精品欧美无人区乱码毛片,欧美人与动牲交久久,91久久久久久亚洲精品,日韩人妻中文一区二区三区,久久精品国产一区二区,欧美精品午夜理论片在线网址,久久久久久久麻豆,欧美永久免费精品,欧美在线播放一区二区欧美馆

佳學(xué)基因遺傳病基因檢測機(jī)構(gòu)排名,三甲醫(yī)院的選擇

基因檢測就找佳學(xué)基因!

熱門搜索
  • 癲癇
  • 精神分裂癥
  • 魚鱗病
  • 白癜風(fēng)
  • 唇腭裂
  • 多指并指
  • 特發(fā)性震顫
  • 白化病
  • 色素失禁癥
  • 狐臭
  • 斜視
  • 視網(wǎng)膜色素變性
  • 脊髓小腦萎縮
  • 軟骨發(fā)育不全
  • 血友病

客服電話

4001601189

在線咨詢

CONSULTATION

一鍵分享

CLICK SHARING

返回頂部

BACK TO TOP

分享基因科技,實(shí)現(xiàn)人人健康!
×
查病因,阻遺傳,哪里干?佳學(xué)基因正確有效服務(wù)好! 靶向用藥怎么搞,佳學(xué)基因測基因,優(yōu)化療效 風(fēng)險(xiǎn)基因哪里測,佳學(xué)基因
當(dāng)前位置:????致電4001601189! > 檢測產(chǎn)品 > 生殖健康 > 男性生殖 >

【男性不孕癥】男性不孕癥的遺傳因素和非遺傳因素——基因檢測準(zhǔn)嗎

(1) 環(huán)境壓力是如何降低精子質(zhì)量和降低男性生育能力的;(2)哪些化學(xué)元素會(huì)導(dǎo)致男性生殖系統(tǒng)的氧化應(yīng)激和免疫遺傳學(xué)改變;(3) 多態(tài)性如何與生殖潛能和促抗氧化機(jī)制的變化相關(guān),作為男性生殖條件的病理生理障礙的標(biāo)志;(4)免疫遺傳性疾病的環(huán)境應(yīng)激因素如何伴隨男性不育和反應(yīng);環(huán)境和遺傳危險(xiǎn)因素的分布和流行程度如何。

男性不孕癥的遺傳因素和非遺傳因素

Abstract

We explain environmental and genetic factors determining male genetic conditions and infertility and evaluate the significance of environmental stressors in shaping defensive responses, which is used in the diagnosis and treatment of male infertility. This is done through the impact of external and internal stressors and their instability on sperm parameters and their contribution to immunogenetic disorders and hazardous DNA mutations. As chemical compounds and physical factors play an important role in the induction of immunogenetic disorders and affect the activity of enzymatic and non-enzymatic responses, causing oxidative stress, and leading to apoptosis, they downgrade semen quality. These factors are closely connected with male reproductive potential since genetic polymorphisms and mutations in chromosomes 7, X, and Y critically impact on spermatogenesis. Microdeletions in the Azoospermic Factor AZF region directly cause defective sperm production. Among mutations in chromosome 7, impairments in the cystic fibrosis transmembrane conductance regulator CFTR gene are destructive for fertility in cystic fibrosis, when spermatic ducts undergo complete obstruction. This problem was not previously analyzed in such a form. Alongside karyotype abnormalities AZF microdeletions are the reason of spermatogenic failure. Amongst AZF genes, the deleted in azoospermia DAZ gene family is reported as most frequently deleted AZF. Screening of AZF microdeletions is useful in explaining idiopathic cases of male infertility as well as in genetic consulting prior to assisted reproduction. Based on the current state of research we answer the following questions: (1) How do environmental stressors lessen the quality of sperm and reduce male fertility; (2) which chemical elements induce oxidative stress and immunogenetic changes in the male reproductive system; (3) how do polymorphisms correlate with changes in reproductive potential and pro-antioxidative mechanisms as markers of pathophysiological disturbances of the male reproductive condition; (4) how do environmental stressors of immunogenetic disorders accompany male infertility and responses; and (5) what is the distribution and prevalence of environmental and genetic risk factors.

1. Introduction

Nowadays a large pool of substances potentially harmful for human health is incessantly present in the natural environment. Toxic metals (Cd, Pb, Hg, As, Be, V, Ni), dioxins, anti-metabolites, dyes, herbicides, fungicides, or even house dust constitute a detrimental mixture that people are exposed to practically every day [1,2,3,4]. Therefore, essential systems of the human organism are continually subjected to potential damage. Among them, the reproductive system, especially spermatogenesis, appears to be affected, too [5]. Long-term exposure to destructive factors may lead to occupational diseases, irreversible changes in the reproductive system (worsening of sperm quality, disorders in spermatogenesis), or even to infertility [6]. In this respect, toxic heavy metals and certain chemical pollutants (dichloro-diphenyl-dichloro-ethane DDT or methoxychlor) are considered as oxidative stress inducers [7]. Oxidative stress is defined as a lack of balance between per-oxidation and anti-oxidation, directly connected with overproduction of reactive oxygen species ROS [8]. It is difficult to avoid certain factors that induce oxidative stress, especially in cities due to traffic and industrial activity (smog, traffic fumes), but other sources of ROS may remain under control. Cessation of smoking, introducing a low-fat diet, or regular physical activity can be simple strategies against oxidation [9]. One of the causes of oxidative stress is the decrease of antioxidant enzymes (superoxide dismutase SOD, catalase CAT or glutathione peroxidase GPx) which erodes the line of defense against reactive forms of oxygen [10]. Thus, introducing an anti-oxidative diet consisting, e.g., of fruits and vegetables rich in vitamins A, C, E, and B, is recommended and beneficial for strengthening the anti-oxidative potential of the body [11,12,13]. The male reproductive condition can be improved by supplementation of beneficial elements such as zinc or selenium that cause positive changes in sperm count and motility [14]. Melatonin, beta-carotene, or luteine also contribute to maintaining high semen quality [15,16].
Since oxidative stress contributes to serious impairments in genetic composition, such as damage of chromosomes or breakages in the deoxyribonucleic acid DNA [8], it is valuable to analyze genetic reasons for male infertility. On chromosome Y, microdeletions in the AZF-region (called the azoospermic factor) result in spermatogenic failure and a lack of sperm cells in semen [17,18]. The world frequency of AZF microdeletions is estimated in the range of 1–15% of cases of azoospermic infertile men [19,20]. Other common reason for male infertility is cystic fibrosis, i.e., a recessive disease with a frequency of occurrence of 1/2500 live births, is caused by mutations in the CFTR gene on chromosome 7 [21]. Overproduction of thick, sticky mucus in organs with mucous glands is a typical symptom of the disease. In addition to pathological changes in the alimentary or respiratory systems, cystic fibrosis also contributes to infertility through clogging spermatic ducts with mucus [22,23]. The condition often accompanying cystic fibrosis is a congenital bilateral absence of the vas deferens, manifested as aplasia of spermatic ducts and an obstruction of sperm outflow into the urethra. Similarly to cystic fibrosis, congenital bilateral absence of the vas deferens is caused by mutations in the CFTR gene [24,25]. Finally, impairments on the X chromosome play an essential role in pathogenesis of Klinefelter syndrome KS (the presence of an extra X chromosome in the male karyotype) and Kallmann KAL syndrome (mutations in the KAL1 gene on the X chromosome; KAL1 is a human gene which is located on the X chromosome at Xp22.3 and is affected in some male individuals with Kallmann syndrome). The former is manifested by small testicles, degenerative changes in spermatic ducts, azoospermia, and decay of potency [26,27,28,29,30], while the latter is manifested in a deficiency in the sense of smell, delayed maturation, small testicles, and underdevelopment of the penis [31,32,33,34].
We reviewed the recent data in an effort (1) to estimate the diversification of potentially harmful factors accumulated in the modern environment (from heavy metals to domestic dust) and their influence on human fertility; (2) to establish the relationship between various pollutants and oxidative stress intensification; (3) to find effective strategies in overcoming oxidative stress in everyday human life, thereby improving reproductive conditions; (4) to analyze common genetic factors underlying male infertility associated with chromosome Y (AZF region); and (5) to analyze the most common factors underlying male infertility associated with chromosome 7 and the X chromosome.
This review of existing research will broaden our knowledge of the impact of environmental stressors on antioxidant reactions, and changes of lipoperoxidation and immunogenetic disorders in patients with symptoms of infertility. The results can be used in the prophylaxis of male infertility among patients inhabiting degraded areas. It will also answer some questions about the causes of infertility in men in whom it was previously unknown. Linking the biochemical and morphological parameters of semen with immunogenetic disorders will bring clarification to the role of environmental factors in shaping responses to various stressors. Analysis of the activity of enzymatic antioxidative mechanisms, lipoperoxidation intensity, and the levels of stress proteins and non-enzymatic mechanisms jointly can give a more complete picture of conditions shaping the response of an organism to environmentally diversified stress. Simultaneous analysis of the degree of the accumulation of different physiological elements in the semen of men from polluted areas, as well as lipoperoxidation processes and reactions from oxidative enzymatic and non-enzymatic systems, will map the causal connections with the reproductive condition of particular patients.
Insufficient knowledge about the causes of impaired reproductive potential results in an inability to implement specific treatments, which is associated with a lack of positive outcomes [35]. This review allows an understanding of the role of environmental factors in shaping the body’s defense capabilities in the area of reproductive condition. In stress conditions physiological responses of the reproductive system can be estimated based on the changes in the activity of antioxidant enzymes, biochemical and structural modifications of proteins caused by oxidative stress involving products of advanced oxidation protein, assessment of oxidative stress by changing the quantity of products of advanced oxidation protein, or changes in the lipoperoxidation and pro-antioxidant mechanisms inactivation of ROS [8,11,12,14,15]. The lack of knowledge of the causes of impaired reproductive potential results in an inability to implement specific treatment, which is associated with the lack of positive outcomes (pregnancy). This review will make relevant environmental comparisons. It will allow an understanding of the importance of environmental factors in shaping the body’s defenses and capabilities in the field of reproductive condition. The results can be used in enhancing diagnosis and deciding on appropriate infertility treatment. Physiological responses in the semen and blood of patients (specified above) are indicative of changes in the reaction to stress conditions.
A further purpose of this review is to analyze the immunological mechanisms that determine male reproductive potential and the impact of environmental stress on semen quality parameters. This is of major significance since bioaccumulation of toxic metals causes oxidative stress, which negatively impacts the condition of the semen. These events lead to alterations in the activity of caspase proteins leading to apoptosis in the germ cells [8]. Most of the negative changes mentioned above result from degradation of the natural environment with toxic metals, pesticides, or chemicals used in the industry [4,6,7]. Since oxidative stress may contribute to DNA damage, the connected causes of human infertility appear at the genetic level. Mutations responsible for pathophysiological changes in the human reproductive system occur in Down syndrome (trisomy of autosome 21), Edwards syndrome (trisomy of autosome 18), Patau syndrome (trisomy of autosome 13), Klinefelter syndrome, Turner syndrome (complete or partial absence of one of the X chromosomes in all cells of the body or a portion thereof), or cystic fibrosis (mucoviscidosis) [23,36]. These mutations may create a serious, usually irreversible threat to male fertility with diverse prevalence. Simultaneous analysis of the degree of accumulation of different physiological elements in the semen of men from polluted sites will trace the causal connections listed above in parallel with the reactions of the biochemical systems and the level of elements, lipoperoxidation, and oxidative enzymatic and non-enzymatic systems. Here it is important to take account of links between environmental elements and conventional pathologies associated with male infertility in correlation with selected biochemistry (total protein, albumin, cholesterol, glucose, fructose, bilirubin, alanino-aminotransferase ALAT, aspartat-aminotransferase ASPAT, urea, enzymes (akrosine, alkaline, and acid phosphatase), and thioneins. Complementing this evaluation is the analysis of the extracellular matrix, the components of which also mediate intercellular communication through (1) binding of cytokines or concentrate them in certain locations; (2) presentation of cells; and (3) direct binding of the individual components with specific cell receptors, which causes specific changes in the cell metabolism.
This review analyzes the immunological mechanisms that determine male reproductive potential and the impact of environmental stress on semen quality parameters. The influence of chemical elements with different physiological groups on the morphometry of semen of people living in areas with varying degrees of contamination and degradation changes (acidification, salinity, increased levels of Ca, Fe, Mg, and trace elements) is discussed. Bioaccumulation of many elements causes oxidative stress, which leads to apoptosis and determines the condition of the semen. These events lead to alterations in the activity of caspases and induction of apoptosis in the germ cells. We examine the activity of antioxidant enzymes, which may differ significantly to the control group. Chemical elements, not yet analyzed in the study of infertility (Al, Ni, Cr, Mn, As, Se, Si), play an important role in the induction of immunogenetic changes and affect the activity of antioxidant enzymes. The changes may result from degradation of the environment with heavy metals, pesticides, and chemicals used in industry. These genetic mutations are responsible for the genetic pathophysiological changes (as above). Simultaneously, one of the causes of male infertility is immunogenetical change. Therefore, we should consider the cumulative impact of xenobiotics in the semen on the occurrence of mutations responsible for these diseases and disorders of spermatogenesis, in the form of the expression and deletion of genes. Previous studies give conflicting results about the effects of chemical elements on sperm. Much of the work relates to their direct impact or has been carried out on the seed derived from persons occupationally exposed [37]. This knowledge is incomplete and needs to be reviewed, but the condition of human sperm deteriorates significantly. Further research should broaden the understanding of the impact of elements on immunogenetic disorders in male infertility, both in lipoperoxidation and antioxidant activity, as well as reactions with reductases and stress proteins. This will determine the distribution of the prevalence of these changes in regions where such research has not been conducted. This will enable the mapping of the distribution of immunogenetic changes, the dangerous mutation of DNA, semen biochemical parameters, and concentrations of chemical elements in it. The results can be used in the prevention of infertility in women living in degraded areas. They will also shed light on the causes of infertility in those men who were previously fertile. Linking biochemical analysis of semen and immunogenetic changes elucidates the mechanisms and clarifies the role of heredity factors in shaping the response to environmental stress by oxidative enzyme systems. The results can be used in the diagnosis of male infertility undergoing environmental weakening. In addition, the levels of oxidative enzyme activity circuits and an analysis of the lipoperoxidation intensity and protein levels of stress can give an index of sperm health conditions in humans.

2. The Current State of Knowledge

2.1. Molecules Affecting Male Infertility

Currently, 30% of men suffer from idiopathic infertility [38]. The standard semen analysis is still the most important clinical assessment of male reproductive potential. The results of this analysis determine ejaculate capacity, sperm count, motility, and morphology. Among the basic components of the sperm plasma ions Na, K, Mg, Ca, Fe, Cu, Zn, and Se are the most significant [39]. The potassium concentration in the sperm plasma should be 27 ± 5 µmol (1.1 mg × mL−1). When the ratio of Na/K exceeds 1:2.5, it affects sperm motility and an increased concentration of potassium cations increases the electrical charge of the sperm cell membrane decreasing the motility of cell [40]. Each element plays a different role in the body, thus destabilizating their level has serious consequences. Ca, Mg, and other electrolytes maintain osmotic equilibrium and are involved in the transport of nutrients. Zn and Fe are involved in redox processes. Zn and Mg are stabilizers of cellular membranes and coenzymes of SOD, which prevents the harmful effects of free radicals on sperm [13,15]. Zinc, as one of the most important factors influencing male sexuality, is involved in processes of reproduction, in both hormone metabolism and sperm formation, as well as in the regulation of sperm viability and motility [14]. Zn deficiency results in decreased levels of testosterone and decreased sperm count, potency disorders, reduced sperm viability and even infertility [41]. Zinc, as an antioxidant plays an important role in the protection of spermatozoa from the attack of free radicals. High levels of Zn in the semen decrease the activity of oxygen radicals, maintaining sperm in a relatively quiet and less motile state, resulting in a lower consumption of oxygen which allows the storage of energy needed during the passage through the genital tract. Zn also has a protective effect against too high a concentration of Pb (contributing to reduction of fertility) [15]. Even with a high Pb accumulation, elevated Zn concentration has a protective effect, reducing the harmful effects of this element [42,43]. Chia et al. (2001) [44] have demonstrated a correlation between the concentration of Zn in the blood and semen plasma, and the quality of sperm from fertile and infertile men. The results showed lower Zn levels (accompanying lower morphologic parameters) in patients with impaired fertility (183.6 mg·L−1). In fertile patients Zn level was much higher (274.6 mg × L−1). Thus, Zn has a positive impact on fertility and potency through participation in spermatogenesis [44]. An important role of Zn was also described by Giller (1994) [45], indicating that semen volume decreases by 30% at a low Zn concentration. Similarly, Mohan et al. (1997) [46] have shown that men with low daily Zn intake (only 1.4 mg) displayed a significant decline in semen capacity and concentration of testosterone in serum. A relationship was also shown between the level of Zn in serum and semen in oligozoospermic infertile men, with significantly lower levels of Zn in serum and semen of men with fertility problems [46].
The second element of fundamental importance for semen quality is selenium, which occurs in high concentrations in semen and plays an important role in maintaining reproductive condition [13,14]. Selenium is an essential microelement at low levels of intake and produces toxic symptoms when ingested at level only 3–5 times higher than those required for adequate intake. Se-counteract the toxicity of heavy metals such as Cd, inorganic mercury, methylmercury, thallium and to a limited Ag extent. Although not as effective as Se, vitamin E significantly alters methylmercury toxicity and is more effective than Se against silver toxicity. Selenium can particularly counteract Hg toxicity, and is the key to understanding Hg exposure risks. Selenium compound selenide binds mercury by forming mercury selenide, which neutralizes the harmful effect of Hg. However, once that bond is made, Se is no longer available to react with selenoproteins that depend on it. Human studies have demonstrated that selenium may reduce As accumulation in the organism and protect against As-related skin lesions. Se was found to antagonize the prooxidant and genotoxic effects of As. From epidemiological point of view Se interaction with heavy metals raises a large interest. Although antagonistic influence of Se on the bioaccumulation of Hg, Cd, and As is well known, interaction mechanism between those elements in humans remain unexplained [47]. Selenium takes part in the constitution of the mitochondrial shield in sperm cells and influences the condition and function of sperm, and is effective in the treatment of impaired fertility [47]. Simultaneously, selenium as part of selenoproteins, playing a key role in defending the body against oxidative stress [48]. Phospholipid hydroperoxide glutathione peroxidase PHGPx changes the physical properties and biological activity during the maturation of sperm. In spermatids it displays enzymatic activity and is soluble, while in mature sperm it is present as an inactive and insoluble protein. Inside the mature sperm PHGPx protein constitutes at least 50% of the material of the shield [49]. However, toxic heavy metals (Cd, Pb, Hg, Ni, Cr, B, V) impair testicular function and the mechanisms of their toxic activity in the nucleus include damage of the vascular endothelium of the Leydig’ and Sertoli’ cells but these heavy metals not only damage the vascular endothelium but as stated for example, in [50,51], Cd and Pb cause an alteration in the functionality of the Sertoli cell even at subtoxic doses. Oxidative stress occurs as a result of their accumulation due to impairment of antioxidative defensive mechanisms and intensification of the inflammatory reaction leading to changes in the morphology and function of the testes [1,2,6,7,10,52,53]. The effect of these changes can be necrosis of the seminiferous tubules, which inhibits the synthesis of testosterone and impairs spermatogenesis. Short-term exposure to these metals increases the activity of SOD, CAT, GPx, and glutathione reductase GR, which is indicative of the activation of defense mechanisms and the adaptive response of cells [9,54].
In order to fully analyze the problem, we should distinguish precisely the functions of individual forms of GPx and their importance for the male reproductive system. Glutathione peroxidases are composed of eight forms that are distributed in different tissues with differences among species [55]. They catalyze the reaction needed to remove hydrogen peroxide H2O2 and other hydroperoxides using reduced glutathione GSH. In order to keep removing hydroperoxides, the oxidized glutathione disulfide GSSG must be reduced back to GSH by the GR enzyme using NADPH as reducing agent. There are selenium-dependent and selenium-independent GPx forms. The first group is represented by GPx1–4 and the second group by GPx5–8. GPx forms can also reduce peroxynitrites ONOO, a very reactive ROS capable of harming cells promoting tyrosine nitration in proteins involved in motility and sperm capacitation [55]. Of great importance for spermatozoa is the presence of the selenoprotein phospholipid hydroperoxide GPx4 (PHGPx), a structural protein which is essential for normal formation of the mitochondrial sheath and constitutes about 50% of the sperm midpiece protein content localized in the mitochondrial helix. The need for mitochondrial PHGPx (mGPx4) to assure normal sperm function has been demonstrated in humans since infertile men have shown low sperm motility with abnormal morphology [55]. It is important to highlight that what is relevant for fertility is the ability of mGPx4 to interact with hydroperoxides to form the mitochondrial sheath during spermiogenesis and not its antioxidant activity which is less than 3% of the total PHGPx protein content in ejaculated spermatozoa. Selenium is essential to assure normal GPx4 function during spermiogenesis as it was confirmed by the presence of abnormal spermatozoa with poor motility [55].
The sperm chromatin formation during spermiogenesis is accomplished in part by the nuclear isoform of GPx4 (snGPx4); this enzyme mediates the oxidation of S–H groups of protamines by hydroperoxides. It is possible then that other proteins are involved in the sperm chromatin re-modelling and potential candidates are peroxiredoxins. The contribution of GPx to the protection against ROS is limited in human spermatozoa since human spermatozoa, testes, or seminal plasma lacks GPx2, GPx3, and GPx5 and GPx4 are insoluble and enzymatically inactive in mature ejaculated spermatozoa [55]. It seems that the role of GPx1 as important antioxidant enzyme is questionable because Gpx1−/− males are fertile and they are not susceptible to oxidative stress and lipid peroxidation does not increase in human spermatozoa incubated with H2O2 in the presence of carmustine (GR inhibitor) or diethyl maleate (binds to GSH making it non-accessible for GPx/GR system) that affects the GPx/GR system activity [55].
In turn, Gladyshev et al. (2016) [56] indicates that the human genome contains genes coding for selenocysteine-containing proteins (selenoproteins). These proteins are involved in a variety of functions, most notably redox homeostasis. Selenoprotein enzymes with known functions are designated according to these ones. Selenoproteins with no known function appear to be important but require further research.
A particularly dangerous heavy metal for semen quality is lead. It is increasingly recognized that impaired fertility in men can be associated with environmental and occupational exposure to lead [10,57]. The mechanism of action of lead on male gonads is complex and includes effects on spermatogenesis, steroidogenesis, the redox system, and damage of the vascular endothelium of the gonads by free radicals, resulting in morphological changes (weight changes of the testes and seminal vesicles, their fibrosis, a reduction in the diameter of the seminiferous tubules, and a reduction in the population of reproductive cells by apoptosis) and functional changes (decreased testosterone synthesis). Lead may affect the function of Leydig’ cells impairing steroidogenesis, decreasing the levels of testosterone and worsening the quality of sperm” but this observation is valid not only for Leydig cells but also for Sertoli cells that are the sentinel of spermatogenesis [1,7,51,54]. The phenomenon of oxidative stress in animals poisoned with lead confirms an increase in lipid peroxides and decomposition of thiobarbituric acid reactive substances TBARS [58].

