 亚洲产大香伊人蕉在线播放 | 成人亚洲日韩精品免费视频91蜜桃不卡| 国产清纯美女高潮出白浆+色| 亚洲天堂在线视频观看| 美女十八禁在线无遮挡免费看| 无码人妻丰满熟妇区毛片樱花视频| 九色视频在线免费观看| 国产成人精品一区二区在线| 四虎影视永久无码精品| 91精品国产色综合久久不卡98| 少妇被粗大的猛进出69影院| 天堂在线www四虎国产精品| 五月天+婷婷+亚洲色| 国产精品久久久久不卡绿巨人| 成人做爰A片免费看黄冈宾馆| 久久精品道一区二区三区 | 在线观看国产h成人网站| 最新2019中文字幕第一页| 日韩一区中文字幕在线观看| 搞美女的视频网站免费看| 日日鲁夜夜如影院| 国产女人18毛片水18精品软件| 欧美精品乱人伦久久久久久| 窝窝午夜色视频国产精品破| 日韩美女精品一区在线视频| 国产精品卡1卡2卡三卡四| 神马午夜精品95| 国产高清午夜人成在线观看| 中文字幕国产精品日韩精品动漫| 茄子视频ios在线观看| 国产91精品久久久久久精华液| 人人爽久久涩噜噜噜av| 75歳の熟女セックス合集牛牛 | 亚洲最大av无码网站最新| 午夜成人免费影院| 99久久免费国产精品6| 亚洲AV日韩AV永久无码网站| 国产成人精品三级在线影院| 欧美成人精品在线播放免费| av国内精品久久久久影院| 出轨人妻毛片一级| 国产一级视频免费播放| 成人在线手机视频| 国产成人亚洲欧美一区综合| 风韵饥渴少妇在线观看| 国产少女免费观看电视剧| 中文字幕制服丝袜第57页| 亚欧美黄片免费高清不卡| 欧美一区二区三区视频| 亚洲成人手机在线| 国产免费福利在线视频| 国产精品一品二区三区四区18| 欧美日韩亚洲tv不卡久久| 国产成人高清在线观看视频| 日本猛少妇色XXXXX猛叫| 国产综合亚洲区在线观看| 亚洲国产欧美在线成人aaaa| 欧美视频免费观看午夜在线| 久久中文字幕人妻熟av| 精品国产污污免费网站入口自| 亚洲+综合久久+成人av| 国产亚洲视频免费播放| 国产福利视频一区| 790公侵犯美丽人妻| 亚洲乱码卡一卡二卡新区中国| aaa级精品久久久国产片 | 看全黄色大色女爽一次免费久久| 狠狠色丁香婷婷久久综合蜜芽| 秋霞熟妇久久久精品免费| 国产又爽又猛又粗的视频a片 | 免费人成视频19674不收费| 人人躁日日躁狠狠躁av| 国产欧美二区综合| 亚洲欧洲无码一区二区三区| 又粗又硬又刺激欧美视频免费| va在线看国产免费| 欧美成人aaaaaaaa免费| 粉嫩呦福利视频导航大全| 久久www免费人成精品高清| 日本护士xxxxhd少妇| 美女互摸视频一区二区三区| eeuss鲁片一区二区三区| 日本一区二区免费在线观看| 欧美激烈精交gif动态图| 久久大香香蕉国产免费网vrr| 97成人精品视频在线播放| 色综合久久无码中文字幕| 亚洲天堂制服丝袜在线观看 | 国产精品揄拍一区二区久久国内亚洲精| 交换一区二区三区va在线| 中文字幕一区二区三区四区视频 | 中文字幕乱码av一区二区三区| 欧美乱子伦一区二区三区| 国产精品白丝av嫩草影院| 午夜精品一区二区三区免费| 亚洲一区二区图片| 麻豆国产VA免费精品高清在线 | 欧美牲交a欧美牲交aⅴ一| 中文字幕日本在线| 欧美黑人群交白妞| sao货妓女的yin荡生活| 国产成人综合久久精品免费| 极品av麻豆国产在线观看| 麻花传媒mv一二三区别在哪里看| 日韩精品无码av中文无码版| 国产在线观看免费观看99| 99久久人妻网站噜噜噜| 欧洲av成本人在线观看免费 | 国产精品二区一区| 成人做爰黄级a片免费看土方| 国产激情视频在线| 制服丝袜手机在线| 欧美一级三级完全免费观看| 日韩精品久久久久久希崎杰西卡| 亚洲精品国产精品国自产中出| 155fun黑料热点事件| 女同+影音先锋+在线| 日本在线观看www| 最新版天堂中文在线| 在线观看+免费+国产| 天堂а√在线地址中文资源| 中文字幕在线免费观看一区二区 | 国产欧美日韩精品丝袜高跟鞋| 毛片毛片毛片毛片| 一级做a爰片久久毛片a| 视频毛片下载蜜桃| 秋霞妓女影院在线播放| 天堂视频在线免费观看| 国产+麻豆+免费| 少妇苏霞肉欲第501章| 97国产人成视频免费在线播放| 国产激情久久久久熟女老人| 京熱大亂交无碼大亂交| 红莲两瓣夹玉柱最经典四句话| 97久久久亚洲综合久久88| 夜夜爽一区二区三区| 国产又爽又黄无遮挡免费视频 | 啊啊啊一区二区在线观看| 欧美日产国产精品日产| rmvb+下载+在线播放| 久久久久久综合网天天| 国产精品欧美精品日韩专区一乛方 | 欧美日本一道本一区二区中文| 国产亲子乱弄免费视频| 免费全部高h视频无码软件| 欧美激情一区二区视频| 免费+国产+ktv| 97久久综合区小说区图片区| 国产情侣极品精品一区| 啊轻点灬太粗嗯太深了蜜桃av| 亚洲综合色自拍一区| 人+国产片+综合| 亚洲熟妇自拍无码区| 国产午夜理伦三级好看| 3344国产精品免费看| 成年免费视频黄网站在线观看| 欧美巨茎A片在线观看| 欧美视频在线观看完整版中文 | 一区二区视频在线免费观看| 国产美女精品自在线拍免费下载出| 国产精品久久久久一区二区国产 | 成人做爰黄A片免费看陈冠希| 99久久精品无码一区二区毛片| 国产+综合+免费| 久久久久蜜臀va精品视频| 日本人妻丰满熟妇www色| 嫩草影视911香蕉| 综合国产免费成人在线视频| 欧美成人高清视频a在线看| 国产精品九九九久久综合| 狠狠躁18三区二区一区| 国产成人久久精品亚洲小说| 国产av精国产传媒| av一区二区在线观看| 日韩精品人妻系列无码专区免费| 亚洲+欧洲+国产中文字幕 | 人成午夜大片免费视频| 国产午夜一区二区三区| 欧美成人一区在线| 美女+福利+中文字幕| 激情久久av一区av二区av| 真人女处被破69x176cc| 亚洲av乱码国产精品色午麻豆| 国产又粗又硬又爽又猛又黄视频 | 麻豆国产一区二区三区| 久久国语精品三级亚洲一二| 无码人妻精品一区二区三区9厂| 又色又爽又黄的三级视频| 久久久久久久福利国产一级 | 亚洲精品成人无码中文毛片不卡| 午夜福利试看120秒体验区| 真人床震高潮全部视频免费 | 国产a在亚洲线播放| AV剧情麻豆映画国产在线观看 | 国产精品永久免费视频| 亚洲男人天堂一区在线观看| 中文字幕精品亚洲无线码一区| 