2.2. Antioxidant Mechanisms

A significant role in the pathogenesis of infertility involves redox reactions because the germ cells are capable of producing ROS. A certain physiological amount of reactive metabolites of oxygen, rising in the respiratory chain, is necessary to maintain normal sperm functionality. However, due to overproduction of ROS or the exhaustion of the compensating possibilities of antioxidative mechanisms in sperm, oxidative stress begins to increase [7,9]. Subsequently, it leads to changes in peroxidation of lipid membranes of sperm, impairing the structure of membrane receptors, enzymes, transport proteins, and leads to an increase in the level of DNA fragmentation of sperm [59,60,61]. The balance between ROS formation and the protective actions of antioxidative system is necessary to sustain normal functions of an organism [8]. The important area of influence of essential elements are metabolic mechanisms, i.e., reactions involving compounds quenching excited molecules, non-enzymatic mechanisms (ceruloplasmin, transferrin, polyamides, transitional metals, sequestration of metals, thioneins), antioxidant enzymatic mechanisms (SOD, CAT, GPx, GR, glutathione S-transferase GST, secretory phospholipase A2 sPLA2, reactions involving heat shock protein HSP, chaperones, and proteases [59,60,61]. Due to the particular sensitivity of male reproductive cells to the oxidative action of ROS, mammalian semen is equipped with a variety of enzymatic and non-enzymatic compounds, which neutralize the excess of ROS, localized in the seminal plasma and inside sperm cells [59,60,61]. A direct relationship between the SOD activity and sperm damage and sperm motility was confirmed by numerous researchers [9]. The addition of exogenous SOD to a suspension of sperm cells protected their vitality and significantly affected motility by inhibiting the destruction of biological membranes. However, some researchers could not confirm the effect of SOD on semen quality and sperm fertilizing potential [62,63].
The most effective antioxidative enzyme in sperm apart from SOD is CAT [12,13]. It was found inside sperm cells and seminal plasma, with activity significantly reduced in infertile men [64]. Another important enzyme that protects cells from the toxic effects of H2O2 is GPx. The sperm GPx is located in the mitochondrial matrix. Its activity is largely related to the level of Se in semen [13,14,15]. The important protective role of GPx in counteracting the loss of sperm motility as a result of spontaneous lipoperoxidation has been widely confirmed. Many researchers have proved the relationship between peroxidative damage of sperm and male infertility [62], because lipoperoxidation is one of the most important processes related to the action of ROS. The accumulation of damaged lipid molecules lowers the fluidity of biological membranes and the structural damage of membranes has a direct impact on their receptor and transport functions [9].

2.3. Genetic Effects

The accumulation of heavy metals in an organism and the impact of free radicals can cause immunogenetic disorders, chromosomal aberrations and consequently lead to serious genetic defects, causing infertility include numerical and structural aberrations that may affect autosomes or sex chromosomes [65,66,67,68]. Chromosomal aberrations appear in 7% of infertile men, that is 30 times more frequently than in the general population [69,70]. The most common chromosomal cause of male infertility is Klinefelter syndrome (>4%) [71]. In this disease, similarly to Turner syndrome, partial fertility is maintained only in mosaicism [66,72]. In Klinefelter syndrome changes in nuclear structure leading to infertility may be a result of the presence of two alleles of many genes associated with the X chromosome, which typically operate on the principle of disomy and do not undergo inactivation during lyonization of extra chromosome. In 15% of males with azoospermia and 5% with oligozoospermia display an abnormal karyotype [71,73]. Another cause of male infertility is microdeletions of the Y chromosome or aberrations and mutations of genes responsible for male sexual development, e.g., located in the short arms of the Y chromosome in the region Yp11.2 (the Yp11.2 region containing the amelogenin gene on the Y chromosome AMELY locus). The amelogenin gene on the Y chromosome, AMELY, is a homolog of the X chromosome amelogenin gene AMELX, and the marker is employed for sexing in forensic casework, SRY gene (a sex-determining gene on the Y chromosome). SRY gene, as a sex-determining gene on the Y chromosome in mammals that determines maleness and is essential for development of the testes; testis-determining factor TDF, known as sex-determining region Y SRY protein, is a DNA-binding protein (known as gene-regulatory protein/transcription factor) encoded by the SRY gene that is responsible for the initiation of male sex determination in humans). Another reason for male infertility is the partially symptomatical form of cystic fibrosis, responsible for 60% of the so-called obstructive azoospermy [23,36]. The true symptomatic form of cystic fibrosis is the result of mutations in the CFTR gene and in 95% cases of men leads to infertility [74,75].
The current state of knowledge about male fertility conditions does not give clear and unambiguous answers to the cause of the growing problem of infertility. We cannot determine unambiguously which environmental factors have the greatest impact on human fertility. It is, therefore, necessary to continue research in the field of concentration of elements, oxidative enzyme activity, and the incidence of immunogenetic disorders in the seed. These analyses are a benchmark in project design, making it possible to verify the views on the impact of environmental stressors on male fertility. The results of these studies can be applied in the prevention of infertility and contribute to the development of new diagnostics.

3. Potentially Harmful Factors in the Natural Environment: From Heavy Metals to Domestic Dust

Toxic heavy metals are one of the main sources of causative male infertility. From the beginning of their activities at the cellular level, they generate a series of reactions that destabilize normal processes within the cell organelles. Such a permanent and deepening interaction causes a gradual shift of the metabolic pathways and biochemical processes of the cell, including a change in normal transcription and translation in the nucleus. This ultimately generates genetic polymorphisms, responsible for the formation of changes in the male reproductive condition [1,2,52]. Among other destructive factors generally present in the environment we can enumerate combustion products, traffic fumes, dioxins, polychlorinated biphenyls, pesticides, food additives, and persistent pollutants, such as DDT [4,5,6,53]. A separate group includes potentially harmful factors that remain under human control, such as smoking, obesity, and a sedentary lifestyle. All of these can play the role in lowering reproductive condition resulting in decreased sperm counts, even among very young men [6]. Certain metals that we are exposed to almost every day, e.g., Cu, Pb, Cd, or Mo influence reproductive hormone levels (such as testosterone). Simultaneously, Meeker et al. (2010) [2] proved that certain interactions between metals in humans can modify serum testosterone level. Based on analysis of 219 relatively young men, researchers observed a 37% reduction in testosterone levels in the case of men with high Mo and low Zn concentrations in blood. Additionally, they observed higher Cu and Cd levels accompanying low Zn concentration among smokers. However, Buck et al. (2012) [53] broadened their investigation to both men and women reproductive conditions with environmental Cd and Pb exposure. This study sampled over 500 couples willing to have a child. The researchers measured the time to pregnancy in each case, and included daily questionnaires, filled by couples, about their lifestyles. The investigation encompassed two regions, selected to ensure a range of environmental exposures to heavy metals. Their results confirmed that environmentally relevant concentrations of blood Pb and Cd make time to pregnancy longer. Thus, couple fecundity decreased with more frequent exposures to toxic metals.
Generally, toxic metals are considered as strong oxidative stress inducers and endocrine disruptors in humans, and are particularly harmful to the testis. Similarly to Pb, Hg, and estrogenic compounds, Cd can seriously disrupt the functionality of the testis and, as a consequence, reduce sperm count and quality. Siu et al. (2009) [52] enquired how exactly Cd damaged the testicles and stated that the disruption of the blood-testis barrier applied to complex pathways of signal transduction and signaling molecules like kinase p38 (human mitogen-activated protein kinase 14/p38 alpha (active enzyme recombinant, human protein kinase p38; stress-activated protein kinase). Cadmium exposure appears to be a potential risk factor for testis injury via oxidative stress stimulation, endocrine destabilization, and certain interactions with protective elements, such as Zn [52]. Moreover, in the study conducted by [1], researchers expanded the pool of analyzed metals and testified to the environmental toxicity of Cd, Cr, Pb, Hg, As, and especially Mo. The authors linked semen quality with estimated blood concentrations of the enumerated elements. That investigative group involved over 200 men (patients from infertility clinics). The most surprising finding concerned molybdenum. Researchers observed a dose-dependent relationship between Mo and a decrease in sperm concentration and motility. Based on this result we could add molybdenum to the list of potential threats to male fertility. However, the toxicity of Cd, As, Pb, and Hg and their influence on a decline in semen quality was more obvious [1]. Simultaneously, Vaiserman (2014) [4] mentions that endocrine-disrupting chemicals are invariably present in the environment of industrialized societies. The list includes dioxin, dioxin-like compounds, phthalates, polychlorinated biphenyls, pharmaceuticals, agricultural pesticides, and industrial solvents. Their destructive role in chronic endocrine pathologies is doubtless and leads to negative estrogenic and anti-estrogenic activity. However, the damage is particularly detrimental at a genetic level, causing a threat to the normal development of the organism, which has been widely analyzed in animal models, e.g., exposure to dioxins disrupts the expression of genes involved in extra-cellular matrix remodeling in the cells of the cardiac muscle. Methoxychlor alters the methylation pattern of paternally and maternally imprinted genes in the sperm of mice offspring. Bisphenol A causes hypermethylation of the estrogen receptor promoter region in the adult testis of rats in addition to modifying hepatic DNA methylation [4]. Despite the fact that in Vaiserman’s [4] study the negative effects mentioned were verified mostly on rats and mice, the author suggested that a similar impact on people was of high probability. He highlighted that in the last number of decades the endocrine condition of humans has decrease seriously, subsequently worsening reproductive condition. In both problems the most serious changes occur due to toxic exposure in the prenatal period or early childhood, resulting in defective development of the organism in later years. These statements agree with [5], who also considered long term exposure to herbicides, formamide, antimetabolites, fungicidal preparations, dyes, and obviously toxic metals (Cd, Pb, Cr, Ni) as harmful factors that considerably worsen the quality of sperm.
If the realization that heavy metals and certain chemicals decrease human reproductive condition still does not bother us, then there is an example of a further disruptor from our close surroundings. Meeker and Stapleton (2010) [3] proved that even house dust can modify levels of reproductive hormones and diminish sperm quality. Researchers analyzed organophosphate compounds, commonly used as additive flame retardants and plasticizers in popular domestic materials. Semen parameters and reproductive hormone levels were measured in 50 men from infertility clinic who had frequent contact with these materials. They concluded that organophosphate compounds from typical domestic equipment (contained in house dust) may not only alter certain hormone levels (such as prolactine or thyroxine), but also decrease sperm concentration by as much as 19% [3].

3.1. Environmental Pollutants and Oxidative Stress

Oxidative stress is a damaging process that happen when there is an excess of free radicals in the body cells. The body produces free radicals during normal metabolic processes. Intense oxidation can damage cells, proteins, and DNA, which can contribute to aging. Disturbances in the normal redox state of cells can cause toxic effects through the production of peroxides and free radicals that damage all components, including proteins, lipids, and DNA. Oxidative stress from oxidative metabolism causes base damage, as well as strand breaks in DNA. ROS and free radicals are generally known to be detrimental to human health. A large number of studies demonstrate that, in fact, free radicals contribute to initiation and progression of the changes in genetic material, i.e., genetic polymorphisms [8]. Oxidative stress happens when the balance between peroxidation and anti-oxidation is disturbed, i.e., when the production of ROS exceed cellular concentrations of small molecular antioxidants or activity of antioxidative enzymes [8]. Researchers widely consider ROS as a source of dangerous reactions, uncontrolled and harmful to structures at a molecular level [11,12,13]. As a proof Bartosz (2009) [8] enumerates several negative effects of ROS activity (degradation of collagen, depolymerization of hyaluronic acid, oxygenation of hemoglobin, inactivation of enzymes and transport proteins, lipid peroxidation in cellular membranes, damage to chromosomes, and breakages in DNA). In the face of so many threats, it is valuable to know precisely how ROS comes about. Bartosz (2009) [8] identified several factors that stimulate the formation of ROS (ionic radiation, sonication, UV radiation, oxygenation of reduced forms of molecular components of cells, oxygenation of xenobiotics, photoreduction, and oxygenation of respiratory proteins).

3.2. Intensification of Oxidative Stress due to Pollution—Influence on Human Fertility

The close relationship between environmental pollution and oxidative stress is central to understand why human fertility has decreased in past decades, because the most environmental toxicants induce ROS, causing oxidative stress [7]. In the human reproductive system, the testes are especially susceptible to destructive changes due to this phenomenon. The after-effects are often irreversible and include a decline in testosterone levels, disorders in spermatogenesis, and eventually infertility. Certain physiological levels of ROS are even necessary for the proper course of spermatogenesis. However, an excess of reactive oxygen radicals, formed due to environmental pollutants, destroy testicular functionality and manifest as a diminished sperm count and quality. Among toxicants inducing apoptosis in germ cells, Mathur and D’Cruz (2011) [7] have singled out methoxychlor which decreases the levels of anti-oxidative enzymes in testicles, especially in the mitochondrial and the microsomal fractions of testis. Dichloro-diphenylo-trichloro-ethane DDT metabolites, on longer exposure, cause incremental changes in lipoperoxidation and a decrease in enzymatic antioxidants such as SOD or GPx in the testis. Exposure to certain fungicides have been found to contribute to reduced prostate mass and decreased sperm count, as well as induced impairments in expression of apoptosis-related proteins such as p51. Other enumerated chemicals such as pesticides, bisphenol A and certain herbicides also damage testicles and interrupt spermatogenesis through oxidative stress stimulation [7]. Therefore, many substances that humans associate with in everyday life are, in truth, very dangerous pro-oxidants and stimulants of uncontrolled ROS formation in several body systems. Data by Agarwal et al. (2014) [9] found similar conclusions; they assert that about 15% of couples trying to conceive are struggling with infertility. Male factors can be the reason for nearly half of such cases. Oxidative stress and overproduction of ROS damage DNA, proteins, and lipids, change the functionality of enzymes and, finally, cause cell death. Like Mathur and D’Cruz (2011) [7], Agarwal et al. (2014) [9] also affirm that certain levels of ROS are necessary for correct fertilization. In normal conditions and controlled concentrations, ROS regulate sperm maturation, stimulate signaling processes and more. However, in uncontrolled ROS overloading, there is a risk of infertility. They suggest that impairments in sperm cells arise via induction of per-oxidative damages of sperm plasma membranes (per-oxidation of lipids), as well as DNA breakages. The best way to minimize the negative effects of ROS excess is to eliminate as many factors as possible. Cessation of smoking, discontinuation of alcohol abuse, a reduced-fat diet, physical activity, and antioxidant intake (supplementation of diet with carotenoids or vitamins C, E) constitute simple tactics against oxidative stress, which patients can initiate even on their own. Thus the problems of oxidative stress and ROS overproduction may be significantly reduced by reasonable changes in lifestyle. On the other hand, routine estimations of semen ROS levels should become a standard procedure in the diagnosis of male fertility [9].
Elucidation of the destructive impact of oxidative stress and factors that stimulate the phenomenon are well presented in the studies conducted by Al-Attar (2011) [10]. He provided mice drinking water with a mixture of Pb, Hg, Cd, and Cu. After seven weeks, he assessed renal function by measuring the concentrations of creatinine, urea, and uric acid. Furthermore, he measured levels of antioxidants, including glutathione GSH and SOD in kidney and testicles. Compared to the control group (mice drinking water without heavy metals) the experimental group had considerably increased creatinine (by 152%), urea (by 83%), and uric acid (by 65%). Decreases of anti-oxidative enzymes, both in kidney and testis were significant (glutathione: 28% in kidney, 24% in testicles; SOD: 40% in kidneys, 27% in testis). Moreover, in histological examination of the testis of mice exposed to heavy metals, Al-Attar (2011) [10] noted degenerative changes in the seminiferous tubules leading to disruption of spermatogenesis. In a separate experimental group the diet was supplemented with vitamin E [10], noting insignificant changes in renal parameters and a considerably smaller downgrade in testicular anti-oxidative enzymes due to the heavy metals. Thus, research demonstrated not only a negative effect of oxidative stress, but also the positive anti-oxidative potential of vitamin E in a daily diet.

3.3. Tactics against Oxidative Stress—Antioxidative Diet

The reduction in oxidative stress markers found by [10] explored only one of several tactics which can be deployed in the fight against uncontrolled ROS. Ruder et al. (2008) [11] explored the after-effects of oxidative stress in female infertility. Researchers suggest that lifestyle and diet, rich in antioxidants, during pregnancy also play a critical role in reproductive success. They found that high oxidation levels increase the risk of disorders during successive stages in pregnancy. On the contrary, antioxidants intake, even in the simplest form, by eating fruits or vitamin supplementations, minimizes the threat of pregnancy loss. In the case of male fertility, it is valuable to know which metals bring positive effects to the reproductive condition. One of the most important chemical elements with anti-oxidative properties is zinc. It protects sperm cells against ROS, contributes to the formation of semen and stabilizes the levels of reproductive hormones (such as testosterone) and, in general, lengthens the vitality of sperm cells [14]. Therefore, zinc is widely considered as an effective antioxidant. Oteiza (2012) [76] highlighted the beneficial Zn properties of in reducing oxidative stress. It maintains the cell redox balance, regulates oxidants production, contributes to the repair of cell damage, and regulates the metabolism of glutathione and conditions of redox signaling. Furthermore, Zn mediates in the induction of Zn-binding protein metallothionein, preventing overproduction of ROS [76]. An important beneficial element is selenium, which favors the functional efficiency of sperm cells and, as a consequence, increases semen quality [14,77]. Indeed, both elements (Zn, Se) are the molecular components of important anti-oxidative enzymes. Zn is present in SOD type 1 and 3 (as well as Cu) and Se is a component of GPx. These facts clearly demonstrate their antioxidative significance [8]. Additionally, Atig et al. (2012) [14] compared Zn and Se levels in semen samples from fertile and infertile patients. Compatible with expectations, fertile men’s sperm showed higher levels of these elements compared to infertile patients. Zinc exhibits positive and significant correlations with sperm motility and sperm count. Selenium is also significantly correlated with semen motility. Selected parameters of anti-oxidative response, such as the concentration of glutathione enzymes and the quantity of malondialdehyde MDA, a lipoperoxidation end product, were also analyzed. Glutathione enzymes were considerably decreased in infertile semen and there was a greater amount of MDA in sperm from infertile patients. On the contrary, fertile semen show high levels of glutathione enzymes and only small amounts of lipoperoxidation products. Even more, researchers confirmed a positive correlation between glutathione enzymes and sperm motility. On the contrary, MDA was negatively associated with sperm motility and concentration, as well as positively correlated with the percentage of abnormal sperm. On this basis, the authors concluded that a serious decrease in seminal antioxidants (such as Zn, Se, as well as glutathione enzymes) favors the risk of impairments in sperm quality. Additionally, increased MDA reflects a diminished sperm quality and reproductive condition [14].
Zini et al. (2009) [12] stated that the sperm of infertile men contains considerably more DNA damage than in the case of fertile patients. Therefore, the authors analyzed the potential of antioxidant therapy. They found that dietary antioxidants can efficiently reduce sperm DNA damage, especially in high levels of DNA fragmentation. In their opinion, the risk of ROS overproduction is connected with unsaturated fatty acids in sperm plasma membranes. These acids are necessary for membrane fluidity, but also predispose it to free radical attacks. On the other hand, semen contains certain levels of anti-oxidative enzymes (SOD, CAT, GPx), as well as non-enzymic antioxidants (vitamin C, E, lycopene, or l-carnitine). Accordingly, researchers proved that dietary supplementation of antioxidants (e.g., vitamin C oral intake) may cause positive effects in the improvement of sperm integrity and lowering oxidation levels. However, Walczak-J?drzejowska et al. (2013) [13] described the destructive effects of oxidative stress on sperm cells including a decrease in activity of anti-oxidative mechanisms, damage to DNA and accelerated apoptosis. As a consequence they found a diminished number of sperm cells and their reduced motility. They highlighted that the large endogenous sources of reactive forms of oxygen in semen are white blood cells and immature sperm cells. This study emphasizes the physiological role of ROS in sperm maturation, but for the same reason any infection or inflammation process in the body could be considered as a moderator of oxidative radicals. However, unfavorable environmental factors may also initiate the analogous problem. Walczak-J?drzejowska et al. (2013) [13] further widened the list of potentially beneficial antioxidants, adding vitamins A and B, coenzyme Q10, carotenoids, and carnitine to the known list including glutathione, Zn, Cu, Se and SOD, CAT, and GPx. Explaining the role of vitamins E and C in the defense against oxidative stress, it can be concluded that vitamin E reduces lipoperoxidation and mainly protects sperm cell membranes, while vitamin C, preventing sperm DNA damage, is a very abundant seminal antioxidant, since it is present in concentrations about 10 times higher in seminal plasma than in blood serum. They strongly recommend the initiation of antioxidant therapy in cases of men with fertility problems. Additionally, Mier-Cabrera et al. (2009) [78] compared the levels of oxidative stress markers and concentrations of anti-oxidative enzymes among women with a high antioxidant diet and a normal diet. After four months of observation, in the group on the anti-oxidative diet, the researchers noted an increase of vitamin levels (A, C, E), as well as considerable growth in activity of SOD and GPx. Furthermore, the levels of MDA and lipid hydro-peroxides (oxidative stress markers) were relatively low in this group. Conversely, in the case of women on a normal diet there was no improvement in anti-oxidative parameters or decrease in oxidative stress markers. Thus, supplementation of the daily diet with certain antioxidants (vitamins A, C, E, or Zn) may be a simple way to overcome oxidative stress on our own. Rink et al. (2013) [79] decided to check in practice how the recommended intake of fruits and vegetables (five times a day) influenced oxidative and anti-oxidative parameters. They selected 258 pre-menopausal women, observed their diet and measured pro- and anti-oxidative parameters over a period of about two menstrual cycles. Particularly important parameters were the erythrocyte activity of SOD and GPx. They noted that eating fruits and vegetables five times a day, over a longer period, considerably diminished oxidative stress (levels of lipoperoxidation markers) and improved antioxidant status (high levels of antioxidative enzymes, as well as non-enzymatic antioxidants).
Summarizing, Aitken and Roman (2008) [15] considered oxidative stress as a major factor in the etiology of male infertility. Similarly to the previously quoted research, lipoperoxidation and DNA fragmentation were considered as the most serious damage, caused by ROS in sperm cells. Furthermore, in the testicles, oxidative stress may destabilize the process of differentiation of spermatozoa. They identified and characterized the basic anti-oxidative defense line, e.g., they noted that all three types of SOD are found in the testicles. Type I (cytoplasmic) containing Zn and Cu ions, type II (mitochondrial) with Mn and, finally, type III (extra-cellular) containing Cu and Zn. There are also various isoforms of GPx located in mitochondria and the nucleus, particularly in differentiating semen. Researchers emphasize the relationship between the activity of glutathione enzymes and the presence of selenium (lower concentration of Se is connected with a decrease in activity of GPx). Among non-enzymatic antioxidants researchers listed the essentials Zn (interrupting lipid peroxidation by displacing from catalytic sites such metals as Fe and Cu and attenuating damage in sperm DNA caused by Pb or Cd), vitamin C or E (supporting the maintenance of spermatogenesis and testosterone production), as well as melatonin and cytochrome C. Melatonin is an especially valuable protector from oxidative stress due to readily crossing the blood-testis barrier, while cytochrome C assists in the elimination of damaged germ cells [15]. On the other hand, Zareba et al. (2013) [16] analyzed the influence of regular carotenoid intake in the improvement of sperm quality in 189 young, healthy men. Researchers measured such parameters as semen volume, total sperm count, motility, and morphology. After a period on a high-antioxidant diet, they found that beta-carotene and lutein intake increased sperm motility. Lycopene improved semen morphology and a longer application caused a greater amount of morphologically normal sperm. Additionally, a healthy lifestyle (regular physical activity, non-smoking) favors assimilation of antioxidants (such as vitamins C, E, A, and carotenoids). On the contrary, the intake of alcohol or caffeine was negatively associated with antioxidants assimilation, e.g., caffeine decreased the assimilation of vitamin C [16].

4. Genetic Reasons for Spermatogenesis Disturbances: Impairments on Chromosomes Y and 7

We are currently conducting experimental studies of male infertility determinants and we found (demonstrated) that external environmental factors and so-called internal (according to World Health Organization WHO criteria) are closely related to each other. At the same time, these detailed factors generate specific changes in genetic material (i.e., genetic polymorphisms), which are just the direct cause of male infertility. Simultaneously, the review presented above clearly explained that certain factors (environmental, artificial, or just connected with individual lifestyle) may considerably depress the human reproductive condition. Most of these factors, especially heavy metal ions, chemical compounds, and active organic residues, act by stimulating overproduction of ROS. Additionally, oxidative stress is the main reason for spermatogenesis disturbances. Many authors assert that long-lasting oxidative stress seriously damages human DNA [12,13,15]. Furthermore, genetic factors are considered responsible in at least 10–15% of cases of male infertility [80]. Therefore, it is necessary to analyze external and internal environmental genetic reasons for male infertility, as aside from the most common phenotypes.
Azoospermia is defined as a condition where a man has no measurable level of sperm cells in the semen [81]. There are various reasons for this condition, including underdevelopment of the testicles, obstruction of the spermatic ducts or, a typical genetic cause, deletions in the AZF region of chromosome Y [36]. Additionally, cystic fibrosis is an autosomal recessive disease, common in Caucasian races (with frequency of occurrence of 1/2500 live births). The genetic reasons for cystic fibrosis are mutations in the CFTR gene on chromosome 7. The most common mutation is the deletion of three nucleotides resulting in the loss of phenylalanine in position 508 of the protein (F508del). Approximately 70% of cases are determined by this mutation [21,22]. The manifestation of cystic fibrosis results in the production of a thick, sticky mucus in all organs containing mucous glands, coupled with pathological changes in the respiratory system (recurring pneumonia, bacterial infections) and the alimentary system (cholelithiasis, clogging of salivary glands). In the reproductive system cystic fibrosis causes an accumulation of mucus in the spermatic ducts and, as a consequence, their total obstruction [23].

4.1. Microdeletions in the Azoospermic Factor AZF Region

The first reported association between Y chromosome deletions and abnormal spermatogenesis was reported in 1976 by Tiepolo and Zufardi [82]. The AZF region (called azoospermia factor) was described as located in the long arm of the human Y chromosome (Yq11) and consists of the three genetic domains azoospermic factor of region “a” AZFa (proximal), azoospermic factor of region “b” AZFb (intermediate), and azoospermic factor of region “c” AZFc (distal). AZFc is one of the most genetically dynamic regions (c) in the human genome, possibly serving as counter against the genetic degeneracy associated with the lack of a partner chromosome during meiosis. Since the AZF region contains genes essential for proper spermatogenesis, microdeletions in the range of particular domains were implicated in spermatogenic impairments [17,18,83,84]. Many authors consider not three but four AZF domains as associated with spermatogenesis disturbances. This classification is based on structural observation which found that AZFb and c partially overlapped. This region of overlap is now called azoospermic factor of region “d” AZFd and is located between AZFb and AZFc [84,85]. Depending on the location of the AZF microdeletion, the phenotypes vary from mild (<15 × 106 spermatozoa × mL−1) or severe (<5 × 106 spermatozoa × L−1) oligozoospermia to azoospermia (complete lack of sperm cells in ejaculation) [19,81]. The complete deletion of AZFa leads to azoospermia and Sertoli Cell Only Syndrome SCOS while microdeletions in AZFb are connected with azoospermia due to the failure of sperm maturation usually at the spermatocyte/spermatid stage (subsequently there is practically no sperm in the testis of such patients). The AZFc deletion is connected with various possible seminal damages, but usually in patients a small amount of semen is present in the ejaculate (up to 60% of cases). Such patients are classified as azoospermic or oligozoospermic [18,83]. Microdeletions in AZFd lead to a mild form of oligozoospermia and abnormal sperm morphology [35,84]. Among infertile men the prevalence of AZF microdeletions is estimated at 7–8%, with a wide variation across populations [81,86]. Massart et al. (2012) [86] estimated the world frequency of Yq microdeletions among infertile men at 7.4%, based on over 90 articles, including over 13,000 patients suffering from infertility in different populations. Some researchers stated that the prevalence of Yq microdeletions is higher in azoospermic men (9.7%) than in oligozoospermic (6.0%). Moreover, they estimated the average frequency of microdeletions in particular domains. Complete deletion of AZFa is rare, responsible for a maximum 7% of all AZF incidents, while microdeletions in AZFb are twice as frequent, i.e., accounting for 14% of cases. AZFc impairments are considered the most common accounting for 69% of all AZF microdeletions. The rest of the pool (10% of AZF cases) is made up of a mixture of microdeletions in several domains, such as AZFa+b, AZFb+c, or AZFa+b+c [86]. Amongst the various AZF genes, the DAZ gene family (essential for regulation of spermatogenesis) is reported as the most frequently deleted AZF candidate [35]. DAZ genes are located within the AZFc domain, which undergoes deletion most commonly [36]. However, the exact frequency of AZF microdeletions among infertile men is difficult to determine. The differentiation in prevalence among patients from various populations ranges from 1% to as much as 35%. It has been estimated as 15% in Spain and Italy, 1–4% in Germany and France, 10% in China and the USA, 8% in India and Netherlands, and 12% in Tunisia and Mexico [20,80,83]. Furthermore, ethnic mutability in modern populations tends to increase the incidence making the matter more complex [81,86]. As a result, research teams usually concentrate on respective regions of the world and individual populations.
Wang et al. (2010) [19] generally regarded chromosome Y as structurally variable and susceptible to duplications, inversions and deletions. As it was mentioned, microdeletions in the AZF region are quite frequent among infertile male patients leading to spermatogenesis disruption (for instance as a consequence of sperm arrest). Therefore, Wang et al. (2010) [19] investigated the frequency of AZF microdeletions in infertile men from Northeastern China. In the experimental group, which consisted of 305 patients, researchers diagnosed 28 cases of AZF microdeletions. Their frequency was in following order; AZFc+d, AZFc, AZFb+c+d, with AZFa being least common. These authors also stated that the observed frequency of AZF microdeletions in the region they investigated, paralleled the levels in neighboring regions of the world. Additionally, Balkan et al. (2008) [35] conducted a similar analysis with 80 infertile men from Southeast Turkey. Most of them were azoospermic (54) and oligozoospermic (25). The researchers found chromosomal abnormalities in nine cases. Among them, Klinefelter syndrome was diagnosed in seven patients. Two patients had balanced autosomal rearrangements. In addition, AZF microdeletions were localized in one patient (with apparently normal karyotype and azoospermia) both in the AZFc and the AZFd regions [35]. These authors did not observe any cases of impairments in the AZFa or AZFb domains. Simultaneously, [80] examined the frequency of AZF microdeletions in a central Indian population: 156 patients (95 with oligozoospermia and 61 with azoospermia). Thirteen showed deletions in the AZF region (eight from the azoospermic subgroup and five from the oligozoospermic subgroup). They reported the most frequent deletions in the AZFc, followed by the AZFb and AZFa regions. Küçükaslan et al. (2013) [84] focused their study on a similar population which included 3650 infertile Indian men (combining patients from their own experimental group with other described cases of Yq deletions in India). They reported 215 cases with Yq microdeletions. Impairments in the AZFc domain predominated both in oligozoospermic and azoospermic patients. However, the frequency of AZF microdeletions differed significantly between regions in India.
Hellani et al. (2006) [87] claimed that among the genetic reasons for spermatogenesis disruption microdeletions in chromosome Y represent one of the most common causes. They conducted an analysis of the frequency of AZF microdeletions in the Kingdom of Saudi Arabia. Among 257 male patients with various forms of spermatogenesis disturbances (from oligozoospermia to azoospermia), 10 had chromosomal rearrangements, while in the remaining 247, eight men had microdeletions in AZF. Six of them in AZFc, one in AZFb, and one in AZFa+c. Moreover, Khabour et al. (2014) [20] identified several reasons for male infertility, such as hormonal abnormalities, the presence of antispermic antibodies, erectile disfunction, testicular cancer, and exposure to radiation and chemical agents. Thus, infertility is usually connected with complex etiology. They mentioned that nearly 40% of cases of male infertility are idiopathic. Amongst genetic causes, they still place chromosomal abnormalities as the number one reason for infertility (e.g., aneuploidy in sex chromosomes), however, AZF microdeletions are, in their opinion, the second most common reason. Therefore, similar to previously quoted studies, Khabour et al. (2014) [20] analyzed the frequency of AZF microdeletions, this time in the Jordanian population. His analysis included infertile men with azoospermia and oligozoospermia. They found partial AZF deletions in three patients from the azoospermic subgroup, two with microdeletions in the AZFc domain and one in AZFb+a+c domains.
The majority of authors agree that deletions in chromosome Y, particularly in the AZF region are one of the most important factors causing spermatogenesis disturbances and male infertility. The majority of analyses confirmed that microdeletions in AZFc are the most frequent and mostly connected with spermatogenic failure. Alongside karyotype abnormalities (affecting about 15% of azoospermic and 6% of oligozoospermic patients), AZF microdeletions are widely considered as the second most common genetic reason for male infertility [17,18,20]. It is more and more accepted to use AZF microdeletions as a specific marker of male infertility. Immense advantage results from the fact that small Yq deletions cannot be visualized in standard karyotype analysis. Therefore, their detection may explain the reason of infertility among men with apparently normal karyotypes [17,18,87]. The detection of AZF microdeletions is also recommended prior to assisted reproduction procedures such as intra-cytoplasmic sperm injection ICSI or testicular sperm extraction TESE. It is critically important in the case of patients with AZFc microdeletions, which are able to produce a certain amount of normal sperm during ejaculation and may achieve reproductive success using these techniques. Since AZF microdeletions transmit to male offspring, such patients should be advised of the possible consequences of assisted reproduction [35,83,84]. Therefore, screening for AZF microdeletions is becoming one of the first steps in diagnostics of potential causes of male reproductive problems. Typical AZF analysis includes DNA extraction (usually from peripheral blood) analyzed by polymerase chain reaction PCR-multiplex procedure with special markers for AZF microdeletions, i.e., sequence-tagged sites STS [80,85]. Ultimately, the detection of AZF microdeletions can be useful both in explaining idiopathic cases of male infertility as well as in genetic consulting prior to assisted reproduction [87]. In the case of idiopathic infertility (30–40% cases of male infertility) a genetic cause is a usually suspected [35]. Therefore, the analysis of the AZF region of the Y chromosome is necessary for accurate diagnosis.

4.2. Cystic Fibrosis and Congenital Bilateral Absence of the Vas Deferens

As mentioned previously, cystic fibrosis may also play a critical role in infertility (due to complete obstruction of spermatic ducts). As well as the congenital bilateral absence of the vas deferens CBAVD, Klinefelter and Kallmann syndromes are all connected with spermatogenesis disruptions [36]. CBAVD is manifested as aplasia of the spermatic ducts. Similarly to cystic fibrosis, CBAVD is caused by mutations in the CFTR gene. As a consequence it has been considered as an expression of cystic fibrosis or as a separate disease [21,23,24], estimated that CBAVD appeared in 99% of adult men with cystic fibrosis. However, in their analysis they concentrated on congenital bilateral absence of the vas deferens among young boys with cystic fibrosis aged 2–12. In the examined group which consisted of boys there were two subgroups identified. The first one contained children with pancreatic insufficiency and the second contained pancreatic sufficient boys. In five boys with congenital bilateral absence of vas deferens CBAVD seminal vesicles were observed. Furthermore, testicular micro-lithiasis was diagnosed in the subgroup with pancreatic insufficiency. They concluded that genital impairments in cystic fibrosis may appear at a very early age. Such manifestations were less common in young patients than in adults and appeared more frequently among youngsters with pancreatic insufficiency [24]. Moreover, Xu et al. (2014) [25] consider CBAVD as an abnormality in the male reproductive system, directly connected with the obstruction of sperm outflow into the urethra. On the basis of data review, the authors concluded that this impairment is responsible for 2% of cases of male infertility. They assert that in about 97% of male patients with cystic fibrosis, CBAVD is also diagnosed (comparable to that estimated by [24]). This fact is explained by the common genetic background, both for cystic fibrosis and CBAVD, namely mutation in the CFTR gene on chromosome 7. Abnormalities in the expression of CFTR also contribute to reduced functionality of the respiratory system, sweat glands, and reproductive system (a classical set of anomalies in cystic fibrosis patients). Thus, Xu et al. (2014) [25] confirmed the relationship between the most common variations of CFTR and CBAVD. Their results also suggest that certain CFTR variations are responsible for the more frequent occurrence of CBAVD in some populations, e.g., variation 5T creates a threat of CBAVD among French, Spanish, Japanese, Chinese, Iranian, Indian, Mexican and Egyptian populations, whilst variation of deltaF508 creates a risk for Slovenians, Canadians, Iranians, and Egyptians.
Simultaneously, Du et al. (2014) [88] considered CBAVD as a reason of nearly 6% of cases of obstructive azoospermia. Furthermore about 75% of CBAVD cases were direct manifestations of CFTR mutations F508del, 5T, and R117H (types of mutations in CBAVD). Accordingly, the observation that mutations of the CFTR gene (F508del, as well as 5T allele of the intron 8 of CFTR) are connected with CBAVD parallels with the results of [25]. Additionally, variations of the TG-repeats (TG13T5 or TG12T5; type of mutations in CBAVD), in their opinion, also play a part in the manifestation of CBAVD [88]. However, Massart et al. (2012) [86] noticed that about 88% of patients with two CFTR mutations carry severe mutation transformed to a mild mutation (respectively no CFTR function or residual CFTR function), whilst only 12% carry two mild mutations. Bareil et al. (2007) [89] investigated the connections between CBAVD and cystic fibrosis, while checking the participation of polymorphisms of transforming growth factor TGFB1 and endothelin receptor type A EDNRA in CBAVD manifestation. They suggest that both factors contribute to the lung manifestation of cystic fibrosis. This confirmation of the contribution of TGFB1 or EDNRA to CBAVD could point to another common link between cystic fibrosis and CBAVD. Du et al. (2014) [88] analyzed DNA samples from 80 patients with CBAVD (experimental group) and 51 healthy men as a control group. They indicated that polymorphism of the EDNRA may be connected with the manifestation CBAVD. Additionally, Havasi et al. (2010) [90] stated that nearly 98% of men with cystic fibrosis also suffered from CBAVD and infertility, while in 80–97% of CBAVD cases the disease were caused by at least one defective CFTR allele and in 50–93% of cases they detected two abnormal CFTR variants. These data support the statements of Bareil et al. (2007) [89].
Moreover, Noone and Knowles (2001) [22] characterized cystic fibrosis as a recessive genetic disease caused by mutations on both CFTR alleles. They described a standard set of symptoms including sino-pulmonary disease, male infertility, pancreatic exocrine insufficiency, and abnormal sweat electrolytes adding that the classic form of cystic fibrosis can be easily diagnosed in early life by conducting a sweat test (detection of abnormal chlorine and sodium levels) or by CFTR mutation analysis. They found that two-thirds of patients in the USA carry at least one copy of the deltaF508 mutation (one of the most common mutations in cystic fibrosis). However, they explain that the spectrum of possible impairments in the CFTR is extremely variable and, therefore, many phenotypes are described depending on the severity of the mutations involved (severe, mild, or atypical sets of symptoms). Therefore, about 7% of cystic fibrosis patients are still not diagnosed by the age of 10 or 15 years [22]. These researchers more recently ascribed the CFTR gene to the production of a trans-membrane protein securing epithelial cell functionality, especially in ion and water transport. Thus, the formation of thick, sticky mucus in the respiratory, alimentary, and reproductive systems is directly connected with inappropriate water distribution and chloride deficiency (major contributors to mucus consistency). In normal conditions the excess mucus is easily eliminated, while in cystic fibrosis the sticky mucus are clogs the pathways making it difficult to remove the mucous (due to its abnormal consistency). Furthermore, a wide range of bacteria, fungi, and acari can stick to the mucus and cannot be eliminated. This results in reoccurring pneumonia and other bacterial infections, typically found in cystic fibrosis [21,23,36]. Additionally, Almeida et al. (2013) [91] analyzed the testicular tissue after biopsies from patients displaying abnormal spermatogenesis to describe the role of apoptosis in azoospermia. They conducted testicular treatment biopsies from 27 male patients. Five were cases with previously diagnosed oligozoospermia, nine with obstructive azoospermia (among them four patients with CBAVD), and in 13 cases non-obstructive azoospermia (5 men with hypo-spermatogenesis, there cases with sperm maturation arrest and five with Sertoli cell syndrome). These data focused on the activity of certain caspases: 8 and 9 which inaugurate the apoptotic pathways, as well as caspase 3, which determines the point of no return in apoptosis of cells. They found an increased activity of caspase 3 in Sertoli cell syndrome and germ cells with higher activity of caspases in hypo-spermatogenesis. In secondary obstructive disorders they noted diversified caspase activity, while in oligozoospermia significantly higher activity of caspase 9 in comparison to caspase 8 in spermatogonia was noticed. Finally, in primary obstructive disorders and hypo-spermatogenesis, caspases 3 and 9 showed significantly increased activity. That is why the importance of caspase-signalling pathways in human spermatogenesis is significant [91]. These authors point out that germ cells apoptosis is even necessary for normal spermatogenesis. The problems arise when the rate of sperm apoptosis is too high. The concentration of sperm decreases and abnormal seminal motility appears. Thus, these studies confirm a direct relationship between the apoptosis of germ cells and the failure of spermatogenesis.