亚洲自偷自拍另类第1页| 伊人久久精品无码二区麻豆| 无遮挡又黄又爽的免费视频| 狠狠久久永久免费观看| 成人免费精品网站在线观看影片| 国产精品国产自线拍免费软件 | 精品国产美女福利在线不卡| 国产69精品久久久久久尤物| 亚洲欧美综合在线观看| 亚洲欧洲美色一区二区三区| 试镜床戏(巨肉高h)| 亚洲精品久久久久午夜福禁果tⅴ 国产精品青草综合久久久久99 | 国产国拍亚洲精品永久软件| 丰满人妻被黑人连续中出| 久久天天躁狠狠躁夜夜2020一| 经典三级+少女潘金莲| 日韩午夜激情视频| 亚洲精品自产拍在线观看动漫| 综合久久婷婷综合久久| 国产国产精品久久久久久久| 五月综合网亚洲乱妇久久| 亚洲手机在线人成网站| 又粗又黄又猛又爽大片免费| 国产精品久久久久久免费免熟| 大桥未久+脚+磁力链接| 91精品国产综合久久国产大片| 日韩精品+久久久+免费观看 | 免费大片一级a一级久久三| 中文字幕+乱码+中| 亚洲欧美不卡人妻中文字幕| 国产精品综合第56页| 精品美女自拍99RE热视频这里只精品| 久9久9精品视频在线观看| 国产精品一区二区三区精品视频| 中文字幕在线精品中文字幕导入| 九九热线视频精品99| 人妻av中文字幕一区二区三区| 亚洲处破女av一区二区中文| 天天躁日日躁狠躁欧美| 国产精品成人亚洲一区二区| 亚洲欧美日产综合在线网| 国产探花视频在线观看网址| 卧室大战欧美肉丝丝袜| 国产精品青草久久久久婷婷| 国产女人久久精品视| 欧美国产日韩在线一区二区三区 | 久久婷婷五月综合色99啪| 野花成人免费视频| 成人综合另类国产色视频| 成人在线免费高清视频| 国产精品中文字幕日韩精品| 窝窝看看国产精品| 久久机热在线国产视频手机| 国产成人亚洲日韩欧美久久| 免费黄色小视频在线观看| 欧美精品一区二区久久婷婷| 久久久久久经典精品欧美激情 | 美女在线观看免费视频网站| 三年成全免费观看影视大全| 92福利影院一区二区三区| 国产精品久久视频| 巨爆乳肉感一区二区三区| 日韩精品极品视频在线观看免费| 99久久99久久精品国产片| 猫咪免费人成网站在线观看| 丁香色欲久久久久久综合网| 国产精品一区二区三区成人 | 欧美牲交a欧美牲交aⅴ免费| 亚洲天堂岛av一区二区| 女同av女同一区二区三区| 国产欧美日韩亚洲一区二区| wWWW特级西西大胆女人的艺术| 成人版女007毛片| 欧美亚洲国产日韩一区二区| 校园春色亚洲色图| 日本黄色视频在线观看一区| 中出素人久久久久久国产精品| 伊人69久久久久久综合国产 | 精品久久国产字幕高潮一| 日日AV色欲香天天综合网| 欧美黑人群交白妞| 国产亚洲第一精品好爽视频 | 国产精品嫩草影院久久久| 天堂中文官网在线| 九九99久久精品综合| 欧美综合婷婷欧美综合五月| 亚洲无AV在线中文字幕| 一区二区三区久久久国产| 亚洲国产日韩精品二三四区竹菊 | 美丽人妻被按摩中出中文字幕| 国产视频一区二区在线播放| 日韩v欧美v中文在线| 张津瑜国内精品www在线| 婷婷精品综合福利在线观看视频 | 91淫语熟女骚话连篇| 一区精品视频在线观看免费 | av亚洲产国偷v产偷v自拍| 三年片在线观看高清完整版 | 99热成人精品热久久6| 在线+免费+国产| 国产麻豆成人传媒免费观看 | 影音先锋大型av资源| 精品欧美乱码久久久久久| 999在线观看免费高清电视剧| 免费观看无遮挡www的视频午夜| JLZZJLZZ亚洲女人19| 日韩欧美国产亚洲一区二区| av超碰日韩成人在线观看| 国内av一区二区| 免费午夜无码18禁无码影院| 一本大道AV伊人久久综合| 亚洲成人日韩高清在线观看| 国产午夜精品福利视频| 怡红院最新免费全部视频| 国产三级国产精品专区50| 亚洲伊人网精品在线观看| 久久精品国产99久久久| 国产精品一区二区人人爽| 少妇嫩搡BBBB搡BBBB| 99久久免费国产精品6| 国产v视频在线亚洲视频| av久久悠悠天堂影音网址| yy4480青苹果乐园免费播放电视剧| 熟女少妇精品视频免费观看| 久久婷婷五月综合色精品| 国产亚洲日韩欧美另类第八页| 青青草草青青草久久草| 国产午夜精品一区理论片| 久久精品免费国产大片| 在线视频+欧美+亚洲| 精品日韩一区二区五月天| 日韩1区3区4区第一页| 桃色视频高清亚洲一区二区在线 | 菲儿+激情+影音先锋| 亚洲国产美女精品久久久久∴| 亚洲一区二区三区激烈免费视频 | 国产人免费人成免费视频| 国产Av一区二区三区| 久久婷婷狠狠综合激情| 韩国一级精品毛片| 天天躁日日躁狠狠躁av中文| 免费av男人天堂亚洲天堂| 国产麻传媒精品国产av| 国产成人一区二区精品九色| 国产精品久久久久久久福利 | 国产高清av在线一区二区三区| 动漫+有码+在线视频| 成人一区二区三区久久精品嫩草 | 亚洲一区二区在线精品| 国产亚洲又爽ⅴa在线天堂| 97成人精品区在线播放| yy777777丰满少妇影院| 3p人妻少妇对白精彩视频| 香蕉视频+在线观看+色吧| 99久久综合伊人东京热| 国产在线精品免费| 久热香蕉最新精品视频在线观看| 亚洲成亚洲乱码一二三四区软件| 中文字幕+在线观看+永久| 91精品国产高清一区二区三区蜜臀| 《与上司疯狂做爰》| 午夜精品一区二区三区免费| 亚洲成a人v欧美综合天堂麻豆| 有码+日韩+在线观看| 日本欧美久久久免费播放网| 免费+欧美成人+一区二区三区| 色丁狠狠桃花久久综合网| 又大又紧又粉嫩18p少妇| 亚洲AV成人噜噜无码网站| 亚洲第一视频在线播放 | 麻豆产精品一二三产区区| www.