4.3. Other Genetic Diseases Connected with Infertility: Klinefelter Syndrome and Kallmann Syndrome

Klinefelter syndrome and Kallmann syndrome are also considered common reasons for male infertility. Both diseases are connected with impairments of the X chromosome. The presence of an extra X chromosome in men, karyotype (XXY), is responsible for Klinefelter syndrome (47-XXY or XXY, i.e., the set of symptoms that occurs in two or more X chromosomes in males). The condition was first described in 1942. The symptoms include fibrosis of spermatic ducts, small testicles, azoospermia, and a decay of potency. In biochemical analysis Klinefelter syndrome patients display high levels of gonadotrophins and low levels of testosterone [28,36,92]. In Kallmann syndrome there are several possible mutated genes involved in pathogenesis. Mutations of the KAL1 gene located on the X chromosome are most important. KAL1 gene is located on the X chromosome at Xp22.3 and is affected in males with Kallmann syndrome. This gene codes for a protein of the extra-cellular matrix, anosmin-1, which is involved in the migration of nerve cell precursors (neuro-endocrine GnRH-cells). Deletion or mutation of this gene results in loss of the functional protein and affects the proper development of the olfactory nerves and olfactory bulbs. Neural cells that produce GnRH fail to migrate to the hypothalamus. However, other mutated genes are important, mainly fibroblast growth factor receptor 1 FGFR1, known as basic fibroblast growth factor receptor 1, fms-related tyrosine kinase-2/Pfeiffer syndrome, and CD331, as a receptor of tyrosine kinase, whose ligands are specific members of the fibroblast growth factor family. FGFR1 has been shown to be associated with Pfeiffer syndrome. Moreover, the fibroblast growth factor 8 FGF8 is a protein that is encoded by the FGF8 gene, and protein coding gene PROKR2 (prokineticin receptor 2) encodes a protein expressed in the supra-chiasmatic nucleus SCN circadian clock that may function as the output component of the circadian clock, and also WDR11 (WD repeat domain 11), known as bromodomain and WD repeat-containing protein 2 (BRWD2), a protein that is encoded by the WDR11 gene. WDR11 is a protein coding gene and PROKR2; a G protein-coupled receptor encoded by the PROKR2 gene. Prokineticins are secreted proteins that can promote angiogenesis and induce smooth muscle contraction. These proteins encoded by PROKR2 gene are membrane protein, which G protein-coupled receptor for prokineticins may contribute to manifestation of the condition. The symptoms of Kallmann syndrome include disorders of reproductive system (hypogonadism) with anosmia [32,34]. Thus while PROK2 is type of gene mutation (protein coding gene; this gene encodes a protein expressed in the SCN circadian clock that may function as the output component of the circadian clock), PROKR2 is a type of gene mutation (prokineticin receptor 2; a G protein-coupled receptor encoded by the PROKR2 gene in humans). The protein encoded by this gene is an integral membrane protein and G protein-coupled receptor for prokineticins.)

4.3.1. Klinefelter Syndrome

Høst et al. (2014) [30] defined Klinefelter syndrome as the most abundant sex-chromosome disorder, connected with hypogonadism and infertility. They state that this disease affects one in 600 men, but because of its high diversification in clinical presentation only 25% of men with Klinefelter syndrome are diagnosed with the disease. Among the typical symptoms of the condition they noted azoospermia, as well as various psychiatric problems (manifesting for instance in learning difficulties). However, the long term manifestations may encompass degradation in muscle mass and bone mineral mass, increased risk of diabetes type 2 and the threat of metabolic syndrome. In Klinefelter syndrome the loss of germ cells begins during the fetal period, continuing through infancy and intensifying in puberty. Fibrosis of the seminiferous tubules and a reduction in testis size are accompanied by long-lasting germ cell degradation [30]. Subsequently, the researchers described the appearance of adult patients with this syndrome as above average height, sparse body hair (due to androgen deficiency), narrow shoulders, broad hips, and small, firm testicles, while adding that deviations from that description are quite frequent. Nieschlag (2013) [29] remarked that the Klinefelter syndrome karyotype (47, XXY, aneuploidy of sex chromosomes) appears in up to 0.2% of male infants (one of the most frequent types of congenital chromosomal impairment). Among psychiatric aspects connected with the disease, they observed verbalization difficulties and problems with socialization among the youngsters. Furthermore, they described several pathological conditions accompanying Klinefelter syndrome including a lack of libido, erectile dysfunction, azoospermia, as well as gynecomastia, osteoporosis, thrombosis, and even epilepsy. Nieschlag (2013) [29] also mentioned that treatment of the disease is based on testosterone supplementation, instigated where low testosterone levels occur. He maintained that without proper treatment, as well as without treatment of the conditions accompanying Klinefelter syndrome (type 2 diabetes, varicose veins, embolism), the length of life of those patients may be up to 11 years shorter than the average age of male population. Simultaneously, Molnar et al. (2010) [26] stated that behavioral problems and learning delays in children often appear as the first step in this syndrome recognition. As proof the authors described the case of an 18 year old Somali boy with Klinefelter syndrome: recognition of the disease started with the observation of behavioral problems at school. During further investigation (determination of prolactine, testosterone, follicle-stimulating hormone, and luteinizing hormone levels, as well as the analysis of thyroid functionality and measurement of testis size) this syndrome was confirmed. Therefore, Molnar et al. (2010) [26] suggested that in cases of boys with learning problems, physicians should consider this syndrome as a possibility in their diagnosis. Some authors describe a range of treatment methods available for patients with Klinefelter syndrome who desire to have offspring. Certain amounts of testicular sperm can be retrieved surgically from the testis of adult men with this syndrome (testicular sperm extraction and intra-cytoplasmic sperm injection). There are also several techniques employed to increase testosterone levels, while classical testosterone supplementation supposedly even improves cognitive abilities in patients [26,30].
Gi Jo et al. (2013) [28] stated that Klinefelter syndrome is present in about 10% of azoospermic men. The frequency of morbidity amounts to 0.1–0.2% in general population whilst in 0.15–0.17% cases of the syndrome is recognized in prenatal diagnoses. The researchers tested over 18,000 pregnant women to detect Klinefelter syndrome in their offspring at the fetal stage. Twenty-two fetuses had Klinefelter syndrome, which was 0.12%, while after restriction of the group to only male features the proportional incidence was 0.23%. In the interpretation of their results Gi Jo et al. (2013) [28] note that fetal frequency of syndrome was higher than commonly observed. The researchers suspect that the possible reason for the occurrence of such a high syndrome level in features in their study was the advanced maternal age of mothers (over 35 years). They suggested that the risk of Klinefelter syndrome in offspring may increase with maternal age. Moreover, Turriff et al. (2011) [27] focused on psychiatric impairments accompanying this syndrome. They examined 310 participants of diverse age, from 14–75 years old. They analyzed the attitude of participants to such problems as perception of stigmatization, perceived negative consequences of karyotype XXY, and the matter of having children. Karyotype XXY is a Klinefelter syndrome known as 47, XXY or XXY, i.e., the set of symptoms that result from two or more X chromosomes in males. These authors established that nearly 70% of men with this syndrome displayed symptoms of depression and described several psychiatric manifestations associated with Klinefelter syndrome, including depression, anxiety, schizophrenia, psychoses, hallucinations, and paranoid delusions. They concluded that both adolescents and adults with this syndrome have an increased risk of psychiatric disorders. In their opinion, depression was the most important psychiatric symptom, appearing in syndrome, a condition which significantly decreases the quality of life of patients and may even lead to suicide [27]. Accardo et al. (2015) [92] considered the risk of testicular cancer in men with Klinefelter syndrome; adult patients with show testicular abnormalities such as fibrosis of the seminiferous tubules, hyperplasia of the interstitium, diffuse hyanilization, and cryptorchidism with a six times higher frequency than in the general male population. In addition to destructive changes in the testis, the authors describe several other diseases, possibly accompanying syndrome including venous disease, leg ulcers, and a higher morbidity due to certain malignant tumors, for instance malignancies in the lungs. These data analyzed the risk of testicular cancer in patients with Klinefelter syndrome. They measured several markers, such as serum levels of lactate dehydrogenase and alpha-fetoprotein. They conducted testicular ultrasound and in certain cases magnetic resonance imaging, and did not find increased signs of testicular cancer [92]. Accordingly, despite the risk of pathological conditions accompanying Klinefelter syndrome, the threat of testicular cancer appears to be low.
Additional disorders accompanying Klinefelter syndrome including abdominal obesity and metabolic syndrome were found by [93]. Eighty-nine adult patients had a higher risk of these conditions, but the researchers focused on younger patients, pre-pubertal boys, aged from 4–12.9 years old (measurements included height, weight, waist circumference, blood pressure, the concentrations of insulin, fasting glucose, and lipids). Compared to healthy controls, children with Klinefelter syndrome had wider waist circumference and engaged in less physical activity. Furthermore, in over one third of children, increased LDL cholesterol was noted, nearly one fourth had insulin resistance, and 7% fulfilled the criteria for metabolic syndrome diagnosis. Thus, Bardsley et al. (2011) [93] confirmed that certain disorders, which usually accompany this syndrome, may appear in youngsters. Additionally, Van Rijn et al. (2012) [94] examined the cognitive disorders which commonly appear in Klinefelter syndrome stating that the analysis of cognitive functionality of patients’ brains may deliver valuable information about neural mechanisms involved in social processing. In an experiment conducting a task based on judging facial expressions, men with this syndrome and healthy men were asked to assess faces as trustworthy or untrustworthy and asked to guess the age of the faces. During the first part of the task men obtained a lower valuation in several brain activities, including poorer screening of socio-emotional information (amygdala), poorer subjective emotional experience (insula), and poorer perceptual face processing (fusiform gyrus and superior temporal sulcus). During the second part of the task the perceptual face processing was also reduced in men with this syndrome. The studies elucidated direct relationships between abnormal social behaviors accompanying Klinefelter syndrome and a reduced functionality of the neural network [94,95,96].

4.3.2. Kallmann Syndrome

Klinefelter syndrome, because of its relatively high frequency of occurrence in the human population, is well characterized. On the other hand, another genetically-determined condition, resulting in infertility, is Kallmann syndrome. This disease is caused by mutations of the KAL1 gene, located on the X chromosome. The symptoms appearing in men include small testicles, underdevelopment of the penis, delayed maturation, and a lack of a sense of smell. However, the maintenance of fertility in patients is possible [36,97,98]. Additionally, Quaynor et al. (2011) [33] stated that Kallmann syndrome is often connected with hypogonadotropic hypogonadism and anosmia. The fundamental impairments arise from low levels of sex steroids and low concentration of gonadotropins. In their opinion gonadotropin-realizing hormone GnRH appeared to be the most important hormone involved. It influences the hypothalamic-pituitary-gonadal axis functionality, playing an essential role in processes at puberty. When the secretion or the activity of GnRH is disturbed, pubertal disorders and reproductive impairments result. Both Laitinen et al. (2011) and Quaynor et al. (2011) [32,33] explained the reason for atrophy in the sense of small in the Kallmann syndrome. It is caused by cessation of GnRH neuronal migration within the meninges (GnRH, as well as olfactory neurons not reaching the hypothalamus). Furthermore, they expanded the list of possible manifestations of Kallmann syndrome to idiopathic hypogonadotropic hypogonadism. They added several impairments which were not connected with fertility, such as dental agenesis, midline facial defects, and even hearing loss. Laitinen et al. (2011) [32] admitted that an exact estimation of the incidence of Kallmann syndrome in human populations is difficult because the syndrome is clinically and genetically diversified. Nevertheless it seems to be 3–5 times more frequent in men than women. These researchers examined the Finnish population collating the phenotypic and genotypic features among patients with this syndrome, as well as the incidence of the disease in Finland. The frequency of Kallmann syndrome was different among men and women, being one case in 30,000 men versus one case in 125,000 women. They assessed the phenotypic reproductive features accompanying syndrome in a group of 25 men and five women. The phenotypes found were heterogeneous, ranging from partial puberty to severe hypogonadotropic hypogonadism. In an genetic analysis the authors focused on genes possibly contributing to this syndrome manifestation, i.e., KAL1, FGFR1, FGF8, PROK2, PROKR2, CHD7 (chromodomain-helicase-DNA-binding protein 7, known as ATP-dependent helicase CHD7, is an enzyme that in humans is encoded by the CHD7 gene). CHD7 is an ATP-dependent chromatin remodeler homologous to the Drosophila trithorax-group protein Kismet and WDR11, a type of gene mutation (WD repeat-containing protein 11, known as bromo-domain and WD repeat-containing protein 2 (BRWD2) is a protein that in humans is encoded by the WDR11 gene). KAL1 mutation was detected in men, while FGFR1 mutation was noted in women and men. The results confirmed that it is difficult to give a clear diagnosis of Kallmann syndrome, because of the multitude of genetic factors contributing to the syndrome pathogenesis [32]. It goes far beyond these possible genes and is still waiting for further exploration.
On the other hand, Pedersen-White et al. (2008) [31] mentioned that the molecular basis for most cases of Kallmann syndrome and idiopathic hypogonadotropic hypogonadism is still unknown. Many mutations contributing to the disease remain undiagnosed. They suggested that the gonadotropin-releasing hormone receptor GNRHR gene (apart from KAL1 and FGFR1) could also be related to Kallmann syndrome, but in their opinion mutations in the GNRHR, KAL1, and FGFR1 genes account for only 15–20% of all possible reasons of idiopathic hypogonadotropic hypogonadism and Kallmann syndrome (GNRHR is a protein that is encoded by the GNRHR gene, which encodes the receptor for type 1 gonadotropin-releasing hormone). Pedersen-White et al. (2008) [31] conducted a screening study including 54 patients (men and women) with Kallmann syndrome and idiopathic hypogonadotropic hypogonadism. The results found that KAL1 deletions appeared in 4 cases. After the restriction of the experimental group to anosmic men only, the result was four out of 33 patients. Thus, these researchers suggest that KAL1 mutations are one of the most common reasons for Kallmann syndrome, but impairments in the other tested genes may also participate in the disease [31]. Similarly, Dodé and Rondard (2013) [34] remarked that the phenotype of Kallmann syndrome results from interruptions in the nerve fibers located in the nasal region, the olfactory, vomero-nasal, and terminal. The impact of these impairments is manifested as disturbances in the migration of gonadotropin-releasing hormone synthesizing cells between the nose and the brain. They discussed all genes connected with Kallmann syndrome that had been previously described, including KAL1, FGFR1, PROKR2, PROK2, FGF8, CHD7, WDR11, heparan sulfate 6-O-sulfotransferase 1 HS6ST1, and semaphorin-3A SEMA3A (a protein SEMA3A that in humans is encoded by the SEMA3A gene). HS6ST1 is the protein encoded by the gene HS6ST1 and is a member of the heparan sulfate biosynthetic enzyme family. Heparan sulfate biosynthetic enzymes are key components in generating a myriad of distinct heparan sulfate fine structures that carry out multiple biological activities. This enzyme is a type II integral membrane protein and is responsible for 6-O-sulfation of heparan sulfate. This enzyme does not share significant sequence similarity with other known sulfotransferases). Dodé and Rondard (2013) [34] described the essential roles of these genes and assessed the proportion of Kallmann syndrome cases connected with their mutations. They found that KAL1 contributes to an increase in the extra-cellular matrix glycoprotein anosmin-1, while FGF8 and FGFR1 encode fibroblast growth factor-8 and fibroblast growth factor receptor-1. PROKR2 and PROK2 are responsible for the generation of prokineticin receptor-2 and prokineticin-2. According to these authors’ assessment, mutations in KAL1 appear in about 8% of cases of Kallmann syndrome, FGF8 and FGFR1 both appear in about 10% of cases and mutations both in PROKR2 or PROK2 are responsible for about 9% of cases. In addition, mutations in the CHD7 gene lead to CHARGE syndrome (coloboma, heart defects, choanal atresia, retarded growth and development, genital abnormalities, and ear anomalies) in many patients accompanying Kallmann syndrome [34]. CHARGE syndrome, known as CHARGE association, is a rare syndrome caused by a genetic disorder. First described in 1979, the acronym CHARGE came into use for newborn children with the congenital features of coloboma of the eye, heart defects, atresia of the nasal choanae, retardation of growth and/or development, genital and/or urinary abnormalities, and ear abnormalities and deafness. These features are no longer used in making a diagnosis of CHARGE syndrome, but the name remains. About two thirds of cases are due to a CHD7 mutation. Ultimately, practically all researchers agreed that, despite the estimated prevalence of this syndrome of one in 8000 men and nearly five times lower than this in women, the real frequency of the disease may be higher since so many of the genes potentially involved in Kallmann syndrome remain unexplored [31,32,33,34].

5. Summary and Conclusions

The data quoted in this review would agree that the pool of factors harmful to human health which has accumulated in the environment, is very large. Most of these factors affect the human reproductive system and fertility adversely [5,6]. Pb, Cd, Hg, Mo, and other heavy metals appear to be detrimental to sperm concentration and quality [1,52]. The authors expound a list of sperm and spermatogenesis depressors, describing the negative effects of dioxins, pesticides, phthalates, industrial solvents, as well as traffic fumes and food additives [4]. Obviously even house dust can modify reproductive hormone levels [3]. Researchers noted close relationships between many of the harmful substances mentioned above and increased oxidative stress. The problem of overproduction of ROS is usually connected with decreasing activity of certain antioxidative enzymes, such as catalase, superoxide dismutase, and glutathione peroxidase [7,10]. Many of these authors noticed certain behaviors that people can easily initiate on their own, such as a cessation of smoking or introducing a low-fat diet, can considerably reduce oxidative stress and improve reproductive condition [9]. A large pool of research has described the role of an anti-oxidative diet as an effective tactic in reducing oxidative stress. Beta-carotene, vitamin A, C, E, B complex, and lycopene have all been considered as beneficial factors in the lowering of oxidative stress markers and the improvement of anti-oxidative defense [12,13,15,16,78]. Another strategy aiding sperm quality appears to be supplementation of Zn and Se, which both improve semen concentration and motility [14].
Reactive forms of oxygen may cause destructive changes on a genetic level, for instance through DNA breakages and genetic factors were estimated to contribute to at least 5–10% of cases of male infertility [8,80]. We analyzed common genetic factors in male infertility, focusing on impairments in chromosomes Y, X, and 7. With respect to the Y chromosome, authors richly described the AZF region and microdeletions in domains AZFa, AZFb, AZFc, and AZFd [17,18,84]. It appears that a relatively minor manifestation of such deletions causes a lowering in the amount of sperm cells in semen, while the most serious deletions cause azoospermia [19,20,80]. The phenotypes vary between populations but micro-deletion and AZFc deletions are definitely the most frequent [86]. Male infertility also occurs in cystic fibrosis and the congenital bilateral absence of the vas deferens, both caused by mutations in the CFTR gene, located on chromosome 7. Obstruction of spermatic ducts by sticky mucus is a feature of cystic fibrosis, while aplasia of spermatic ducts applies to CBAVD. Regarding the common genetic cause of these conditions, CBAVD has been described as a form of expression of cystic fibrosis [22,23,25,36,89]. Finally, with respect to disorders associated with the X chromosome, Klinefelter syndrome, as one of the most frequent genetic causes of male infertility (1 in 600 men), is well characterized. The authors described genetic pathogenesis, the presence of an extra chromosome X in the male karyotype, as well as phenotypic manifestations, including small testis, azoospermia, degeneration of spermatic ducts, as sometimes coupled with psychiatric impairments and learning delays [26,27,28,29,30,93,94]. A well-characterized genetic disorder is Kallmann syndrome, where the condition results from mutations in various genes, including KAL1, FGFR1, or FGF8. It manifests as a combination of reproductive impairments (small testicles and delayed maturation) and the lack of a sense of smell [31,32,33,36]. The prevalence of this syndrome among male patients is estimated at 1 in 8000 but many genes possibly implicated in this disease are still unknown [34].
This review demonstrates that male health and fertility are directly connected with environmental conditions. We are exposed to various, potentially harmful, factors which intensify oxidative stress and decrease the natural defenses of the body. Subsequently, ROS damages the reproductive system and other essential systems and even causes impairments on a genetic level [8,97]. Further research should be undertaken to broaden our understanding of these environmental sources of immunogenetic disorders accompanying male infertility, in decreasing both lipoperoxidation and antioxidative activity. This will help determine the distribution and prevalence of potential risk factors in different regions. The results of future analysis should definitely improve the prevention of male infertility, as well as widen the diagnostic possibilities.
Summarizing: (1) Genetic factors are implicated in at least 10% of cases of male infertility [80]; (2) Amongst infertile men the frequency of AZF microdeletions is estimated at 7–8%, with a wide variation across populations [81,87]; (3) Alongside karyotype abnormalities (15% of azoospermic, 6% oligozoospermic cases), AZF microdeletions are considered as the second most common genetic reason of spermatogenic failure [18,20,83]; (4) Amongst various AZF genes the DAZ gene family is reported as the most frequently deleted AZF candidate [35]; (5) Screening of AZF microdeletions can be useful in explaining idiopathic cases of male infertility as well as in genetic consulting prior to assisted reproduction [87]; (6) An exact evaluation of how seriously pollutants and the destabilization of the elemental balance of the human organism lessen the quality of sperm and reduce male fertility should be conducted; (7) Studies of the induced oxidative stress and negative immunogenetic changes in the human reproductive system caused by toxic chemicals are important; (8) An evaluation of the significance of polymorphisms correlated with changes in reproductive potential and pro-anti-oxidative mechanisms as markers of pathophysiological disturbances of the male reproductive condition needs to be performed; (9) The inference from the relationships between environmental degradation and the occurrence of genetic diseases, connected with infertility, needs to be established.

Author Contributions

All authors (P.K., J.B., I.J., B.P.K., E.N.-C., M.P., M.S., A.W., and W.K.) jointly participated in the experimental studies on the environmental conditions of male infertility (currently, original research is being submitted, and more is underway). They developed and participated in the development of the research problem and participated in the design of this review. All authors discussed the main theses of this review and improved the working version of the manuscript. They co-edited and improved the final version of the manuscript, conceived of each part of the review article, participated in its design and coordination, and helped to draft each part of the manuscript. P.K. covered editorial staff. All authors have read and agreed to the published version of the manuscript.

Funding

This research received no external funding. The publication cost (Journal APC) was funded by the University of Zielona Góra, Licealna St. 9, PL 65-417 Zielona Góra, Poland.

Acknowledgments

We thank Joerg Boehner (Univ. Berlin, Germany) for his help with improving English.

Conflicts of Interest

The authors declare no conflict of interest.

References

  1. Meeker, J.D.; Rossano, M.G.; Protas, B.; Diamond, M.P.; Puscheck, E.; Daly, D.; Paneth, N.; Wirth, J.J. Cadmium, Lead, and Other Metals in Relation to Semen Quality: Human Evidence for Molybdenum as a Male Reproductive Toxicant. Environ. Health Perspect. 2008, 116, 1473–1479. [Google Scholar] [CrossRef] [PubMed]
  2. Meeker, J.D.; Rossano, M.G.; Protas, B.; Padmanabhan, V.; Diamond, M.P.; Puscheck, E.; Daly, D.; Paneth, N.; Wirth, J.J. Environmental exposure to metals and male reproductive hormones: Circulating testosterone is inversely associated with blood molybdenum. Fertil. Steril. 2010, 93, 130–140. [Google Scholar] [CrossRef] [PubMed]
  3. Meeker, J.D.; Stapleton, H.M. House Dust Concentrations of Organophosphate Flame Retardants in Relation to Hormone Levels and Semen Quality Parameters. Environ. Health Perspect. 2010, 118, 318–323. [Google Scholar] [CrossRef] [PubMed]
  4. Vaiserman, A. Early-life Exposure to Endocrine Disrupting Chemicals and Later-life Health Outcomes: An Epigenetic Bridge? Aging Dis. 2014, 5, 419–429. [Google Scholar]
  5. Manahan, S.E. Toksykologia ?rodowiska. Aspekty Chemiczne i Biochemiczne; PWN-Pol. Sci. Publ.; Wydawnictwo Naukowe PWN: Warsaw, Poland, 2006; 530p. [Google Scholar]
  6. Sharpe, R.M. Environmental/lifestyle effects on spermatogenesis. Philos. Trans. R. Soc. Lond. B Biol. Sci. 2010, 365, 1697–1712. [Google Scholar] [CrossRef]
  7. Mathur, P.P.; D’Cruz, S.C. The effect of environmental contaminants on testicular function. Asian J. Androl. 2011, 13, 585–591. [Google Scholar] [CrossRef]
  8. Bartosz, G. Druga Twarz Tlenu. Wolne Rodniki w Przyrodzie; PWN-Pol. Sci. Publ.; Wydawnictwo Naukowe PWN: Warsaw, Poland, 2009; 448p. [Google Scholar]
  9. Agarwal, A.; Virk, G.; Ong, C.; du Plessis, S.S. Effect of Oxidative Stress on Male Reproduction. World J. Men’s Health 2014, 32, 1–17. [Google Scholar] [CrossRef]
  10. Al-Attar, A.M. Antioxidant effect of vitamin E treatment on some heavy metals-induced renal and testicular injuries in male mice. Saudi J. Biol. Sci. 2011, 18, 63–72. [Google Scholar] [CrossRef]
  11. Ruder, E.H.; Hartman, T.J.; Blumberg, J.; Goldman, M.B. Oxidative stress and antioxidants: Exposure and impact on female fertility. Hum. Reprod. Update 2008, 14, 345–357. [Google Scholar] [CrossRef]
  12. Zini, A.; Gabriel, M.S.; Baazeem, A. Antioxidants and sperm DNA damage: A clinical perspective. J. Assist. Reprod. Genet. 2009, 26, 427–432. [Google Scholar] [CrossRef]
  13. Walczak-J?drzejowska, R.; Wolski, J.K.; S?owikowska-Hilczer, J. The role of oxidative stress and antioxidants in male fertility. Centr. Eur. J. Urol. 2013, 66, 60–67. [Google Scholar] [CrossRef] [PubMed]
  14. Atig, F.; Raffa, M.; Habib, B.A.; Kerkeni, A.; Saad, A.; Ajina, M. Impact of seminal trace element and glutathione levels on semen quality of Tunisian infertile men. BMC Urol. 2012, 12, 6. [Google Scholar] [CrossRef] [PubMed]
  15. Aitken, R.J.; Roman, S.D. Antioxidant systems and oxidative stress in the testes. Oxid. Med. Cell. Longev. 2008, 1, 15–24. [Google Scholar] [CrossRef] [PubMed]
  16. Zareba, P.; Colaci, D.S.; Afeiche, M.; Gaskins, A.J.; Jørgensen, N.; Mendiola, J.; Swan, S.H.; Chavarro, J.E. Semen Quality in Relation to Antioxidant Intake in a Healthy Male Population. Fertil. Steril. 2013, 100, 1572–1579. [Google Scholar] [CrossRef] [PubMed]
  17. Navarro-Costa, P.; Gonçalves, J.; Plancha, C.E. The AZFc region of the Y chromosome: At the crossroads between genetic diversity and male infertility. Hum. Reprod. Update 2010, 16, 525–542. [Google Scholar] [CrossRef]
  18. Navarro-Costa, P.; Plancha, C.E.; Gonçalves, J. Genetic Dissection of the AZF Regions of the Human Y Chromosome: Thriller or Filler for Male (In)fertility? J. Biomed. Biotechnol. 2010, 2010, 936–956. [Google Scholar] [CrossRef]
  19. Wang, R.X.; Fu, C.; Yang, Y.P.; Han, R.R.; Dong, Y.; Dai, R.L.; Liu, R.Z. Male infertility in China: Laboratory finding for AZF microdeletions and chromosomal abnormalities in infertile men from Northeastern China. J. Assist. Reprod. Genet. 2010, 27, 391–396. [Google Scholar] [CrossRef]
  20. Khabour, O.F.; Fararjeh, A.S.; Alfaouri, A.A. Genetic screening for AZF Y chromosome microdeletions in Jordanian azoospermic infertile men. Int. J. Mol. Epidemiol. Genet. 2014, 5, 47–50. [Google Scholar]
  21. Korf, B.R. Genetyka Cz?owieka—Rozwi?zywanie Problemów Medycznych; PWN-Pol. Sci. Publ.; Wydawnictwo Naukowe PWN: Warsaw, Poland, 2003; 365p. [Google Scholar]
  22. Noone, P.G.; Knowles, M.R. CFTR-opathies: Disease phenotypes associated with cystic fibrosis transmembrane regulator gene mutations. Respir. Res. 2001, 2, 328–332. [Google Scholar] [CrossRef]
  23. Bradley, J.R.; Johnson, D.R.; Pober, B.R. Genetyka Medyczna. Notatki z Wyk?adów; PZWL: Warsaw, Poland, 2009; 178p. [Google Scholar]
  24. Blau, H.; Freud, E.; Mussaffi, H.; Werner, M.; Konen, O.; Rathaus, V. Urogenital abnormalities in male children with cystic fibrosis. Arch. Dis. Child. 2002, 87, 135–138. [Google Scholar] [CrossRef]
  25. Xu, X.; Zheng, J.; Liao, Q.; Zhu, H.; Xie, H.; Shi, H.; Duan, S. Meta-analyses of 4 CFTR variants associated with the risk of the congenital bilateral absence of the vas deferens. J. Clin. Bioinform. 2014, 4, 11. [Google Scholar] [CrossRef] [PubMed]
  26. Molnar, A.M.; Terasaki, G.S.; Amory, J.K. Klinefelter syndrome presenting as behavioral problems in a young adult. Nat. Rev. Endocrinol. 2010, 6, 707–712. [Google Scholar] [CrossRef] [PubMed]
  27. Turriff, A.; Levy, H.P.; Biesecker, B. Prevalence and Psychosocial Correlates of Depressive Symptoms among Adolescents and Adults with Klinefelter Syndrome. Genet. Med. 2011, 13, 966–972. [Google Scholar] [CrossRef] [PubMed]
  28. Gi Jo, D.; Tae Seo, J.; Shik Lee, J.; Yeon Park, S.; Woo Kim, J. Klinefelter Syndrome Diagnosed by Prenatal Screening Tests in High-Risk Groups. Korean J. Urol. 2013, 54, 263–265. [Google Scholar]
  29. Nieschlag, E. Klinefelter Syndrome The Commonest Form of Hypogonadism, but Often Overlooked or Untreated. Dtsch. Arztebl. Int. 2013, 110, 347–353. [Google Scholar]
  30. Høst, C.; Skakkebæk, A.; Groth, K.A.; Bojesen, A. The role of hypogonadism in Klinefelter Syndrome. Asian J. Androl. 2014, 16, 185–191. [Google Scholar]
  31. Pedersen-White, J.R.; Chorich, L.P.; Bick, D.P.; Sherins, R.J.; Layman, L.C. The prevalence of intragenic deletions in patients with idiopathic hypogonadotropic hypogonadism and Kallmann syndrome. Mol. Hum. Reprod. 2008, 14, 367–370. [Google Scholar] [CrossRef]
  32. Laitinen, E.M.; Vaaralahti, K.; Tommiska, J.; Eklund, E.; Tervaniemi, M.; Valanne, L.; Raivio, T. Incidence, Phenotypic Features and Molecular Genetics of Kallmann Syndrome in Finland. Orphanet J. Rare Dis. 2011, 6, 41. [Google Scholar] [CrossRef]
  33. Quaynor, S.D.; Kim, H.G.; Cappello, E.M.; Williams, T.; Chorich, L.P.; Bick, D.P.; Sherins, R.J.; Layman, L.C. The prevalence of digenic mutations in patients with normosmic hypogonadotropic hypogonadism and Kallmann syndrome. Fertil. Steril. 2011, 96, 1424–1430. [Google Scholar] [CrossRef]