亚洲欧美成人影院| 中文在线高清字幕电视剧大全 | 内射少妇一区27p| 肉大榛一进一出免费视频| 国产探花视频91av视频| 翔田千里+无码+中文字幕| 国产区欧美区日韩区| 中字幕久久久人妻熟女天美传媒| 在线观看免费人成视频播放| 久久久久久免费毛片| 亚洲永久免费视频| 国产96精品久久久久久妇| 亚洲精品乱码久久久久久日本| 漂亮人妻中文字幕丝袜| 国产超碰人人做人人爽av大片| 亚洲va久久久噜噜噜狠狠久久| 亚洲中文无码天堂一区二区三区| 99国产精品免费播放| ww污污污网站在线看com| 日韩精品视频主播在线播放| 亚洲免费人成网站在线观看| 中文字幕中文字幕在线网| 999久久久久久久久6666| 中文字幕av九五月天| 日日噜噜夜夜狠狠久久丁香五月| 色综合色欲色综合色综合色综合r| 精久国产av一区二区三区孕妇| 欧美精品一区二区三区蜜桃臀 | 日韩少妇激情一区二区| 天天综合亚洲色在线精品| 久久久国产丝袜美女| 国产精品三级国产精品高| 在线观看国产色视频网站| 朝鲜女人大白屁股ass| 日本欧美久久久免费播放网| 国产亚洲又爽ⅴa在线天堂| 国产成人精品免费视频大全五级| 中文字幕免费高清电视剧网站| 又色又爽又黄的三级视频| 亚欧日韩欧美网站在线看| 696息子精品一区| 午夜激情福利视频| 真人一级毛片全部播放| 久久精品视频久久| www黄色com| 国产欧美成aⅴ人高清| 伊人久久大香线蕉午夜av| 在线a人片免费观看| 欧美一级日韩一级| 国内揄拍高清国内精品对白| 中文字幕日产乱码国内自| 婷婷嫩草国产精品一区二区三区| 国产精品久久久久AV台湾| 在线观看免费高清电视剧推荐| 国产精品白丝av嫩草影院| 亚洲国产成人精品女人久久| 麻豆Chinese新婚XXX| 毛片久久久久久久| 中文字幕日产乱码一二三区 | xnxx女第一次| 好男人社区www在线视频| 九九影院电视剧免费播放观看| 综合亚洲伊人午夜网| 亚洲国产综合久久一区二区| 无码+剧情+动漫| 正在播放:良家人妻翘起屁股狂插内射 | 成人麻豆精品国产自产在线观看 | 婷婷在线精品视频免费观看| 人妻丰满熟妇av无码区App| 欧美日韩精品亚洲色图视频免费| 亚洲国产尤物在线观看视频| 99久久综合伊人东京热| 国产一区二区三区在线乱码| 麻花传媒mv一二三区别在哪里看| 亚洲欧洲一区二区福利片| 少妇无码av无码专区线y| 亚洲va欧美va天堂v国产综合| www.久久美女视频网| 国产精品白嫩极品美女视频| 国产精品欧美中文字幕在线观看| 国产精品成人免费久久黄av片| 久久人妻无码一区二区三区av| 国产精品久久久天天影视| 99e久热只有精品8在线直播| 日韩视频中文字幕精品偷拍| 杨思敏黑人极品XXX| 亚洲AV无码久久精品色欲| 日本国产精品亚洲专区观看| 麻花传媒剧国产mv高清播放| 黄色成人在线视频| 美女成人亚欧色区视频网| 影音先锋+剧情+女仆| www九九热com| 狠狠色丁香婷婷亚洲综合| 成人欧美一区二区三区在线| 亚洲精品第一国产综合野| 91久久精品视频| aaa女人18毛片水真多| 美女18禁永久免费观看网站| 亚洲国产成人精品女| 亚洲欧洲免费黄色视频| 重囗味sM群虐老女人| 中文字幕亚洲欧美中文字幕 | 欧美日韩国产在线人成| 国产一区二区三区免费高清在线播放| 日本欧美大码a在线观看| 怡红院亚洲综合欧美久久久 | 太骚了全程淫语!| 香蕉在线精品视频在线观看| 天天躁日日躁狠狠躁超碰97| 极品少妇被后入内射视| 国产精品96久久久久久| 老色鬼久久亚洲av综合1| 日韩久久免费视频| 国产乱子经典视频在线观看| 免费+高清+国产| 亚洲欧美精品自拍视频视频| 欧美日韩不卡在线视频| 亚洲国产精品热久久| 国产成人高清在线观看视频| 国产一区二区三区导航| 国产精品国产av国产三级| 日韩女优一区二区三区在线播放| 欧美+国产+在线观看| 国产精品人成在线播放新网站| 久久亚洲AV午夜福利精品一区| 国产精品资源免费在线观看| 国产精品剧情在线中文字幕| 无码专区—va亚洲v专区vr| 成年女人免费视频| 女人被狂c到高潮视频网站| 日本精品videosse×少妇 | 成人精品视频中文字幕版| 柳州莫菁菁av一区| 久久国产熟女这里只有精品| 毛片毛片毛片毛片| 国产成人高清视频| 国产一在线精品一区在线观看| 国产精品日韩欧美亚洲另类| 污18禁污色黄网站免费观看| 亚洲日本在线观看| 国产美女www爽爽爽免费视频| 欧美三级+不卡+在线观看| 99久久99久久精品免费看蜜桃| 久久天堂无码av网站| 风流少妇野外精品视频| 狠狠躁天天躁综合网| 欧美精品v国产精品v曰韩品| 欧美+成人+后入| 男人扒开女人双腿猛进免费视频| 国产又粗又猛又爽视频上高潮| 精品久久久噜噜噜久久| 天天射天天干天天色| 国产精品一av一免费爽爽| 97免费视频在线观看| 亚洲精品一线二线三线无人区| 99热精品国产三级在线观看| 精品国产综合久久久久| 成人亚洲a片v一区二区三区蜜月| 国产av国片精品| 久久99热只有精品首页| 在线观看+免费+国产| 亚洲精品无码成人网站| 日韩精品亚洲aⅴ在线影院| av网站的免费观看| 日韩特黄一级片一区二区三区 | 亚洲国产一区二区在线| 亚洲欧美日韩国产综合v| 国产精品亚洲精品日韩动图| 白嫩少妇各种bbwbbw| 制服丝袜诱惑在线观看一二区 | 国产盗摄精品一区二区酒店| 天堂视频中文在线| 夜夜嗨av一区二区三区四区| 日韩精品区一区二区三vr| 久久精品国产亚洲Av久| 国产在线+123| 久久精品一区二区三区四区毛片| 亚洲一区二区图片| 91精品国产色综合久久不8| 国产女爽123视频.cno| 国产又粗又猛又黄又湿又爽视频 | 国产+免费+视频| 日韩精品不卡在线| 久久久激情一区二区三区| 人妻无码专区一区二区三区| 欧美成aⅴ人高清免费观看| 国产+刺激+高潮| 爆乳の豊満な肉体| 久久亚洲精品无码aⅴ大香| 免费一区二区视频在线观看不卡| 亚洲欧美国产国产一区二区三区| 中国极品少妇XXXXX1314| 一本无码视频一区二区三区| 国产一级久久久久av片| 大地资源二中文官网| JLZZJLZZ亚洲女人19| 八戒青柠影院观看免费高清电视剧 | 乌克兰少妇xxxx做受| 亚洲一区福利视频| 亚洲人av在线影院| 中文字幕+欧美精品+制服丝袜| 久久久国产一区二区三区四区小说| av在线免费观看一区不卡| 白嫩少妇无套内谢视频| 久久久噜噜噜久久久午夜| 女同学的嫩苞20p| 国产精品三级三级三级| 日本熟妇japanese丰满| 国内精品久久久久久无码| 女神呻吟娇喘高潮毛片| 床震高潮在线观看无遮挡| 国产99久久久久久免费看农村| 欧美中文字幕一区二区三区乱码| 天天躁日日躁狠狠躁免费麻豆| 新大地资源在线影视观看 | 中文久久乱码一区二区| 国产高清精品一区二区三区| www.亚洲欧美成人影院| 亚洲一区二区精彩视频在线观看| 免费的污污的网站在线观看| 国产天堂123在线观看| 国产精品久久久久久久久免费丝袜| 国产ae86亚洲福利入口| 高清国产午夜精品久久久久久 | 精品福利一区二区| 国产精品久久久精品三级18| 亚洲熟妇自偷自拍另类在线| 在线国内精品自线视频| 日韩国产欧美激情在线视频| 亚洲精品国产剧情久久9191| 国产经典一区二区三区| 91久久国产一区二区三区| 无码h黄肉动漫在线观看网站| 亚洲欧美国产一区二区三| 高清国产下药迷倒白嫩| 妺妺窝人体色77777777| 免费大片一级a一级久久三| 五十路豊満な肉体无码| 国产免费激情视频在线观看| 人妻仑乱少妇a级毛片| 一级美国无码高清| 亚洲va久久久噜噜噜狠狠久久| 91麻豆国产自产在线观看亚洲 | 国产精品亚洲欧美日韩在线播放| 日韩欧美亚洲国产精品幕久久久 | 中文字幕亚洲图片| 亚洲国产精品一区二区久久阿宾| 国产精品69毛片高清亚洲| 精品人妻久久久久久888| 男人天堂视频在线观看| 最近最新在线中文字幕mv免费| 污欧美视频在线免费观看| 自偷自拍亚洲综合精品麻豆| 亚洲国产精品久久久久爰| 国产女同一区二区三区久久| 国产高清成人免费视频在线观看| 色五月五月丁香亚洲综合网| 粉嫩99精品99久久久久久桃色| 国产+在线+天堂| 日韩精品无码av中文无码版| 中文字幕日本亚洲欧美不卡| 中国一级一区二区三区黄色视频| 深夜福利网站在线| 鲁大师影院在线观看| 国产精品一区二av18款| 国产又粗又黄的视频免费| а√天堂+地址+在线| 免费国产视频一区二区三区| 明星乱淫免费视频欧美| 国产成人短视频在线观看| 国产亚洲精品福利视频| 精品国产丝袜黑色高跟鞋美女| 又黄又爽又粗又硬又免费的视频| 欧美两根一起进3p做受视频| 国产一区二区三区免费高清在线播放 | 国产suv精品一区二区88l| 和闺蜜野外交换做爰的注意事项| 国产午夜精品一区二区芒果视频| 天堂在线网www在线网| 亚洲一卡二卡三卡四卡在线看| av一区二区无人区在线观看| 蜜桃91丨九色丨蝌蚪91桃色| 亚洲中文字幕在线第二页| 曰本a∨久久综合久久| 亚洲国产成人手机在线观看| 少妇厨房愉情理伦片bd在线观看| 欧美经典影片视频欧美一级网站| 成人区精品一区二区婷婷| 中文字幕一区二区三区国产| 亚洲七七久久桃花影院| 97无码精品综合| 国产精品日韩欧美一区二区| 国产一级久久久久av片| 国产又猛又粗又爽又黄91| 可以免费看日本黄色的网站| 美女在线视频黄色免费网站| 日韩人妻无码一区二区三区综合| 日韩国产精品视频| 亚洲成人av在线| 99亚洲精品久久久99| 亚洲欧美熟妇综合久久久久| 欧美另类与牲交zozozo| 美女视频图片久久黄网站| 日日躁你夜夜躁你av蜜| 国产精品原创av| 天堂在线免费观看视频www| 女人做爰高潮全黄| 国产亚洲精品久久久久久入口| 国模冰莲小泬喷潮337p| 亚洲成熟女人一区二区三区| 国产真实自在自线免费精品| 人人超碰91尤物精品国产| 亚洲日韩国产欧美一区二区三区 | а√天堂资源中文最新版地址 | www.97色色| 欧美一区二区视频国产精品| 青青草原亚洲视频| 中文字幕日产乱码一二三区| 日日噜噜夜夜狠狠久久av小说| 野外少妇被弄到喷水在线观看| 国产网红美女自拍小视频网址| 《公妇公侵波多野结衣》_| 久久无码人妻一区二区三区午夜| 亚洲av成人一区国产精品一| 精品香蕉久久久午夜福利| 天堂www天堂在线资源网| 吸乳18禁羞羞二区三区| 免费看av的网址| 国产成人亚洲欧美一区综合| 国产69精品久久久久熟女| 凹凸69堂国产成人精品视频| 国产一区不卡视频在线播放| 99福利资源久久福利资源| 在线免费观看国产精品| 亚洲国产午夜精品理论片妓女| 欧美人伦禁忌dvd放荡欲情| 亚洲精品中文字幕无码AV| 久久婷婷综合激情亚洲狠狠| 开心五月激情五月俺亚洲| 在线看片免费人成视频大全| 2021精品国产自在现线看| 欧美日韩大香蕉岛国在线视频| 香蕉视频+在线观看+色吧| 麻豆国产尤物av尤物在线看| 欧美日韩国产成人| 亚洲伊人精品伊人7777| 久久只精品99品免费久23| 色天天综合久久久久综合片| 欧美黑人欧美精品刺激| 先锋影音男人av资源| 精品视频中文字幕| 国产av大陆精品一区二区三区| 丰满少妇高潮久久三区| 国产午夜一区二区三区| 亚洲一区二区观看| 草色噜噜噜av在线观看| 亚洲欧美中文日韩v在线观看| 91久久精品无码专区嫖妓| 久久精品亚洲一区二区三区浴池| 真实新婚偷拍Chinese| 久久久久人妻一区精品果冻| 国产+高潮+在线观看| 欧美国产一区二区三区小说| 亚洲爆乳www无码专区| 苍井空第一次激烈高潮视频| 亚洲av色香蕉一区二区| 最新国自产拍小视频| …伊人久久婷婷国产综合| 在线视频在线观看国产一区| 成人精品视频网站| 国产精品亚洲精品一区二区| 久久久久久久无码高潮| 欧美精品亚洲精品日韩在线观看 | 中日韩无砖码一线二线| 午夜精品a片一区二区三区老狼| 一区二区激情av| 西西妺妺窝窝777777777| 亚洲熟妇自偷自拍另类在线| 男人天堂视频在线观看| 无码人妻aⅴ一区二区三区玉蒲团| 日韩无码中文字幕| Ts人妖紫苑口爆丝袜| 西西4444www无码精品| 黄色激情视频网站| 在线bt天堂网.www最新版 | 亚州国产av一区二区三区伊在| 免费在线观看av| 亚洲va久久久噜噜噜熟女软件| 国产黄色一区二区| 秋霞伦理电院网伦霞| 人妻丝袜中文字幕在线视频| 日本成年x片免费观看| 黄页网站大全男女免费观看| 国产成年码av片在线观看| 麻豆精品国产熟妇aⅴ一区| 欧美日韩无套内射另类| 亚洲第一成年免费网站| 久久精品国产乱子伦| 国产自偷在线拍精品热| 精品+无码+白浆| 亚洲手机在线人成网站| 国产精品久久久久久久竹霞| 亚洲欧洲日产国码中学| 影音先锋+成人资源| 日本二区三区黄色视频网站| 亚洲专区在线91福利网| 国产手机在线视频| 欧美视频在线观看完整版中文| 亚洲+欧洲+国产成人av| 91中文字幕在线| 成人免费视频播放| 天堂av无码av一区二区三区| 成年奭片免费观看视频天天看| 亚洲精品自产拍在线观看动漫 | 7799天天综艺在线观看免费下载| 99精产国品一二三产品香蕉| 偷自拍亚洲综合在线| 黄色小视频在线观看| 成人做爰A片免费看黄冈白狐影院| 亚洲人视频在线观看视频在线| 国色天香成人一区二区| 