  34. Dodé, C.; Rondard, P. PROK2/PROKR2 Signaling and Kallmann Syndrome. Front. Endocrinol. 2013, 4, 19. [Google Scholar] [CrossRef]
  35. Balkan, M.; Tekes, S.; Gedik, A. Cytogenetic and Y chromosome microdeletion screening studies in infertile males with Oligozoospermia and Azoospermia in Southeast Turkey. J. Assist. Reprod. Genet. 2008, 25, 559–565. [Google Scholar] [CrossRef] [PubMed]
  36. Drewa, G.; Ferenc, T. (Eds.) Genetyka Medyczna. Podr?cznik dla Studentów; Elsevier, Urban & Partner: Wroc?aw, Poland, 2011; 962p. [Google Scholar]
  37. Wo?czyński, S.; Kuczyńki, W.; Styrna, J.; Szamatowicz, M. Molekularne Podstawy Rozrodczo?ci Cz?owieka i Innych Ssaków; Kurpisz, M., Ed.; TerMedia: Poznań, Poland, 2002; 384p. [Google Scholar]
  38. Sinclair, S. Male infertility: Nutritional and environmental considerations. Altern. Med. Rev. 2000, 5, 28–38. [Google Scholar] [PubMed]
  39. Aitken, R.J. The human spermatozoon—A cell in crisis? J. Reprod. Fertil. 1999, 115, 1–7. [Google Scholar] [CrossRef] [PubMed]
  40. Oosterhuis, G.J.E.; Mulder, A.B.; Kalsbeek-Batenburg, E.; Lambalk, C.B.; Schoemaker, J.; Vermes, I. Measuring apoptosis in human spermatozoa: A biological assay for semen quality? Fertil. Steril. 2000, 74, 245–250. [Google Scholar] [CrossRef]
  41. Zdrojewicz, Z.; Wi?niewska, A. Rola cynku w seksualno?ci m??czyzn. Adv. Clin. Exp. Med. 2005, 14, 1295–1300. [Google Scholar]
  42. Beroff, S. Male Fertility Correlates with Metal Levels; WB Saunders Co.: New York, NY, USA, 1996; Volume 3, pp. 15–17. [Google Scholar]
  43. Skoczyńska, A.; Stojek, E.; Górecka, H.; Wojakowska, A. Serum vasoactive agents in lead-treated rats. Med. Environ. Health 2003, 16, 169–177. [Google Scholar]
  44. Chia, S.E.; Ong, C.N.; Chua, L.H.; Ho, L.M.; Tay, S.K. Comparison of zinc concentrations in blood and seminal plasma and the various sperm parameters between fertile and infertile men. J. Androl. 2001, 21, 53–57. [Google Scholar]
  45. Giller, R.M.; Matthews, K. Natural Prescription; Dr. Giller’s Natural Treatments and Vitamin Therapies for Over 100 Common Ailments; Carol Southern Books, Random House Inc.: New York, NY, USA, 1994; 370p. [Google Scholar]
  46. Mohan, H.; Verma, J.; Singh, I.; Mohan, P.; Marwah, S.; Singh, P. Interrelationship of zinc levels in serum and semen in oligospermic infertile patients and fertile males. Pathol. Microbiol. 1997, 40, 451–455. [Google Scholar]
  47. Badmaev, V.; Majeed, M.; Passwater, R.A. Selenium: A quest for better understanding. Altern. Ther. Health Med. 1996, 2, 59–67. [Google Scholar]
  48. Holben, D.H.; Smith, A.M. The diverse role of selenium within selenoproteins: A review. J. Am. Diet. Assoc. 1999, 99, 836–843. [Google Scholar] [CrossRef]
  49. Ursini, F.; Heim, S.; Kiess, M.; Maiorino, M.; Roveri, A.; Wissing, J.; Flohe, L. Dual function of the selenoprotein PHGPx during sperm maturation. Science 1999, 285, 1393–1396. [Google Scholar] [CrossRef]
  50. Luca, G.; Lilli, C.; Bellucci, C.; Mancuso, F.; Calvitti, M.; Arato, I.; Falabella, G.; Giovagnoli, S.; Aglietti, M.C.; Lumare, A.; et al. Toxicity of cadmium on Sertoli cell functional competence: An in vitro study. J. Biol. Regul. Homeost. Agents 2013, 27, 805–816. [Google Scholar] [PubMed]
  51. Mancuso, F.; Arato, I.; Lilli, C.; Bellucci, C.; Bodo, M.; Calvitti, M.; Aglietti, M.C.; dell’Omo, M.; Nastruzzi, C.; Calafiore, R.; et al. Acute effects of lead on porcine neonatal Sertoli cells in vitro. Toxicol. In Vitro 2018, 48, 45–52. [Google Scholar] [CrossRef] [PubMed]
  52. Siu, E.R.; Mruk, D.D.; Porto, C.S.; Cheng, C.Y. Cadmium-induced Testicular Injury. Toxicol. Appl. Pharmacol. 2009, 238, 240–249. [Google Scholar] [CrossRef] [PubMed]
  53. Buck Louis, G.M.; Sundaram, R.; Schisterman, E.F.; Sweeney, A.M.; Lynch, C.D.; Gore-Langton, R.E.; Chen, Z.; Kim, S.; Caldwell, K.; Barr, D.B. Heavy Metals and Couple Fecundity, the LIFE Study. Chemosphere 2012, 87, 1201–1207. [Google Scholar] [CrossRef]
  54. Bonda, E.; W?ostowski, T.; Krasowska, A. Metabolizm i toksyczno?? kadmu u cz?owieka i zwierz?t. Kosmos 2007, 56, 87–97. [Google Scholar]
  55. O’Flaherty, C. The Enzymatic Antioxidant System of Human Spermatozoa. Adv. Androl. 2014, 2014, 626374. [Google Scholar] [CrossRef]
  56. Gladyshev, V.N.; Arnér, E.S.; Berry, M.J.; Brigelius-Flohé, R.; Bruford, E.A.; Burk, R.F.; Carlson, B.A.; Castellano, S.; Chavatte, L.; Conrad, M.; et al. Selenoprotein Gene Nomenclature. J. Biol. Chem. 2016, 291, 24036–24040. [Google Scholar] [CrossRef]
  57. Sallmen, M.; Lindbohm, M.L.; Anttila, A.; Taskinen, H.; Hemminki, K. Time to pregnancy among the wives of men occupationally exposed to lead. Epidemiology 2000, 11, 141–147. [Google Scholar] [CrossRef]
  58. el Feki, A.; Ghorbel, F.; Smaoui, M.; Makni-Ayadi, F.; Kammoun, A. Effects of automobile lead on the general growth and sexual activity of the rat Gynecol. Obstet. Fertil. 2000, 28, 51–59. [Google Scholar]
  59. Ga?ecka, E.; Jacewicz, R.; Mrowicka, M.; Florkowski, A.; Ga?ecki, P. Antioxidative enzymes–structure, properties, functions. Enzymy antyoksydacyjne-budowa, w?a?ciwo?ci, funkcje. Pol. Merk. Lek. 2008, 25, 266–268. [Google Scholar]
  60. Ga?ecka, E.; Mrowicka, M.; Malinowska, K.; Ga?ecki, P. Role of free radicals in the physiological processes. Wolne rodniki tlenu i azotu w fizjologii. Pol. Merk. Lek. 2008, 24, 446–448. [Google Scholar]
  61. Ga?ecka, E.; Mrowicka, M.; Malinowska, K.; Ga?ecki, P. Chosen non-enzymatic substances that participate in a protection against overproduction of free radicals. Wybrane substancje nieenzymatyczne uczestnicz?ce w procesie obrony przed nadmiernym wytwarzaniem wolnych rodników. Pol. Merk. Lek. 2008, 25, 269–272. [Google Scholar]
  62. Hsieh, Y.Y.; Sun, Y.L.; Chang, C.C.; Lee, Y.S.; Tsai, H.D.; Lin, C.S. Superoxide dismutase activities of spermatozoa and seminal plasma are not correlated with male infertility. J. Clin. Lab. Anal. 2002, 16, 127–131. [Google Scholar] [CrossRef]
  63. Zini, A.; de Lamirande, E.; Gagnon, C. Reactive oxygen species in semen of infertile patients: Levels of superoxide dismutase- and catalase-like activities in seminal plasma and spermatozoa. Int. J. Androl. 1993, 16, 183–188. [Google Scholar] [CrossRef]
  64. Siciliano, L.; Tarantino, P.; Longobardi, F.; Rago, V.; De Stefano, C.; Carpino, A. Impaired seminal antioxidant capacity in human semen with hyperviscosity or oligoasthenozoospermia. J. Androl. 2001, 22, 798–803. [Google Scholar]
  65. Sharma, R.K.; Pasqualotto, A.E.; Nelson, D.R.; Thomas, A.J., Jr.; Agarwal, A. Relationship between seminal white blood cell counts and oxidative stress in men treated at an infertility clinic. J. Androl. 2001, 22, 575–583. [Google Scholar]
  66. Asada, H.; Sueoka, K.; Hashiba, T.; Kuroshima, M.; Kobayashi, N.; Yoshimura, Y. The effects of age and abnormal sperm count on the nondisjunction of spermatozoa. J. Assist. Reprod. Genet. 2000, 17, 51–59. [Google Scholar] [CrossRef]
  67. Black, L.D.; Nudell, D.M.; Cha, I.; Cherry, A.M.; Turek, P.J. Compound genetic factors as a cause of male infertility. Hum. Reprod. 2000, 15, 449–451. [Google Scholar] [CrossRef]
  68. Krawczyński, M.R. Genetyczny mechanizm determinacji p?ci u cz?owieka. Post. Androl. 2002, 4, 143–150. [Google Scholar]
  69. Matheisel, A.; Babińska, M.; ?ychska, A.; Mrózek, K.; Szczurowicz, A.; Niedoszytko, B.; Iliszko, M.; Mrózek, E.; Mielnik, J.; Midro, A.T.; et al. Wyniki badań cytogenetycznych u pacjentów z wywiadem obci??onym niepowodzeniami rozrodu. Gin. Pol. 1997, 68, 74–81. [Google Scholar]
  70. Midro, A. Znaczenie badań chromosomowych w andrologii klinicznej. Post. Androl. 2000, 3, 1–10. [Google Scholar]
  71. Kurpisz, M.; Szczygie?, M. Molekularne podstawy teratozoospermii. Gin. Pol. 2000, 9, 1036–1041. [Google Scholar]
  72. Jakubowski, L.; Jeziorowska, A. Aberracje chromosomów X i Y w wybranych przypadkach zaburzeń rozwoju cielesno-p?ciowego. Endokrynol. Pol. 1995, 46 (Suppl. 1), 77–95. [Google Scholar]
  73. Wojda, A.; Korcz, K.; J?drzejczak, P.; Kotecki, M.; Pawe?czyk, L.; Latos-Bieleńska, A.; Wolnik-Brzozowska, D.; Jaruzelska, J. Importance of cytogenetic analysis in patients with azoospermia or severe oligozoospermia undergoing in vitro fertilization. Ginekol. Pol. 2001, 11, 847–853. [Google Scholar]
  74. McCallum, T.J.; Milunsky, J.M.; Cunningham, D.L.; Harris, D.H.; Maher, T.A.; Oates, R.D. Fertility in men with cystic fibrosis. Chest 2000, 18, 1059–1062. [Google Scholar] [CrossRef]
  75. Viville, S.; Warter, S.; Meyer, J.M.; Wittemer, C.; Loriot, M.; Mollard, R.; Jacqmin, D. Histological and genetic analysis and risk assessment for chromosomal aberration after ICSI for patients presenting with CBAVD. Hum. Reprod. 2000, 15, 1613–1618. [Google Scholar] [CrossRef]
  76. Oteiza, P.I. Zinc and the modulation of redox homeostasis. Free Rad. Biol. Med. 2012, 53, 1748–1759. [Google Scholar] [CrossRef]
  77. Kehr, S.; Malinouski, M.; Finney, L.; Vogt, S.; Labunskyy, V.M.; Kasaikina, M.V.; Carlson, B.A.; Zhou, Y.; Hatfield, D.L.; Gladyshev, V.N. X-ray fluorescence microscopy reveals the role of selenium in spermatogenesis. J. Mol. Biol. 2009, 389, 808–818. [Google Scholar] [CrossRef]
  78. Mier-Cabrera, J.; Aburto-Soto, T.; Burrola-Méndez, S.; Jiménez-Zamudio, L.; Tolentino, M.C.; Casanueva, E.; Hernández-Guerrero, C. Women with endometriosis improved their peripheral antioxidant markers after the application of a high antioxidant diet. Reprod. Biol. Endocrinol. 2009, 7, 54. [Google Scholar] [CrossRef]
  79. Rink, S.M.; Mendola, P.; Mumford, S.L.; Poudrier, J.K.; Browne, R.W.; Wactawski-Wende, J.; Perkins, N.J.; Schisterman, E.F. Self-report of Fruit and Vegetable Intake that meets the 5 A Day Recommendation is Associated with Reduced Levels of Oxidative Stress Biomarkers and Increased Levels of Antioxidant Defense in Premenopausal Women. J. Acad. Nutr. Diet. 2013, 113, 776–785. [Google Scholar] [CrossRef] [PubMed]
  80. Ambulkar, P.S.; Sigh, R.; Reddy, M.V.R.; Varma, P.S.; Gupta, D.O.; Shende, M.R.; Pal, A.K. Genetic Risk of Azoospermia Factor (AZF) Microdeletions in Idiopathic Cases of Azoospermia and Oligozoospermia in Central Indian Population. J. Clin. Diagn. Res. 2014, 8, 88–91. [Google Scholar] [PubMed]
  81. Sen, S.; Pasi, A.R.; Dada, R.; Shamsi, M.B.; Modi, D. Y chromosome microdeletions in infertile men: Prevalence, phenotypes and screening markers for the Indian population. J. Assist. Reprod. Genet. 2013, 30, 413–422. [Google Scholar] [CrossRef] [PubMed]
  82. Yu, X.-W.; Wei, Z.-T.; Jiang, Y.-T.; Zhang, S.-L. Y chromosome azoospermia factor region microdeletions and transmission characteristics in azoospermic and severe oligozoospermic patients. Int. J. Clin. Exp. Med. 2015, 8, 14634–14646. [Google Scholar] [PubMed]
  83. Choi, D.K.; Gong, I.H.; Hwang, J.H.; Oh, J.J.; Hong, J.Y. Detection of Y Chromosome Microdeletion is Valuable in the Treatment of Patients with Nonobstructive Azoospermia and Oligoasthenoteratozoospermia: Sperm Retrieval Rate and Birth Rate. Korean J. Urol. 2013, 54, 111–116. [Google Scholar] [CrossRef]
  84. Küçükaslan, A.S.; Çetinta?, V.B.; Alt?nta?, R.; Vardarl?, A.T.; Mutlu, Z.; Uluku?, M.; Semerci, B.; Ero?lu, Z. Identification of Y chromosome microdeletions in infertile Turkish men. Turk. J. Urol. 2013, 39, 170–174. [Google Scholar] [CrossRef]
  85. Zheng, H.Y.; Li, Y.; Shen, F.J.; Tong, Y.Q. A novel universal multiplex PCR improves detection of AZFc Y-chromosome microdeletions. J. Assist. Reprod. Genet. 2014, 31, 613–620. [Google Scholar] [CrossRef]
  86. Massart, A.; Lissens, W.; Tournaye, H.; Stouffs, K. Genetic causes of spermatogenic failure. Asian J. Androl. 2012, 14, 40–48. [Google Scholar] [CrossRef]
  87. Hellani, A.; Al-Hassan, S.; Iqbal, M.A.; Coskun, S. Y chromosome microdeletions in infertile men with idiopathic oligo- or azoospermia. J. Exp. Clin. Assist. Reprod. 2006, 3, 1. [Google Scholar] [CrossRef]
  88. Du, Q.; Li, Z.; Pan, Y.; Liu, X.; Pan, B.; Wu, B. The CFTR M470V, Intron 8 Poly-T, and 8 TG-Repeats Detection in Chinese Males with Congenital Bilateral Absence of the Vas Deferens. Biomed. Res. Int. 2014, 2014, 689–695. [Google Scholar] [CrossRef]
  89. Bareil, C.; Guittard, C.; Altieri, J.P.; Templin, C.; Claustres, M.; des Georges, M. Comprehensive and Rapid Genotyping of Mutations and Haplotypes in Congenital Bilateral Absence of the Vas Deferens and Other Cystic Fibrosis Transmembrane Conductance Regulator-Related Disorders. J. Mol. Diagn. 2007, 9, 582–588. [Google Scholar] [CrossRef] [PubMed]
  90. Havasi, V.; Rowe, S.M.; Kolettis, P.N.; Dayangac, D.; ?ahin, A.; Grangeia, A.; Carvalho, F.; Barros, A.; Sousa, M.; Bassas, L.; et al. Association of cystic fibrosis genetic modifiers with congenital bilateral absence of the vas deferens. Fertil. Steril. 2010, 94, 2122–2127. [Google Scholar] [CrossRef] [PubMed]
  91. Almeida, C.; Correia, S.; Rocha, E.; Alves, A.; Ferraz, L.; Silva, J.; Sousa, M.; Barros, A. Caspase signalling pathways in human spermatogenesis. J. Assist. Reprod. Genet. 2013, 30, 487–495. [Google Scholar] [CrossRef] [PubMed]
  92. Accardo, G.; Vallone, G.; Esposito, D.; Barbato, F.; Renzullo, A.; Conzo, G.; Docimo, G.; Esposito, K.; Pasquali, D. Testicular parenchymal abnormalities in Klinefelter syndrome: A question of cancer? Examination of 40 consecutive patients. Asian J. Androl. 2015, 17, 154–158. [Google Scholar]
  93. Bardsley, M.Z.; Falkner, B.; Kowal, K.; Ross, J.L. Insulin resistance and metabolic syndrome in prepubertal boys with Klinefelter syndrome. Acta Paediatr. 2011, 100, 866–870. [Google Scholar] [CrossRef]
  94. Van Rijn, S.; Swaab, H.; Baas, D.; de Haan, E.; Kahn, R.S.; Aleman, A. Neural systems for social cognition in Klinefelter syndrome (47, XXY): Evidence from fMRI. Soc. Cogn. Affect Neurosci. 2012, 7, 689–697. [Google Scholar] [CrossRef]
  95. Lai, H.Y.; Yang, B.C.; Tsai, M.L.; Yang, H.Y.; Huang, B.M. The inhibitory effects of lead on steroidogenesis in MA-10 mouse Leydig tumor cells. Life Sci. 2001, 68, 849–859. [Google Scholar]
  96. Bertin, G.; Averbeck, D. Cadmium: Cellular effects, modifications of biomolecules, modulation of DNA repair and genotoxic consequences (a review). Biochimie 2006, 88, 1549–1559. [Google Scholar] [CrossRef]
(責(zé)任編輯:佳學(xué)基因)
頂一下
(0)
0%
踩一下
(0)
0%
推薦內(nèi)容:
來了,就說兩句!
請(qǐng)自覺遵守互聯(lián)網(wǎng)相關(guān)的政策法規(guī),嚴(yán)禁發(fā)布色情、暴力、反動(dòng)的言論。
評(píng)價(jià):
表情:
用戶名: 驗(yàn)證碼: 點(diǎn)擊我更換圖片