国产+传媒+国产av| 在线观看一区二区三区四区| 日韩一级黄色录像| 欧美精品一区二区高清在线观看| 装睡被陌生人摸出水好爽| 亚洲永久精品国产xxxx| 亚洲精品天天影视综合网| yjizz视频网| 91亚洲乱码卡一卡二卡新区豆| 国产精品久久久久久久竹霞| 亚洲人妻在线播放| 亚洲国产欧美在线成人aaaa| 亚洲AV日韩AV永久无码网站| 午夜免费播放观看在线视频| 91福利院一区二区三区 | 国产成人精品久久二区二区四季| 精品久久久久久777米琪桃花| 天堂а√在线中文在线新版| 韩国精品久久久久久无码| 久久久青草青青亚洲国产免观| 寡妇被老头舔到高潮的视频| 国产一二三四视频在线观看| 国产成人在线视频网站| 免费人妻一区二区三区免费视频| 国产成人精品自产拍在线观看| 日韩欧美中文字幕1区在线观看| 国产在线精品一区二区三区不卡| 国产+免费+高清| 午夜免费观看视频| 日韩在线一区二区三区免费视频| 亚洲第一视频在线| 欧美三级在线观看视频| 亚洲中文字幕精品久久久久久动漫| 精品美女一区二区三区瓯 | 国产亚洲又爽ⅴa在线天堂| 91精品国产综合久久精品图片| 中文字幕日韩一区二区三区不卡| 在线精品亚洲一区二区小说| 亚洲欧美一区二区三区日产| 国产天堂123在线观看| 在线视频国产网址你懂的| 欧美+日产+专区| 亚洲最新中文字幕成人| 99久久国产综合精品女同| 亚洲欧美制服另类国产二区| 18+看片+日韩毛片| 一区二区三区四区欧美极品| 超清中文乱码字幕在线观看| 合家欢下册公交车yiyu| 四十路の高齢熟妇无码| 精品久久久久久亚洲综合网站| 两人午夜免费观看www| 亚洲桃色在线播放国产精品 | 欧美熟妇丰满xxxxx裸体艺术| 国产精品永久免费视频| 羞羞影院午夜男女爽爽免费| 国产精品情侣熟女毛片对白看片| 加勒比HEZYO黑人专区| 久久精品国产九九久久6| 台湾+无码+先锋影音| 国产剧情国产精品一区| 精品欧美亚洲一区国产高潮| 正在播放懂色av| 国产91勾搭技师精品| 中文字日产幕乱五区久久夜色精品国产欧美乱| 久久俺也去丁香综合色| 亚洲第一区欧美国产不卡综合 | 成人精品啪啪欧美成| 亚洲国产精品一区二区久久阿宾 | 国产精品美女久久久久久av爽| 波多野结衣《温泉人妻》| 大香蕉网国产在线观看av| 日本高清av+迅雷| 伸进她的小内裤疯狂揉摸漫画 | 午夜激情福利视频| 亚洲成人久久国产精品| 155fun黑料热点事件| 日韩精品人成在线播放| 艳妇乳肉豪妇荡乳av无码福利| 亚洲一区在线观看尤物| 亚洲天堂在线观看视频| 日韩国产亚洲欧美中国v| 亚洲人成网站777色婷婷| 四虎地址8848精品| 天天综合在线观看| 日韩中文字幕免费| 中文字幕+在线观看+永久| 成人+高潮+国产| 丫丫影院免费观看电视剧| 美女网站免费福利视频| 国产精品99久久久久久董美香| 日韩欧美在线观看污视频| 蜜桃av噜噜一区二区三区麻豆| 免费的污污的网站在线观看| 蜜臀av免费一区二区三区久久乐| 521av在线视频中文字幕| 欧美日韩不卡在线视频| 国产中年熟女高潮大集合 | 色一情一乱一乱一区免费网站| 男人的天堂免费视频| 亚洲专区在线视频| 在线观看免费高清电视剧推荐| 日本爽爽爽爽爽爽在线观看免| 亚洲高清无码视频| 国产精品久久久久久亚洲a| 韩国做aj的视频大全| 日韩精品一区二区在线观看 | 国产成人高清免费在线观看| 自拍偷拍亚洲色图日韩欧美| 波多野结衣美女中文字幕视频 | 午夜影视在线观看免费| 免费的污污污网站在线观看| 1024精品久久久久亚洲| 婷婷开心激情综合五月天| av狠狠色丁香婷婷综合久久 | 国产亚洲精品影视在线| 视频一区视频二区制服丝袜| 欧美人妻456aⅴ中文字幕| 四虎精品美女国产在线观看| gogogo日本免费观看电视剧第17集| 日韩+欧美+毛片| 国产精品久久一区二区三区动| 中文字幕在线视频不卡| 欧美丰满熟妇xxxxx| 国产精品呻吟高潮久久久| 久热香蕉最新精品视频在线观看 | 成人午夜精品一区二区张津瑜| 免费av大全在线看不卡| 日本无卡码高清免费v| 欧美做爰全过程免费观看| 国产精品免费视频色拍拍| 亚洲无线观看国产精品| 久久人人爽人人片av免费| 欧美黑人做爰爽爽爽| 天堂在线中文网www| 国产在线视频不卡一二| 999国产精品午夜福利| 国产呦交精品免费视频| 91丨porny丨在线中文| 成人无码www免费视频嘿嘿软件| 熟女俱乐部五十路二区av| 欧美精品午夜一区二区三区| 国产精品剧情在线中文字幕| 亚洲综合欧美精品一区二区| 日韩三级片在线播放| 国产精品久久久久av一区 | 国产精品精品久久久| 日本天天日天天干| 亚洲妇熟xx妇色黄蜜桃| 一本加勒比HEZYO爆乳| 欧美国产三级一区二区三区| 婷婷丁香五月激情综合| 国产+激情+喷水| 亚洲无AV在线中文字幕| 97caoporn国产免费人人| 久久久久影院美女国产主播| 日本免费一区高清观看| 冢本六十路の高齢熟女| 人妻无码一区二区不卡无码av| 女人被狂躁到高潮喷水| 精品国产大片久久久久久久久| 午夜一区二区亚洲福利| 久久人人爽人人爽人人片dvd| 亚洲欧洲成人a∨在线观看| 日韩欧美精品v片免费看| 黑人一区二区三区| 久久91精品国产91久久蜜月| 久久亚洲日韩看片无码| 日韩免费在线播放一级黄片 | 青草影院内射中出高潮| 成人含羞草一区二区三区| 影音先锋黄色资源| 亚洲综合色区另类小说| 久久精品国产久精国产思思!| 亚洲国产日韩欧美综合另类bd| 五月激情婷婷综合| 色视频网站一区二区三区| www国产+欧美| 国产精品久久久一区| 国产区77777777免费| 欧美视频精品免费覌看| 无码人妻精品中文字幕不卡| 在线观看一区二区三区少妇| 中文字幕av导航| 狠狠色噜噜狠狠狠狠五月婷| 午夜dy888理论久久| 少妇人妻偷人精品视蜜桃| 午夜福利人妻专区一区二区| 色狠狠一区二区三区熟女p| 99久久精品无码一区二区毛片| 美女国产毛片a区内射| 91精品国产门事件美女写真集| 国产公开久久人人97超碰| 国产人成视频免费在线观看| 综合色区无码一区| ⅹⅹⅹ黄色片视频| 国产视频又黄又粗又爽又猛| 麻豆+视频+免费| 欧美国产日韩在线一区二区三区| 不卡视频一区二区三区| 很黄的视频国产在线观看| 国产在线观看免费全集电视剧网站| 国产熟妇另类久久久久久| 色狠狠一区二区三区熟女p | 国产成人精品成人a在线观看| 18+免费+日韩毛片| 2022亚洲无砖无线码| 国产精品久久久久久久模特人妻| 国模冰莲小泬喷潮337p| 无码专区丰满人妻斩六十路| 日日噜噜夜夜狠狠久久av小说| 中文字幕精品亚洲无线码vr| 国产日韩精品一区在线观看| 久久婷婷国产91天堂综合精品| 成人免费无码大片a毛片小说| 国产福利第一视频| av免费看片一区二区三区| 久久久久久久久人妻福利免费看| 国产精品久久久久久久久免费相片| 精品国产av一区二区三区√| 亚洲+欧美+麻豆视频| 国产+人人+欧美视频| 欧美成人福利视频| 人妻无码专区一区二区三区| 国产精品爆乳在线播放| 欧美国产又粗又长又爽视频| 四lll少妇BBBB槡BBBB| 国产99久久精品一区二区| 国产+日韩+欧美| 精品一区二区福利视频| 日韩欧美一区二区在线视频| 日本+熟女+磁力链接| 久久久亚洲国产美女国产盗摄| 免费人成视频19674不收费| 亚洲精品无码久久久久久久| 亚洲人妻av理论琪琪在线| essuess免费观看播放| 日本无码一区二区三三| 成年人免费看的视频| 国产精品v欧美精品v日韩精品v| 交换一区二区三区va在线| 亚洲一久久久久久久久| 中文字幕丰满乱子无码视频| 亚洲一区天堂九一| 国产精品美女乱子伦高| 亚洲精品国产精华液| 久久精品国产亚洲七七 | 国产探花视频91av视频| 少妇乳大丰满高潮喷水| 爆黑正能量料最新| 波多野结衣黑人149分钟| 日本道免费精品一区二区| 福利丝袜视频一区二区三区| 国产成人午夜片在线观看高清观看| 狠狠躁夜夜躁人人爽天天不| 亚洲免费午夜视频在线观看| 亚洲欧美精品中文字幕一区二区| 国产亲妺妺xXXX888869| 极品少妇伦理一区二区| 99国产在线视频有精品视频| 国产一区二区三区精品在线| 辽宁熟女高潮狂叫视频| 国产高清午夜人成在线观看| 18+视频在线观看| 婷婷久久精品国产色蜜蜜麻豆| 日韩精品无码一本二本三本色 | 91精品国产色综合久久不8| 高潮+白浆+在线观看| 肉大榛一进一出免费视频| 中国女人黄色大片| 一区二区三区欧美视频| 在线观看国产小视频网站| 国产精品亚洲视频一区二区三区| 免费无码黄网站在线观看| 人妻少妇精品一区二区三区| 美女裸体色黄污视频网站| 国产精品国产自线拍免费软件| 人妻av无码专区久久| 国产区77777777免费| av无码精品一区二区三区三级| 久久综合狠狠狠综合图片| 国产日韩精品一区在线观看| ww污污污网站在线看com| 国产在线jyzzjyzz免费护士| 18禁国产精品久久久久久网站 | 91社区在线播放| 国产精品久久久久久久久久久痴汉| 人妻熟女一区二区av| 免费+国产+视频| 伊人久久大香线蕉综合色狠狠| 三级欧美韩日大片在线看| 六十路の完熟丰满无码| www九九热com| 日韩视频一区二区| 涩涩涩蜜桃日韩一区二区| 亚婷婷洲av久久蜜臀小说| 成年女人免费视频| 野外少妇被弄到喷水在线观看 | 免费黄色av网站| 欧美超级乱婬视频播放| 真人做爰片免费观看播放第09集| www欧美视频在线免费观看| 免费+国产+麻豆| 蜜桃丰满熟妇av无码区不卡| 97久久综合区小说区图片区| 无码专区—va亚洲v专区vr| 一区二区三区无码按摩精油| 国产乱人伦精品一区二区三区| 啊灬啊灬轻点第一次和外国人| 一本加勒比hezyo无码专区| av网站高清在线免费观看| 99精品国产免费| 免费a级毛片18以上观看精品| 欧美丰满熟妇xxxxx| 精品日韩在线播放| 日日摸夜夜摸狠狠摸狠狠| 日本haaeX孰妇乱子高潮| 在线看片免费不卡人成视频| 综合久久婷婷丁香国产一区二区 | 亚洲综合免费视频| 亚洲精品www在线观看好爽| 国产精品鲁丝av一区二区| 国产真实自在自线免费精品| 亚洲永久精品国产xxxx| 成人做爰A片免费看网站网豆传媒| 精品少妇一区二区三区在线观看| 99精品国产再热久久无毒不卡| 国产精品久久久久久久一级| 成人免费区一区二区三区| а√天堂资源中文最新版地址| 欧美精品久久久久久久久大尺度| 九色综合狠狠综合久久| 81精品久久久久久久婷婷| 国产女人高潮毛片| 中文字幕久久波多野结衣av不卡| 亚洲日本精品国产第一区| 久9久9精品视频在线观看| 强奷乱码中文字幕熟女导航| 欧美+国产+精品| 91亚洲狠狠婷婷综合久久久| 久久亚洲精品国产精品紫薇| 被拉到野外强要好爽黑人| 久久精品欧美一区二区| 国产成人啪精品视频免费网页| 国产福利一区二区三区在线视频| 亚洲国产欧美在线人成人| 久操视频在线播放| 人妻少妇无码精品专区| 欧美大片免费播放器| 日本三级欧美三级人妇视频黑白配| 超碰+国产+在线| 打屁股+do+调教文| 一级二级三级亚洲欧美大片| 亚洲国产精品av在线播放| 国产一区二区av在线免费观看| 亚洲一区二区三区国产中文| 黄色片在线观看免费| 亚洲天堂成视频在线观看| 内射少妇一区27p| 久久久久蜜桃精品成人片| 午夜一区二区三区视频观看| 456视频在线观看| 爆乳喷奶水无码正在播放| 在线播放五十路熟妇| 黑人按摩人妻HD中字5| 三年大全免费大片三年大片第一集| 久久精品欧美日韩| 国产在线观看99| 亚洲一区二区三区四区五区黄 | 国产欧美日韩一区二区三区在线| 日韩欧美中文字幕在线视频| 天堂网一区二区在线播放| 麻花星空天美mv免费观看电视剧| 爆乳熟妇一区二区三区霸乳| 中文字幕综合在线分类| 中文字幕亚洲精品一区| 在线观看亚洲天堂视频网站| 成年人免费视频在线| 亚洲+中文字幕+人妻| 9299yy看片婬黄大片软件| 欧美又大又黄又粗高潮免费| 九色在线观看视频| 国产精品久久久久久久久潘金莲| 99香蕉国产精品偷在线观看| 欧美+香蕉网+五月| 在线观看一区二区国产欧美| 日本+欧洲+国产| 中文字幕一区二区在线看www| 东京热一本大交乱HD| 真人一级毛片全部播放| 欧美日韩亚洲精品一区| 美女视频网站在线观看污| 两根茎一起弄进去好爽视频| 高清午色夜国产精品| 成人国产精品免费视频国| 99久久综合国产一区二区| 成人污污污www网站免费| 中文字幕不卡视频| 永久免费无码日韩视频| 天天躁久久躁日日躁| 秋霞久久久久久一区二区| 九九热这里只有精品6| 国产微拍精品一区| 亚洲一区二区图片| 国产精品porn| 亚洲欧美一区二区精品久久久| 日本免费更新一二三区不卡| 欧美一级视频免费观看| 亚洲欧洲日本在线| 一级特黄aaaaaa大片| 色情无码一区二区三区| 无码人妻丰满熟妇区毛片18| 熟妇全身大保健(对白)| 国产精品二区高清在线| 美女+人妻+日韩毛片| 中文有码人妻熟女久久| 西西人体大胆无码视频| 伦视频中文字幕亚洲天堂网| 亚洲中亚洲中文字幕无线乱码| 亚洲国产精品久久久久久| 国产成人在线视频网站| 亚洲精品无码久久不卡| 亚欧美日韩香蕉在线播放视频| 中日精品无码一本二本三本| 日韩精品欧美国产精品亚| 亚洲AV无码久久久久网站蜜桃| 欧美日本一区二区三区| 精品亚洲国产日韩女人av..