Copyright © 2013-2033 網(wǎng)站由佳學(xué)基因醫(yī)學(xué)技術(shù)(北京)有限公司,湖北佳學(xué)基因醫(yī)學(xué)檢驗(yàn)實(shí)驗(yàn)室有限公司所有 京ICP備16057506號(hào)-1;鄂ICP備2021017120號(hào)-1

設(shè)計(jì)制作 基因解碼基因檢測信息技術(shù)部

久久人妻无码中文字幕第一| 亚洲欧美日本另类在线免费观看 | 久久六热视频精品女人66| 亚洲欧美国产日本一区二区| 国产精品女同一区三区五区| 84pao国产成视频永久免费| 中文字幕久久久人妻无码| 久久人妻av一区二区软件| 柳州莫菁菁av一区| 日韩永久在线观看免费视频| 妙龄女被老汉压身小说作者其他小说 | 日本欧美久久久久免费播放网| 最新国产成人av网站| 漫画免费观看漫画大全| 国产精品久久久久一区二区国产 | 91偷自产一区二区三区精| 91丨porny丨国产麻豆| 丰满无码人妻热妇无码区| а√天堂+地址+在线| 国产美女久久久亚洲综合| 亚洲色图国产精品| 篠田优人妻与黑人BD在线| 亚洲欧美中文曰韩国产综合| 国产中文字二暮区| 青草伊人久久综在合线亚洲 | 调教+白浆+高潮| 国产精品一区二区三区九一麻豆| 亚洲精品国男人在线视频| 欲香欲色天天综合久久| 天堂网www中文在线| 亚洲欧美日韩一区二区三区在线| 欧美日韩不卡在线视频| 邪恶肉肉全彩色无遮盖| 亚洲免费视频在线观看| 交专区videossex| 国产黄色福利网站| 国产亲子乱婬一级A片| 黄色免费在线播放| 一区二区国产午夜视频在线| 日韩精品人妻2022无码中文字幕| 亚洲精品456在线观看第一页| 真人做爰片免费观看播放第09集| 亚洲欧洲中文日韩久久av乱码| 国产91在线观看丝袜| av在线播放+亚洲+不卡| 777米奇色888狠狠俺去啦| 色久综合影视天天综合网| 小视频免费在线观看| 一区二区三区成人免费频| 日韩中精品文字幕在线一区| 亚洲国产日韩精品二三四区竹菊| 国产三级国产三级国产| 久久精品国产乱子伦| 国产色系视频在线观看| 97人妻碰碰中文无码久热丝袜| 美女精品a网站又爽又色| 亚洲国产成人精品女人久久久逼| 国产婷婷vvvv激情久| 日韩精品内射视频免费观看| 日韩av资源在线| 亚洲日本乱码一区二区三区| 美国午夜福利视频一二区| 伊人精品成人久久综合| 亚洲一区二区三区高清视频播放 | 樱花影院电视剧免费| 天天干天天射天天爽| 精品国产亚洲av丝袜高跟| 2020久久香蕉国产线看观看| 狠狠躁夜夜躁人人爽天天开心婷婷 | 天堂中文在线免费观看视频| 91偷拍精品一区二区三区| 国产乱人伦偷精品视频免下载| 日韩一区欧美一区中文字幕| 国产91精品高清一区二区三区| 99久久久精品国产美女| 国产亚洲高清视频| 欧美视频在线观看| 成人春色www在线| 国产日韩欧美在线播放一区二区 | 国产一区二区三区视频在线播放| 又色又爽又黄的免费网站aa| 国产精品一区在线观看www| 日韩欧美国产一区二区在线播放| 一个色综合国产色综合| 影音先锋+拘束+高潮| 亚洲天堂制服丝袜在线观看 | 国产日韩欧美区二区三区四区| 久久国产精品免费| 色一乱一伦一图一区二区精品 | 中文字幕在线观看日韩精品| 在教室被同桌cao到爽漫画| 中国女人黄色大片| 大战丰满大白屁股女人| 亚洲ⅴa欧美ⅴa人人爽久| 夜夜嗨av一区二区三区四区| 久久只有精品视频国产最新地址| 国产午夜精品一区理论片| 久久aⅴ人妻少妇嫩草影院| 色猫咪免费人成网站在线观看| a片+磁力+下载| 亚洲精品一区二区国产精华液| 懂色av绯色av密臀av| 91视频成人免费| 国产一级久久久久av片| 成人H动漫精品一区二区无码软件| 国产精品无套粉嫩白浆在线| 97人人爽人人澡人人精品| 破了女学生小嫩苞A片| 日韩欧美一区二区在线视频| 日韩精品无码一区二区三区久久久| 亚洲中国精品黄色av一区| 欧美日韩一区二区三区aa| 亚洲国产欧美日韩在线人成| 国产自偷在线拍精品热| 97超级精品综合网| 国产精品久久久久久免费播放| 亚洲一区二区三区四区五区黄| 99er热精品视频| 成年美女黄网站色大片免费看| 尤物网站视频免费看| 伦理片国产精品久久一国产精品| 日韩欧美中文字幕1区在线观看| 自拍视频国产三级| 午夜激情一区二区| 亚欧洲一区二区三区伦理| 久久国产精品亚洲一区二区三区 | 中文字幕永久免费| 久久亚洲日韩看片无码| 国产精品无需播放器在线观看 | 免费无码一区二区三区蜜桃| 国产精品原创av| 婷婷嫩草国产精品一区二区三区| 成年人网站免费看| 一区二区三区四区在线免费视频| 妺妺窝WWW仙踪林粗大野| 99久久有精品国产婷婷外女| 精品国无人区一品二品三品的特点| 不卡视频一区二区三区| 无码区日韩特区永久免费系列| 337p大尺度啪啪人体午夜| 99久久精品6在线播放| 男人a天堂手机在线版| 免费+精品+国产| 国产毛片一区二区三区| 国产三级在线三级久操欧美| 日本道免费精品一区二区| 久久综合久久自在自线精品自| 久久精品国产99久久久| 久久亚洲精品中文字幕无男同| 国产高清无套内谢| 国产午夜精品一区二区三区| 最新国产成人av网站网址麻豆| 粉嫩av一区二区在线播放免费| 成人毛片18女人A片免费观看成人在| 711公侵犯美丽人妻| 国产又粗又长又硬又爽又黄视频| 窝窝午夜精品国产| 国产亚洲日韩在线人成| 色婷婷香蕉在线一区| 很色很爽很黄裸乳视频| 丰满人妻熟妇乱又仑精品| 中文字幕乱偷在线小说| 丰满人妻被黑人中出849| 国产欧美成aⅴ人高清| 亚洲欧美综合精品另类天天更新| 精品国产依人香蕉在线精品| 国产一区二区三区在线视頻| 伊人久久大香线蕉亚洲五月天 | 欧美高清美女视频一区二区三区 | 中文日韩v日本国产| 99精产国品一二三产品香蕉| 国内精品伊人久久久久av一坑| 国产精品美女久久久久av丝袜| 日韩第一页视频在线观看| 一级黄色免费大片| 久久久精品国产精品国产网站| 中国老妇淫片bbb| 国产精品久久久久蜜芽| 乳欲人妻1~5集动漫无删减| 亚洲专区中文字幕| 亚洲伊人精品伊人7777| 午夜理论片yy8860y影院| 国产日韩欧美区二区三区四区 | 黄网站色视频免费观看美女| 美女一区二区三区视频在线| 欧美一区二区日韩| 少妇无码av无码专区线y| 国产一区二区三区无修精品视频| 五十路豊満な肉体无码| 日韩区一区二区三区视频| 午夜久久久久久久久| 无码人妻少妇久久中文字幕蜜桃| 日日大香人伊一本线久| 亚洲男人天堂综合在线视频| 中文字幕av在线播放| 日本xxxxx片免费观看19| 久久综合精品无码av一区二区三区| 99久久精品免費看國產| 欧美日韩国产中文字幕在线播放| 欧美一区二区激情视频| 国产精品黄色av| 亚洲综合色噜噜狠狠网站超清| 特级西西444www大胆免费看| 中文字幕一区二区三区乱码图片 | 熟妇人妻无乱码中文字幕| 日韩+欧美+导航| 99久久综合精品五月天| 台湾妹子中文娱乐网| 亚洲手机在线人成网站| 人妻丰满熟妇av无码区不卡| 夜夜爽夜夜叫夜夜高潮漏水| 日韩黄a三级三级三级看三级少妇| 成人在线免费观看视频| 夜夜爽8888免费视频| 日韩a∨精品日韩在线观看| 天堂а√在线地址8中文种子| 国产成人短视频在线观看| 国产999久久高清免费观看| 欧美成人精品一区二区三区在线观看 | 久久人妻这里有精品视频| 亚洲真人久久99精品| 亚洲vr国产美女精品久久久久| 被男人亲下面到高潮视频久久| 一本无码人妻在中文字幕| 午夜三级av在线播放| 国产日韩欧美区二区三区四区 | 亚洲AV欲女久久天天躁| 97se亚洲精品一区二区| 国产男女视频在线免费观看| 欧美日韩妖精视频| 国产精品成人亚洲777| 亚洲第一毛片18我少妇| 亚洲天堂在线观看樱花| 小视频在线观看免费日本色| 国产娇喘喷水呻吟在线观看| 午夜福利+麻豆+国产| 亚洲视频一区二区在线免费观看| 国产精品高潮呻吟久久av免费动漫 | 亚洲一区二区久久久| 中文字幕+乱码+中文字幕无忧| 精品国产亚洲av麻豆gif| 精品人妻人人做人人爽夜夜爽| 成人+动漫+日韩毛片| 香蕉97超级碰碰碰免费| 日韩成人大屁股内射喷水| 欧美日韩综合精品无人区| 欧洲一区二区成人| 国产av天堂一区二区三区粉嫩| 久久99er精品国产首页| 二区视频在线观看| 亚洲精品综合在线| 亚洲视频在线免费观看一区二区| 久久精品国产亚洲αv忘忧草| 久久久国产免费美女视频| 99久久精品无码一区二区免费| 成人免费在线网站| 亚洲爆乳www无码专区| 欧美黄色激情视频| 国产不卡中文字幕在线观看| 成年人午夜免费视频| 99久久中文字幕三级久久日本| 日韩三级国产三级| 九九热在线精品视频| 九九精品在线观看| 国内精品久久久久影视| 国产一区二区三区在线观看网站| 国产福利一区二区精品秒拍| 日韩乱码在线观看| 日韩欧美在线观看污视频| 99久久久久免费精品国产| 天堂8中文在线最新版在线| 一区二区三天美小说| 影音先锋+欧美+爆乳| 国产精品一卡二卡| 欧美精品久久一区二区| 怡春院国产精品视频| 国产精品污污在线观看入口| 一级美国无码高清| 一本大道久久香蕉成人网| 国产精品一区二区三区免费| 亚洲欧洲精品成人久久曰影片 | 啪啪网站免费观看无需下载| 亚洲一卡二卡在线| 四虎永久在线精品免费视频观看| 亚洲视频在线播放一区二区三区 | 新无码毛片一区二区有码| 黄网站色视频免费观看美女 | 国产精品久久久久AV福利动漫| 99e久热只有精品8在线直播| 亚洲人成未满十八禁网站| 骚虎成人免费99xx| 亚洲精品国产av成拍色拍婷婷| 全程露脸老熟妇双飞| 四川少妇BBBBBB爽爽爽欧美| av无码+高潮+白丝| 欧美乱码精品一区二区| 丰满人妻熟妇乱又仑精品| 亚洲高清在线视频| 国产视频资源在线观看| 国产免费观看高清电视剧在线观看| 国产精品高清一区二区不卡片 | 99久久综合伊人东京热| 久久精品国产亚洲av成人文字| 国产97在线观看| 久久99久久99精品免视看| 美女很骚的视频网站国产| 蜜臀久久99精品久久久久久婷婷| 国产成人久久久77777| 国产精品伦一区二区三级视频永妇| 男女又色又爽又爽视频| 337p日本欧洲亚洲大胆裸体艺术| 亚洲欧美综合精品另类天天更新| 国产午夜福利精品久久2021| 中文人妻av久久人妻水密桃| 色婷婷噜噜久久国产精品12p| 好色妻降临av一区二区| 国产欧美另类久久久精品99| 日韩中文字幕av在线| 亚洲乱码一区av黑人高潮| 人妻上司部长OL北岛玲| 欧洲丰满少妇做爰视频爽爽| 深夜影院在线观看| 久久精品九九热无码免贵| 国产免费不卡av在线播放| 中文+乱码+欧美| 欧美日韩大香蕉岛国在线视频| 久久久婷婷五月亚洲97色| 肉大榛一进一出免费视频| 992成人做爰视频| 中文字幕人妻少妇引诱隔壁| 国产欧美日韩亚洲一区二区| 人妻av天堂一区二区三区| 亚洲+激情+专区| 国产精品av免费观看| 久久精品国产自在天天线| 夜鲁鲁鲁夜夜综合视频| 一道本高清一区二区av| 国产精品自在拍首页视频8| 人妻中文字系列无码专区| 免费一级特黄特色毛片久久看| 免费成人网一区二区三区 | 欲色影视天天一区二区三区色香欲| 国产精品视频在线观看| 一区二区三区91| 香蕉视频+app| 国产一区二区三区四区五区六区| 国产99对白在线播放| www成人国产高清内射| AV不卡在线永久免费观看| 日本视频在线免费| 人妻互换一二三区免费| 色综合天天综合网国成人网| 中文在线天堂а√在线| 中文在线字幕免费观看电视剧日剧 | 国产美女www爽爽爽免费视频| 亚洲+综合+欧美| 国产乱码精品一区二区三区四川| av人人爽日日碰| y111111111免费观看电视| 中文字幕av一区二区三区| 亚洲欧洲无码专区av| 93国产精品久久久久久| 午夜福利影院私人爽| 精品久久久久中文字幕app| 国产伦理一区二区三区| 在线观看av一区| 亚洲精品一二三区| 欧美成人午夜免费视在线看片| www.4虎影院| 亚洲黄色一区大陆av剧情| 日韩av手机在线| 国产不卡中文字幕在线观看| 天天躁日日躁狠狠躁免费麻豆| 欧洲av成本人在线观看免费| 成人版女007毛片| 国产成人精品精品日本亚洲 | 欧美成人+www+一区二区| 91在线一区二区| 久久国产亚洲高清观看| 三年大全免费大片三年大片第一集 | 亚洲国产日韩精品二三四区竹菊| 半夜摸妺妺的奶摸到高影院| 久久精品中文字幕有码| 国产精品高潮呻吟久久久久久| 亚洲乱亚洲乱妇无码麻豆| 91麻豆精品国产自产在线91| 亚洲香蕉视频综合在线| 一区二区免费高清观看国产丝瓜| 日韩久久久久久久久久久| 亚洲一区久久精品东京热| 成人精品一区二区三区A片用毒蛇| 波多野结衣视频一区| 欧美午夜精品久久久久久视 | 中文字幕+17c| 久久婷婷五月综合色99啪| 男人扒开女人双腿猛进免费视频| 17c在线观看免费播放电视剧大全 精品人妻艳妇嫩草AV少妇 | 少妇毛片一区二区三区| 免费观看在线高清电视剧| 国产女爽爽爽爽精品视频| 免费视频在线观看网站| 黄色视频国产免费观看| 国产在线拍揄自揄视精品按摩| 97超级精品综合网| 成人做爰黄AA片免费看李晨视频 | 中文字幕一区二区三区久久人妻| av免费在线观看不卡| 欧美国产中文字幕在线视频| 国产少女免费观看高清电视剧大全可| 午夜成午夜成年片在线观看| 亚洲国产成人久久一区二区三区| 国产精品免费网站| 日韩中文字幕在线观看| 97精品国自产在线偷拍| 国产精品69毛片高清亚洲| 老熟女北岛玲Ⅴ8AV| 国产欧美日韩精品一区二区图片 | 草草影院ccyy国产日本欧美| 国产少女免费观看电视剧字幕大全 | 亚洲乱码精品一区二区三区国产 | 空姐吹箫完整版mv| 伊人亚洲福利一区| 亚洲精品av中文字幕在线在线| 欧美大片18禁aaa片免费| 国产精品国精产品一二三区| 安徽妇搡BBB搡BBBB户外老太太| 污18禁污色黄网站免费观看| 欧美伊香蕉久久综合网另类 | 一区二区三区国产乱码a| 国产精品久久久久久三级| 亚洲+国产+视频在线| 六月丁香五月激情综合| 少妇久久久久久久| 国产+高潮+精品| 琪琪在线影院电视剧免费观看| 《玉女心经之观音坐莲》| 午夜精品久久久久久| 国产欧美日韩高清在线不卡| 国产精品久久精品免费视频| 偷拍国精产品久拍自产| 亚洲+无码+制服| 丁香花高清在线完整版| 日韩精品不卡在线| 天天摸夜夜添狠狠添高潮出水| 99精品国产综合久久久久| 97久久久久人妻精品专区| 狂躁少妇XXXX高潮无码| 欧美日韩国产一区二区三区播放| 国产无精乱码一区二区三区| 黄色免费在线视频| 91精品久久久久亚洲国产| 国产精久久久久久一区二区三区| 我们好看的2018视频在线观看| 99久久婷婷国产一区二区| 大粗鳮巴征服女教师| 久久久一区二区三区国产精品| 一卡二卡不卡免费视频观看| 中文字幕综合在线分类| 米奇影视盒77777777777| 少妇高潮喷水久久久影院| 中字幕一区二区三区乱码| 精品+在线+免费观看| 欧美+国产+韩国| 久久成人免费精品网站| 国产福利久久一区二区久久| 亚洲av色噜噜噜久久久女同| 精品午夜福利在线视在亚洲| 午夜精品久久久久久久99婷婷| 亚洲精品视频一区二区| 亚洲天天做日日做| 精品一区二区国产免费av| 亚欧洲一区二区三区伦理| 国产精品区一区二区三| 视频一区中文字幕| 国产综合亚洲区在线观看| 亚洲精品入口一区二区乱| 久久人妻这里有精品视频| 免费的污污的网站在线观看| 91久久久久久亚洲精品蜜桃| 欧美二区乱c黑人| 偷偷要色偷偷中文无码| √天堂8中文资源在线| 日韩欧美丝袜中文字幕诱惑| 天堂中文在线8最新版地址| 欧美视频在线观看精品二区| 中国女人熟毛茸茸a毛片| 久久久99久久久国产自输拍| 亚洲v无码一区二区三区四区观看| 精品国产av一区二区三区蜜臀| 成人午夜精品无码区久久| 羞羞影院午夜男女爽爽免费| 国产主播一区二区不卡在线观看| 无码中文字幕免费一区二区三区| 日韩精品国产一区在线久草| 亚洲国产精品一区二区久久阿宾| 欧美日韩视频在线观看一区| 亚洲欧美国产国产一区二区三区| 日本五十肥熟交尾| 国产一区二区三区欧美在线| 人妻av天堂一区二区三区| 在线观看一区二区国产欧美| 已满十八岁免费观看电视剧软件下载| 91亚洲视频在线免费观看| 中国少妇无码专区| 免费看60分钟涩涩视频| 色久悠悠婷婷综合在线亚洲| 免费无码一区二区三区a片18| 黄色一级在线视频| 日本很黄色的网站一区免费观看| 99热门精品一区二区三区无码| 久艹在线观看视频| av久久悠悠天堂影音网址| 丁香开心五月婷婷精品伊人| 国产视频手机在线观看| 黄页免费视频网站国产一区| 激情五月婷婷久久| 免费成人网一区二区三区 | 成人国产精品久久久按摩| 黄色免费在线视频| 亚洲欧美中文字幕在线观看| 黄色网页在线播放| 在线免费观看尤物色视频网站 | 精品亚洲77777www| 美女黄网站人色视频免费国产| 国产精品久久久夜夜高潮夜夜爽| 在线观看+国产+免费| 国精产品国语对白东北| 18+在线看视频| 东京亚洲女图片在线观看| 成人亚洲欧美日韩在线观看| 日韩美女精品一区在线视频| 欧美丰满熟妇xxxxx| 蜜桃又黄又粗又爽av免| 美女粉嫩极品国产在线2021| 四lll少妇BBBB槡BBBB| 日韩欧美国产一区呦呦91| 国产av深夜精品福利专区| 在线观看视频国产免费网站观看 | 久久久久久国产精品免费看| 成人黄色在线观看| 欧美+国产+中文| 一级黄片亚洲一区二区三区| 欧美日韩精品一区二区视频| 色综合色欲色综合色综合色综合r| 精品久久久久久无码中文字幕漫画| 大战丰满大白屁股女人| 中出あ人妻熟女中文字幕| 国产精品青草综合久久久久99| 国产日韩欧美区二区三区四区| 酒吧+天海翼+影音先锋| 制服丝袜在线视频| 视频一区视频二区制服丝袜| 日本乱妇乱子视频网站| 中文字幕在线视频第一区二区 | 亚洲精品一区三区三区在线观看| 99精品国产免费观看图片| 天堂网www在线资源最新版| 色偷偷人人澡人人爽人人模| 国产精品成熟老妇女| 妺妺窝人体色88888美女吗| 成人在线手机视频| 992tv成人国产福利在线观看| 老熟妇乱子交视频一区| 国产成人福利av综合导航| 日韩免费一区二区三区| 午夜乱码爽中文一区二区| 羞羞色院91精品网站| 欧美激情一区二区三区视频| 精品偷自拍另类在线观看 | 免费精品成人在线永久观看| 97精品无人区乱码在线观看| 国产精品情侣熟女毛片对白看片| 欧美日韩国产免费观看一区二区| 国产日韩欧美中文另类| 国产精品三级av三级av三级| 亚洲成人久久国产精品| 精品久久久久久无码中文字幕漫画| 欲色影视天天一区二区三区色香欲| 日韩欧美国产一区二区三| 国产精品一区二区三区四区亚洲| 午夜福利不卡在线视频| 欧美日韩视频在线观看免费| 亚洲aⅴ天堂av天堂无码麻豆| 人妻上司部长OL北岛玲| 婷久久狠狠一区二区三区| 青青国产香蕉视频在线观看| 美女成人亚欧色区视频网| 国产+综合+免费| 国产特黄大片aaaa毛片| 0855午夜福利| 国产一区二区三区在线| 日日噜噜夜夜狠狠久久丁香五月 | 亚洲色成人中文字幕网站| 国产曰又深又爽免费视频| 亚洲一区二区三区av无码| 四虎永久在线精品免费视频观看| 国产精品毛片日韩毛片视频| 国产精品日韩av网站国产女人 | 欧美天堂在线视频| 国产精品成人亚洲777| 情人伊人久久综合亚洲| 亚洲处破女av日韩精品| 免费在线观看av网站| 国产精品妇女久久久久久| 久久精品人人做人人爽老司机| 成人乱淫av日日摸夜夜爽节目| 免费+岛国+h动漫| 欧美日韩亚洲tv不卡久久| 91美女诱惑国产精品视频| 91久久精品一区二区三区| 丰满女人无套内谢| 午夜福利理论片高清在线| 白嫩老师肉体videosd| 国产免费一区二区三区视频| 国产免费午夜福利不卡片在线 | 亚洲一区二区天堂| 欧美精品99久久久久久人| 五月天丁香在线观看| 影音先锋+写真+日韩| 亚洲福利国产网曝| 日本高清不卡a免费观看| 国产成人a在线观看网站站| 国产精品成熟老妇女| 91亚洲成a人片在线观看www| 日韩国产成人精品视频| 一区二区三区无码按摩精油| 国产激情99精品久久一区二区| 妇女bbbb插插插视频| 91大神精品在线| 国产精品国产三级国av麻豆| 国产真实乱偷精品视频| xnxx女第一次| 国产无遮挡又黄又爽在线视频| 国产+欧美+日本在线观看| 免费全部高h视频无码软件| 美女黄色视频网站入口在线看| 张柏芝亚洲一区二区三区| 国内精品久久久久久影院| 欧美日韩免费不卡激情在线视频 | 亚洲免费网站观看视频| 成人动漫在线观看免费| 日本一卡2卡3卡4卡无卡免费网站| 真人做爰视频成人观看| 四川寡妇搡BBB爽爽爽| poronovideos黑人极品| 精品99久久久久久| 国产在线精品一区二区三区不卡| 亚洲精品女同激情在线观看| 小B又骚又紧日不死你口述| 国产精品成人一区二区三区吃奶 | 亚洲精品一区二区成人| 亚洲人av在线影院| 热99久久精品这里都是精品| 日韩欧美精品一区二区蜜臀 | 中国熟妇XXXX18| 国产精品一区二区人人爽| 污18禁污色黄网站免费观看| 在线免费观看黄网| 免费无码毛片一区二三区| 成人免费视频国产免费麻豆| www黄色在线观看| 亚洲人成色99999在线观看| 狠狠躁夜夜躁人人爽天天不| 国产二区交换配乱婬| 国产免费福利在线视频| 老汉tv永久视频福利在线观看| 亚洲精品久久久久久蜜臀 | 欧美黑人做爰爽爽爽| 国产精品无需播放器在线观看| 少妇高潮流白浆在线观看| 国产综合精品在线| 久久精品国产免费看久久精品| 四虎成人影视8848亚洲| av网站高清在线免费观看| 亚洲成人在线播放视频| 亚洲免费成人av| 精品乱人码一区二区二区| 久久精品国产久精国产思思!