| 国产无套粉嫩白浆内的人物介绍| 国产福力片一区九区| 成人美女免费网站视频| 亚洲超清丝袜无码网站| juliaann一区二区三区| 国产精品丝袜黑色高跟鞋v18 | 国产欧美日韩欧美一区二区| 成人国产精品久久| 一区视频在线播放| 国产精品成人av免费观看| 免费在线观看a级片毛片| 日韩精品久久久久久久的张开腿让| 97视频在线播放| 亚欧洲在线视频免费观看 | 麻豆日产精品卡2卡3卡4卡5卡| 国产主播户外勾搭人xx| GOGO人体做爰大胆视频| 亚洲精品视频免费| 成人午夜高潮毛片| 少妇熟女视频网站一区二区三区| 欧美综合在线视频| 成人+国产+免费| 99精品国产99欠久久久久| 亚洲精品国产剧情久久9191| 黑人强辱丰满的人妻熟女| 日韩成人无码毛片一区二区| 三年成都中文在线观看免费版| 天天免費国产在线观看| 一本大道久久精品懂色aⅴ| 日韩免费无码一区二区视频| 亚洲欧美国产日本一区二区| 99国产精品污污污网站免费看| 美女极度色诱图片www视频| 少妇张慧献身1一5集在线播放| 亚洲精品综合在线| 99精品久久久久久久婷婷| 爆黑正能量料最新| 美女高清久久久久久小视频| 国产91在线观看丝袜| 欧美大片18禁aaa片免费| 日本欧美国产一区二区三区| 丰满大爆乳波霸奶| 精品欧美一区二区三区久久久| 影音先锋黄色资源| 久久久久久国产精品频道| 粗壮挺进人妻水蜜桃成熟漫画 | 亚洲欧美中文字幕手机在线观看| 亚洲精品成人天堂一二三| 久久国产亚洲高清观看| 欧美激情一区二区视频| 亚洲+变态+欧美| 久久99国产综合精品| 91亚洲成a人片在线观看www| 嗯高阿宾福利视频| 欧美日本一道本免费三区| 北条麻妃99精品久久朝桐光| 国产高清a视频在线观看| 日韩三区在线观看| 国产精品国产三级国产不产一地| 2021年国产精品午夜福利在线观看 | 国产麻豆一精品一av一免费| 欧美日韩亚洲精品一区| 亚洲男人天堂一区二区在线观看| 99久久免费只有精品国产| 98av精品一区二区三区| 国产日韩欧美亚洲一区二区三区| 97免费公开视频| 精品欧美高清视频在线观看| 久久综合婷婷成人网站| 色综合天天综合天天摸天天爽| 中国猛少妇色xxxxx| av男人天堂最新亚洲天堂| 51视频国产精品一区二区| aaa欧美色吧激情视频| 无码色情巜肉欲办公室3| 日韩中文字幕国产| 欧美久久久久久久久高潮视频| 日韩视频在线国产成人 | 亚洲热久久国产经典视频| 蜜桃久久一区二区三区| 欧美国产中文字幕在线视频| 日韩视频在线国产成人 | 欧美三级少妇高潮| 亚洲情侣偷拍激情在线播放| jiZZjiZZjiZZ亚洲熟女| 18+av在线观看| www九九热com| 狂躁少妇XXXX高潮无码| 456视频在线观看| 国产寡妇树林野战在线播放| 久久亚洲欧美日韩精品专区| 国产毛片一区二区三区| 亚洲s久久久久一区二区| 天堂日韩人妻一区二区三区| 亚欧美黄片免费高清不卡| 18+欧美+日本| 日韩人妻无码精品一专区二区三区| 日本精品视频在线观看一区| 妈妈你真棒插曲mv在线观看免费| 91社区在线高清| 国产精品入口久久| 99热这里有的只是精品| 大地资源中文第二页日本| 日韩成人大屁股内射喷水| 亚洲中文字幕人成影院| 国产精品久久久久久亚洲a| 手机在线看片1024| 永久免费未满蜜桃| 在线观看av一区| 91av福利视频| 亚洲国产精品综合久久网各| 又粗又长又硬义又黄又爽| 小黄鸭+av导航+在线| 牛牛视频一区二区三区| 国精产品国语对白东北| 亚洲乱码中文字幕手机在线| 蜜桃久久一区二区三区| 国产精品自产拍100在线观看| 又大又粗又硬又爽黄毛少妇| 狠狠色狠狠色合久久伊人| 日韩av手机在线免费播放 | 欧洲高清转码区一二区| 国产欧美日韩精品一区二区蜜臀| 亚洲精品国产中文字幕在线| 日韩成人av免费在线观看| 丰满成熟熟妇乱又伦精品| 人妖+码+在线观看| 国产成人精品网站| 善良娇妻让公泄欲| 国产又色又爽又黄的网站在线| 成人国产精品福利| 狠狠婷婷色五月中文字幕| 国产又大又粗又猛又爽的视频| 免费国产又色又爽又黄的网站| 天堂中文官网在线| 99久久国产综合精品五月天喷水| www欧美国产丝袜一区二区| 亚洲av色香蕉一区二区| 人妻少妇精品久久久久久| 亚洲精品区午夜亚洲精品区| 无码少妇一区二区三区免费| 两根茎一起进去好爽a片在线观看 日韩东京热无码免费视频 | 五十路豊満な肉体无码| 无码+护士+磁力链接| 日韩18中文字幕欧美在线| 国产无遮挡裸露视频免费| 国产一二中文字幕91影院日韩欧美| 日本高清在线www3344| 国产午夜亚洲精品不卡下载| 精品丝袜国产自在线拍小草| 亚洲自偷自拍另类第1页| 亚洲爆乳成av人在线蜜芽| 国产精欧美一区二区三区久久| 少妇久久久久久久| 欧美亚洲日本一区| 打屁股+do+调教文| 国产成人精品一区二区在线观看 | 无码+会员+动漫| 野花影院在线观看视频| 日韩毛片+18+免费看| 台湾妹子中文娱乐网| 国产亚洲欧美视频在线观看 | 国产+欧美+日韩在线| 日韩一级毛一片欧美一级| 国产精品自产拍在线观看花钱看| 粉嫩av一区二区在线播放免费| 久久精品人妻中文系列| 欧美成人手机在线| 18+av在线免费| 无码人妻精品一区二区三区9厂| 国产婷婷vvvv激情久| 国产精品久久久久久超碰| 已婚少妇露脸日出白浆| 男人的天堂亚洲中文字幕| 亚洲中国精品黄色av一区| 99香蕉国产精品偷在线观看| 亚洲专区在线视频| 美女18禁一区二区三区视频| 国产+人人+欧美视频| 日韩欧美亚洲精品成人福利| 99精品国产免费| 国产女主播精品大秀系列| 亚洲va久久久噜噜噜狠狠久久 | 日本视频在线免费| 欧美一区二区精品在线观看视频| 日本极品少妇一区二区在线观看| 93人妻人人做人碰人人爽| 久久精品无码中文字幕| 精品免费产品日亚韩二区| 亚洲综合国产精品第一页| 亚洲色图av在线| 日本+欧洲+国产| 国产高清视频在线观看免费视频| 亚洲欧美在线视频| 国产另类xxxx| 国产剧情中文字幕一区二区| 毛片视频在线免费观看| y111111111免费观看电视| 蜜桃久久一区二区三区| 亚洲欧洲日产国码中学| 国产在线观看香蕉视频网| 国色天香成人一区二区| 国产+在线+天堂| 伊人久久大香线蕉亚洲五月天| 无码专区HEYZO蜜臂AⅤ| 婷婷俺也去俺也去官网| 欧美激情一区二区三区高清视频 | 91社区在线播放| 草色噜噜噜av在线观看| 伊人色综合久久天天五月婷| 久久人国产精品99久久久| 在线国产一区二区| 日韩黄色一级大片| 91最新视频在线观看网址| 国产精品久久国产| 亚洲国产av午夜精品一区| 国产+日韩+欧美熟女| 国产又色又爽无遮挡免费动态图| 国产成人亚洲精品另类动态图 | 茄子香蕉榴莲草莓丝瓜绿巨人污| 少妇激情av一区二区| 三级高清中文欧美| 九九热线视频精品99| 天堂在线www天堂在线| 国产成人久久精品流白浆| 国产+欧洲+在线观看| 亚洲精品手机在线观看| 美女动态视频久久久久久久久久| 久久99热只有频精品6狠狠| 欧美精品中文字幕中文字幕| 亚洲a∨无码精品色午夜| 精品国产亚洲av色噜噜| 在线观看国产小视频网站| 人人妻人人澡人人爽欧美一区双| 国产成人高清视频| 黄色免费网站视频| 久久精品国产免费观看三人同眠 | 在线亚洲精品国产二区图片欧美| 摸进她内裤里疯狂揉她的桃子视频 | 狠狠色噜噜狠狠狠狠2022| 视频一区二区中文字幕在线| ass年轻少妇pic精品| 日韩高清亚洲日韩精品一区二区| 无套内谢波多野结衣| 日韩精品在线免费视频| 中文字幕av一区二区三区| 国产精品女同一区三区五区| 欧美成人+精品一区+在线观看| 亚洲一区二区三区黄色| 在线视频中文字幕一区二区三区| 美女免费精品毛片在线播放| 国产精品理论在线观看| 中文字幕av一区二区三区| 欧美做受三级级视频播放| 97超级精品综合网| 午夜免费福利视频| 成·人免费午夜无码视频蜜芽| 国产亚洲五月天综合91| 久久久久蜜臀va精品视频| 亚洲人妻av理论琪琪在线| 全部免费播放在线毛片| 窝窝午夜色视频国产精品破| 日本一区二区不卡黄色视频| 国产熟女毛多水大高潮| 在线观看成人国产三级网站视频| 欧美成人看片一区二三区图文| 91精品视频在线观看专区 | 黄色软件网站入口| 国产又色又爽无遮挡免费动态图| 韩国做aj的视频大全| 东北老女高潮过瘾对话| 亚洲欧洲无码专区av| 精品国产一区二区av麻豆| 欧美视频在线观看| 中文字幕人成乱码熟人免费69| 成人免费一区二区三区视频软件| 一本色道婷婷久久欧美| 欧美国产又粗又长又爽视频| 青草伊人婷婷精品视频在线观看 | 日本精品巨爆乳无码大乳巨| 久久久久久国产精品| 黄页+国产+在线观看| 中文字幕在线永久视频2018| 国产成久久免费精品av片| 欧美黄色免费视频| 欧美精品久久久久a片18的试看 | 射进来av影视网| 国产成年码av片在线观看| 精品香蕉久久久午夜福利| 亚洲色一色噜一噜噜噜| 久久免费黄色网址| 亚洲AV日韩AV无码黑人| 福利视频一区二区三区四区| 亚洲一卡二卡三卡四卡无卡姐弟| 日韩精品久久久久久久的张开腿让| 91视频成人免费| 丰满美女一级视频一区二区三区 | 《喂奶人妻厨房HD》| 国产+高潮+免费视频| 欧美亚洲国产另类第一页| 琪琪在线影院电视剧免费| 影音先锋+成人资源| 久久+亚洲+日韩| 永久免费看成人AV的动态图 | 国产无精乱码一区二区三区| 成人+国产+在线| 太骚了全程对白Spa69| 精品成在人线av无码免费| gogogo高清在线播放免费观看如果奔跑是湘 | 国产精品久久久久久粉嫩影视| 亚洲欧洲一区二区福利片| 人人爽亚洲aⅤ人人爽av人人| 噜噜噜亚洲精品在线观看| 一区二区日韩视频| 在线aⅴ亚洲中文字幕| 亚洲人成未满十八禁网站| 国产一区二区黑人欧美xxxx| 成人国产免费视频| 免费+精品+国产| 九九影院在线观看免费最新电视剧| 国产精品永久久久久久久| 成在人线av无码免费看网站| 2014av天堂无码一区| 少妇人妻综合久久中文字幕| 少妇人妻精品无码专区视频| 国产女爽123视频.cno| 波多野结衣肉翻猛高潮| 天堂а√中文在线| 欧美视频在线观看免费www| 欧美aaaa视频| 在线亚洲一区二区| 天美MV星空大象MV免费观看| 秋霞伦理电院网伦霞| 国产精品高清一区二区不卡片 | 色天天综合久久久久综合片| 精品亚洲欧美自拍| 鲁大师影院中文字幕在线看| 美女高清久久久久久小视频| 欧美二区乱c黑人| 蜜桃视频成人A片免费观看少妃 | 青草伊人婷婷精品视频在线观看| 国产在线一卡2卡三卡4卡免费| 国产精品自产拍高潮在线观看| 18+av在线观看| 国产区77777777免费| 日本免码va在线看免费| 日本最大色倩网站www| 亚洲欧美日本国产高清| 久久蜜桃资源一区二区老牛 | 少妇无码一区二区三区| 免费播放电视剧的| 国产精品人成在线播放新网站| 国产精品情侣熟女毛片对白看片| 91精品国产一区二区三区蜜臀| 久久精品国产亚洲AV免贵| 麻豆国产VA免费精品高清在线| 久久精品欧美一区二区| 国产熟女一区二区三区+视| 亚洲色欲色欲www成人网| 东京热无码中文字幕av专区| 久久这里只精品国产免费99| 实拍国产永久免精品视频| 日韩三区在线观看| 欧美国产日韩在线观看视频一区 | 亚洲精品综合在线观看| 亚洲欧美日韩精品国产91| 北岛玲一区二区三区四区| 黄金网站app大全免费| 人成午夜大片免费视频| 东方aⅴ免费观看久久av | 国产成人精品无缓存在线播放| 亚洲国产日韩视频观看| 老司机久久精品视频| 少妇伦子伦精品无吗| 久久精品国产欧美日韩亚洲| 97久久久久人妻精品专区| 国产一级久久久久av片| 精品一区二区三区无码免费直播|