| 亚洲人妻在线播放| 久久婷婷香蕉热狠狠综合| 超级黄18禁色惰网站| 三年在线观看中文免费观看| 免费+岛国+h动漫| 怡红院av一区二区三区| 欧美综合在线观看视频| 17c在线观看免费播放电视剧大全| 日本xxxxx片免费观看19| 亚洲男人的天堂在线aⅴ视频| 天天躁日日躁狠躁欧美| 欧美+日本+亚洲| 国产精品久久久天天影视香蕉| 国产+免费+高潮| 丁香婷婷六月综合交清| 一本加勒比HEZYO熟女| 色哟哟免费视频播放网站| 另类亚洲欧美在线| 国产精品色婷婷久久99精品 | 一本大道苍井空波多野结衣| 尤物在线精品视频| 精品久久久久久久免费人妻| 国产又粗又猛又爽的视频a片| 亚洲一区二区三区高清视频播放| 国产精品人成视频免费软件| 成人福利综合视频免费视频| 国产精品原创巨作av女教师| 国产亚洲一卡2卡3卡4卡网站| 久久久亚洲欧洲日产国码二区| 中文免费高清在线观看电视剧| 中文国产日韩精品av片| 亚洲人成色99999在线观看| 人妻无码一区二区19p| 一区二区三区四区亚洲不卡| 足疗店无套内谢少妇| 中文字幕国产专区欧美激情| 2022色婷婷综合久久久| 婷婷成人综合一区二区三区| 成人免费国产精品视频| 精品国产丝袜黑色高跟鞋美女| 18+在线免费观看| 国产伦久视频免费观看| 国产区在线观看视频| 91麻豆短视频免费观看| 在线观看av免费| 久久中文字幕乱码久久午夜| 国产欧美日韩综合精品二区| 川上优av一区二区线观看| 日韩人妻少妇一区二区| 动漫美女h黄动漫在线观看| 国产美女av在线| 风间由美+五十路| 人妻少妇精品中文字幕AV| 亚洲精品一区二区三区四区高清| 国产黄片av一区二区三区四区| 精品亚洲永久免费aaaa| 国产五月色婷婷六月丁香视频| 26uuu久久噜噜噜噜| 国产精品免费看久久久久久| 麻豆国产av一区二区三区| 国产精品沙发午睡系列| 国产又黄又粗又硬的视频| 久久国产V一级毛多内射| 美女视频黄是免费| 69国产成人精品二区| 国产在线一卡2卡三卡4卡免费| 久久精品国产一级特黄片| 一区二区免费高清观看国产丝瓜 | 国产精品综合一区二区三区 | 天堂在线中文网www| 亚洲欧美一区二区三区日产| 夜夜爽一区二区三区| 久久久福利视频免费观看| 欧美激情videos| 天堂影院在线观看一区二区亚洲| 538prom精品视频线放| av天堂午夜精品一区二区三区| 国产三级在线三级久操欧美| www国产精品视频看看| 久久国内精品自在自线图片 | 久久久噜噜噜久久久午夜| 日本社区在线观看| av色欲无码人妻中文字幕| 亚洲中亚洲中文字幕无线乱码| 日本一区二区三区四区在线| 丰满少妇高潮在线观看| 天堂一区二区mv在线观看| 中文字幕丰满孑伦无码专区| 国产亚洲一卡2卡3卡4卡网站 | www.香蕉视频| 色综合视频一区二区三区44| 亚洲午夜精品一区二区国产| 国产精品视频六区| 77777亚洲午夜久久多人| 99国内精品久久久久久久| 日本不卡在线视频二区三区| 精品国产成人a区在线观看| 婷婷精品综合福利在线观看视频| 玩爽少妇人妻系列| 加勒比色综合久久久久久久久| 亚洲欧美成人aⅴ在线| 日韩成人av在线播放| 扒开粉嫩的小缝喷白浆| 国产午夜精品高清在线观看| 日韩亚洲欧美亚洲欧美亚洲国产 | 久久天天躁狠狠躁夜夜96流白浆| 中文在线观看免费| 12裸体自慰免费观看网站| 亚洲精品久久66国产高清| 亚洲一区二区三区激烈免费视频| 国产又粗又长又硬又爽又黄视频| 日本久久一级网站一欧美精品| 足疗店熟女一88AV| 美女黄色私密视频在线观看免费 | 免费在线观看视频a| 亚洲中国国产av| 天堂va蜜桃一区二区三区| 东方aⅴ免费观看久久av| 久久亚洲精品国产亚洲老地址| 成人嫩草97A片| 国产不卡av免费在线观看| 永久av免费在线观看| 欧美一级特黄特色大片免费观看| 久久天天躁日日躁狠狠躁| 欧美一区二区三区四| 亚洲综合欧美日韩| 不卡色老大久久综合网| 国产后入激情视频在线观看 | 欧美视频网站www色| 国产精品久久久久久久久久免| 欧美+日韩+国产在线| 妙龄女被老汉压身小说作者其他小说 | 国产高清视频一区| 中文字字幕国产精品| 国产精品美女.www爽爽视频| 国产精品免费观看调教| 亚洲欧美精品久久久久| 台湾+无码+先锋影音| 国产a∨国片精品白丝美女视频| 国产精品永久免费视频| 菠萝菠萝蜜视频免费观看播放| 色欲AⅤ亚洲情无码AV蜜桃| 真实国产精品视频400部 | 熟妇乱子伦海角社区| 成人免费无遮挡无码黄漫视频| 国产91勾搭技师精品| 少妇人人凹凸XX凹凸爽凹凸| 亚洲乱码精品一区二区三区国产| 在线观看片免费人成视频播放 | 日本+超碰+专区| 欧美日韩另类图片亚洲视频| 狠狠色丁香婷婷亚洲综合| 精品久久久无码中文字幕边打电话| 精品一区二区三区四区视频观看| 久久亚洲春色中文字幕久久久| 秋霞鲁丝片Av无码少妇| 久久久久久久久人妻福利免费看| 两个人日本www免费版| 在线观看精品日中文字幕| 欧美热久久这里只有精品| 洗澡被公强奷30分钟视频| 强迫凌虐淫辱の牝奴在线观看| 在线视频+亚洲+人气| 国产美女的第一次好痛在线看 | 亚洲精品久久酒店| 久久99精品久久久久久hb| 18+成人在线观看| 天堂一区二区在线免费观看 | 91香蕉精品在线观看视频 | 欧美+成人精品+三级在线| 天天摸夜夜添狠狠添高潮出水| 美足+丝袜+影音先锋| 亚洲Av永久无码精品尤物| 成·人免费午夜无码视频| 亚洲国产精品一区二区制服换脸 | 懂色av一区二区三区四区五区| а√天堂+地址+在线| 亚洲国产精品久久久久婷婷图片| 手机日韩精品视频在线看| 久久亚洲精品成人无码网站| 亚洲精品制服丝袜四区| 中文字幕欧美精品一区二区三区| 三级欧美韩日大片在线看| 亚洲视频在线免费观看一区二区| 国产成人精品综合| 免费中文字幕在线观看| 成年人免费看的视频| 丰满大乳奶做爰ⅩXX视频| 伊人色综合久久天天五月婷| 亚洲+欧美+视频| 成人网站免费大全日韩国产| 国产亲妺妺xXXX888869| 啪啪视频最新地址发布页| 日日摸夜夜添夜夜添欧美毛片小说| 黄片久久久久久久黄片久久| 日本欧美大码a在线观看| 亚洲精品视频在线观看网址网站 | 国产欧美日韩亚洲一区二区| 一区一区三区产品乱码亚洲| 久久亚洲精品国产精品紫薇| 国产亚洲欧美专区精品| 亚洲一区二区三区日韩在线视频 | 十八禁污视频在线观看无遮挡| 国产午夜精品18| 久久久www成人免费看片| 99福利资源久久福利资源| 7799国产精品久久久久| 午夜精品一区二区不卡二卡| 人妻av中文字幕久久| 苍井空第一次激烈高潮视频 | 少妇太爽了在线观看视频| 97色伦综合在线欧美视频| 国产午夜精品一区二区三区| 日日噜噜夜夜狠狠久久丁香五月| 精品999久久久久久中文字幕| 巜饥渴的少妇hd高清| 无码人妻aⅴ一区二区三区玉蒲团| 女人床上高潮淫语HD| 国产高清乱理伦片中文小说| 日韩欧美亚洲精品高清国产| 一区二区免费视频中文乱码| www.4虎影院| 91成人在线免费观看| 91在线91拍拍在线91| 人妻av中文无码| 欧美黑人xxxx又粗又长| 国产欧美综合在线观看第十页| 人人澡人人澡人人看添| 成人做爰黄AA片免费看李晨视频| 8090成人午夜精品无码| 81精品人妻一区二区三区蜜桃| 91啦丨九色丨刺激中文| 人妻熟女av一区二区三区| 日韩精品无码一区二区三区| 午夜成人精品福利网站在线观看 | 九九99久久精品综合| 免费黄色在线网站| 亚洲av色噜噜噜久久久女同| 精品久久香蕉国产线看观看亚洲| 大地资源二中文在线观看下载| 99e久热只有精品8在线直播| 久久综合亚洲欧美成人| 最新中文字幕免费在线观看| 高清午色夜国产精品| 少妇人妻综合久久中文字幕| 亚洲日韩在线观看免费视频| 欧美日韩另类图片亚洲视频| 国产在线观看免费播放电视剧| 手机av在线不卡| 亚洲av无码一区二区乱子仑| 日韩人妻无码一区二区三区| 国产+欧美+日本| 99久久99久久精品国产片| 精品一区二区三区国产| 浙江妇搡BBBB搡BBBB| 日韩+成人+自拍| 日韩欧美亚洲精品成人福利| 成年人网站免费看| 国产又黄又爽又粗又猛的网站| 一级婬片A片AAAA片老牛| 日韩精品福利片毛片在在线看的| 久久精品中文字幕有码| 国内精品九九久久久精品 | 少女国产免费观看高清电视剧大全| 一个人看的国产精品视频| 精精国产欧美一区二区三区 | 国产美女久久久免费牲交| 久草香蕉在线视频国产乱码精品一区二区三上| 久久影视久久午夜| 91丨porny丨国产麻豆| 欧美一区二区三区四区91| 91精品国产免费久久久久久| 东北高大丰满BBBBzBBB| 欧美视频中文字幕| 五月天婷婷激情网| 欧美日韩在线视频一区| 天堂а√中文在线| 国产成人久久精品二区三区| 久久精品中文字幕一区二区三区| 国产精品r级最新在线观看| 日本欧美一区二区三区乱码| 成人免费无遮挡无码黄漫视频| 强行交换配乱婬bd| 超碰在线最新地址| 欧美日韩一区在线播放| 毛片久久久久久久| 久久精品亚洲天堂| 午夜福利试看120秒体验区| 亚洲美女网站免费观看一区| 久久精品亚洲精品国产色婷| 欧美国产又粗又长又爽视频| 天天视频在线观看免费精品| www黄色com| 无码专区视频精品老司机| 青青视频在线播放| 国产精品九九九久久综合| 国产一二三四视频在线观看| 少妇爆乳无码专区| 国产成人午夜片在线观看高清观看 | 午夜精品一二三区| av片在线观看免费| 国产日韩综合av在线观看一区| 亚洲欧美闷骚少妇影院| 亚洲精品无码AⅤ中文字幕蜜桃| 亚洲欧美中文字幕在线观看| 亚洲一区二区三区激烈免费视频 | 7777久久久国产精品消防器材| 国产综合在线观看一区精| 亚洲专区在线视频| 免费播放电视剧的| 丰满人妻被黑人中出849| 精品无码乱码av| 欧美日韩中文麻豆| 国产精品污污网站在线观看| 又大又粗又硬又爽黄毛少妇| 色噜噜www亚洲男人天堂| 99热精国产这里只有精品| 国产高清在线一区| 农村骚话淫语对白| 中文字幕亚洲精品一区| 中文字幕一级二级三级| 久久久精品国产sm调教网站| 国产免费一级淫片a级中文| 天天天欲色欲色www免费| 免费人成再在线观看视频| 亚洲中国国产av| 超碰在线最新地址| 婷婷激情五月天综合丁香社区| 伊人久久精品亚洲午夜| 日韩精品人妻系列无码专区免费 | 91精品国产色综合久久不8| 中文字幕精品亚洲无线码vr | 久久久久久国产精品免费看| 久久精品国产久精国产思思!| 国产熟女一区二区三区+视| 91久久久久久国内免费视频| 久久精品+中文字幕+有码| 国产精品亚洲欧美一区二区| 五月天婷亚洲天综合网手机| 在线观看特色大片免费网站| 污18禁污色黄网站免费观看| 日韩特级无码av中文字幕| 精品女同一区二区三区免费站| 亚洲乱码日产精品一二三| 国产成人一区视频在线播放| 日韩精品一区二区在线观看| 国产精品一二三级| 五十路の完熟豊満无码| 黄色一区二区三区视频| 最新国产福利在线观看精品| 人妻中文字系列无码专区| 亚洲国产精品一区二区久久阿宾| 思思re热免费精品视频66| 永久免费未满蜜桃| 美女精品a网站又爽又色| 日韩特黄一级片一区二区三区| 国产免费国语一级特黄aa大片| 国产高潮在线观看www| 日韩一区二区三区视频| 国产免费观看高清电视剧在线观看| 少妇乳大丰满高潮喷水| 福利一区二区在线视频网| 国产精品69毛片高清亚洲| 中文在线字幕观看电视剧17.3| 欧美熟女五十路视频一区| 2021年国产精品自线在拍| 欧美乱码精品一区二区| 污污视频网站在线免费观看 | 黑人强辱丰满的人妻熟女| 久久久久国产视频| 久人人爽人人爽人人片av| 国产+日韩+欧美精品| yes4444视频在线观看| 欧美视频在线观看免费www| 日本大香蕉中文在线视频| 熟妇乱子伦海角社区| 亚洲三区在线观看内射后入| 国产激情一区二区三区小说| 97久久综合区小说区图片区| 日韩精品+一区二区+av在线| 亚洲+日韩+欧美在线观看| 非洲黑妞xxxxhd精品| 无码人妻一区二区一牛影视| 俺去俺来也www色官网cms| 久久中文精品无码中文字幕下载| 日韩视频中文字幕精品偷拍| 日本+高潮+免费| 无码人妻精品一二三区免费| 中国农民工hd自拍xxxx| 日韩欧美高清在线观看| 欧美在线视频免费播放| av中文字幕+潮喷+在线观看| 熟妇人妻无乱码中文字幕蜜桃| 一区二区三区日韩中文字幕欧美 | 国产+欧美在线观看| 9299yy看片婬黄大片软件| 婷婷青草丁香精品视频在线观看| 亚洲国产精品一区二区美利坚| 免费大片一级a一级久久三| 97免费公开视频| 亚洲伊人精品伊人7777| 国产主播一区二区不卡在线观看 | 337p日本欧洲亚洲大胆裸体艺术| 天天干天天射天天爽| 色欲香天天天综合网站| 中文字幕视频在线欧美一区| 日韩激情一区二区三区| 手机在线一区二区三区| 午夜影视在线观看免费| 无码人妻精品一二三区免费| 风流少妇野外精品视频| av岬奈奈美一区二区三区| 亚洲国产欧美一区二区三区丁香婷| 欧美三日本三级三级在线播放| 亚洲美女黄色一级啪啪视频| 欧美综合婷婷欧美综合五月| 国产999久久高清免费观看| 怡春院熟女精品少妇aⅴ久久 | 中文字幕人妻丰满熟妇| 美女羞羞视频网站| 97人伦色伦成人免费视频| 熟妇精品一区二区三区四区| 午夜成人片在线观看免费播放| 国产+欧美+激情| 国产淫语对白说脏话aV| 欧美一级视频免费观看| 中文在线8资源库| 日韩和的一区二在线| 老牛影视AV牛牛影视av| 国产成人精品午夜福利在线观看| 久久精品aaaaaa羞羞羞| 中文字幕+人妻+少妇| 国产寡妇树林野战在线播放| 91看片淫黄大片一级在线观看| 成人在线午夜视频| 无码人妻精品中文字幕不卡| а天堂中文最新一区二区三区| 茄子av在线观看| 国产精品一区二区av片| 一本色道久久综合亚州精品蜜桃| 国内偷自第一区二区三区| 奇米777四色成人影视| 国产亚洲又爽ⅴa在线天堂| 大波美女一级a久久午夜| 成人羞羞视频在线观| 欧美+香蕉网+久久| 国产一级内射91小草| 欧美综合天天夜夜久久| 视频一区二区中文字幕在线 | 日韩欧美一区二区在线视频| 亚洲中文字幕一区二区麻豆| 久久99国产精品尤物| 亚洲第一视频在线播放 | 末成年毛片在线播放| 日本高清在线www3344| 制服丝袜av无码专区| 国产视频一区二区在线播放| 国产成人综合久久精品推荐| 日本xxxxx片免费观看19| 九九九精品成人免费视频小说| 欧美热在线视频精品999| 国产福利久久一区二区久久| 久久aⅴ人妻少妇嫩草影院| 欧美乱码熟妇色精精品| 一区二区午夜福利在线看| 高潮+喷水+调教| 亚洲国产欧美在线人成人| 一本一本久久a久久精品综合不卡 日本在线一区二区三区欧美 | 亚洲第一视频在线播放| 女同久久精品国产99国产精品| 99热热久久这里只有精品| 97久久精品亚洲中文字幕无码| 2021少妇久久久久久久久久 | 在线播放国产精品| 黄色片网站在线观看| japan丰满人妻videoshd高清 | 艳妇乳肉豪妇荡乳av无码福利| 国产一级淫片免费放大片| 日韩欧美亚洲国产精品幕久久久| 亚洲国产99精品国自产拍| 淫色一非一区二区朝鲜| 国产精品亚洲а∨天堂2021 | 亚洲欧美中视频国内自拍| 国产91在线免费观看视频| 老熟女北岛玲Ⅴ8AV| 亚洲另类国产精品中文字幕| 99久久国产综合精品五月天喷水| 亚洲va欧美va天堂v国产综合| 日韩女优一区二区三区在线播放| 国产亚洲视频中文字幕不卡| 一本久久a久久精品综合夜| 99国产精品免费播放| 国产精品黄色资源免费在线观看| 日韩裸体人体欣赏pics| 人妻精品一区二区在线视频| 成人a大片在线观看| 欧美精品黄片一区二区三区| 五月激激激综合网色播| 国内精品久久久久久网站| 国产精品r级最新在线观看| 熟女老阿V8888AV| 国产又色又爽无遮挡免费动态图 | 久久半精品国产99精品国产| 国产精品污污在线观看入口 | 国产乱子伦精品免费女| 一点不卡v中文字幕在线| 97在线播放免费观看全集电视剧 | 国产+r级+磁力链接| 国产欧美一区二区三区午夜精品 | 国产精品一区二区久久不卡| 麻豆产精品一二三产区区| 又大又紧又粉嫩18p少妇| 风流少妇一区二区三区91| 手机免费av在线| 亚洲人成综合网站7777香蕉| www黄色网址com| 老子影院在线观看理论片| 4399午夜理伦免费播放大全| 久久精品国产乱子伦| 久久婷婷五月综合色国产免费观看| 中文字幕aⅴ在线视频| 日韩欧美三级在线| 一本大道东京热无码aⅴ| 国产午夜福利久久精品| 二区视频在线观看| 亚洲七七久久桃花影院| 日韩在线亚洲欧美另类青青| 风韵犹存大屁股99AV| 国产公开久久人人97超碰| 国产成人欧美一区二区三区在线| 四虎成人精品永久网站| 欧美综合婷婷欧美综合五月| 亚洲av成熟国产一区二区三区| 亚洲欧美中文字幕变态另类| 偷青青国产精品青青在线观看| 国产在线观看www污污污| 亚洲精品成人天堂一二三 | 蜜桃视频一区二区三区在线观看| 欧美精品一区二区视频| 肉体公尝HD中文字幕| 在线视频在线观看国产一区| 香蕉久久国产超碰青草| 日本在线观看一区| 日韩人妻无码中文字幕视频| 亚洲毛片在线免费观看| 美女视频一区二区| 国产+日本+高潮| 空姐吹箫完整版mv| 亚洲人成网址在线播放| 丁香花影院在线观看免费播放电视剧| 不卡一区二区在线视频观看 | 欧美在线观看免费播放视频 | 精品国产乱码一区二区三区小黄书| 五十路完熟豊満交尾| 韩国三级l中文字幕无码| 国产91精品久久久久91痣美人| 国产亚洲精品第一综合不卡| 1000部拍拍视频18勿入| 免费成人进口网站| 久久久国产精华液999999| 97久久精品亚洲中文字幕无码| 国产三级在线免费观看| 国产精品欧美三区四区五区| 久久精品国产精品亚洲艾草网| 在线观看一区二区国产欧美| 成人+国产+欧美| 中文无码乱人伦中文视频播放| 欧美亚洲日韩在线在线影院| 99久久久久免费精品国产 | 久久亚洲国产五月综合网| 国内自拍视频在线播放| 又色又爽又黄又无遮挡的网站| 中文字幕在线精品中文字幕导入| av一区二区在线播放| 亚洲无线码在线一区观看| 无码无套少妇毛多69xxx| 国产美女极度色诱视频www| 日本在线免费播放| 成人综合另类国产色视频| 国产精品免费视频网站 | 久久www免费人成精品高清| 成人精品综合免费视频| 国产羞羞的视频在线免费观看| 少妇与黑人xoyyyyy视频| 欧美激情中文字幕综合八区| 790公侵犯美丽人妻| 精品国产大片久久久久久久久| 色678黄网全部免费| 妺妺窝WWW仙踪林粗大野| 欧美亚洲另类日韩在线网页| 国产成人午夜福利高清在线观看 | 在线亚洲一区二区| 在线观看+www| 亚洲vr国产美女精品久久久久| 亚洲成AV人片一区二区梦乃| 午夜yy一区二区三区视频| 99久久99热这里只有精品| 干离异富婆的骚B| 51妺妺嘿嘿午夜成人A片| 国内精品在线观看看| 国产尤物精品自在拍视频首页 | 中文字幕在线永久视频2018| 中美日韩精品在线免费观看 | 黄色av小说在线观看| 亚洲欧美精品午睡沙发| 亚洲天堂av一区二区三区| 亚洲欧美洲成人一区二区三区| 日韩av大片在线观看| 亚洲精品美女久久久久9999| 久久精品国产自在天天线| 国产日韩欧美91| 国产公开久久人人97超碰| 视频一区二区中文字幕在线| 在线亚洲精品国产二区图片欧美| 色欲色香天天天综合网站| 亚洲国内精品自在线影院牛牛 | 中文字幕+媚药+日韩精品| 超高清欧美videossexopor | 91视频成人免费| 亚洲亚洲人成网站77777| 国产超碰人人做人人爽av大片| 国产高清精品福利私拍国产写真| 精品乱码一区二区三区四区| 西西人体窝窝仙踪林| 成人做爰a片b站| 亚洲美女中字幕视频在线观看| 国产成人精品久久久| 999精品视频在这里| 国产精品综合在线| 亚洲精品午夜无码成人| 亚洲寝取熟女av一区二区三区 | 一级特黄aaaaaa大片| 日本熟妇japanese丰满| ts人妖另类精品视频系列| 99久久精品免费观看国产| 午夜福利影院私人爽| 国产精品美女无遮挡在线观看| 欧美一片毛国产在线视频| 经典三级+少女潘金莲| 18禁美女无遮挡在线看| 国偷自产一区二区三区在线视频| 国产精品亚洲综合色拍| 无码人妻一区二区三区免费视频 | 欧美成人黄色免费在线网站| 欧美一区二区最爽乱淫视频免费看| 免费无码又爽又刺激动态图| 国产高清精品软件| 日韩一区二区av网站在线观看| 国产精品igao视频网| 青青草原亚洲视频| 亚洲精品成人区在线观看| 亚洲日本高清成人aⅴ片| 少妇张慧献身1一5集在线播放| 最新国产福利在线观看精品| 欧美日韩成人在线免费观看 | 无码+磁力+日本| 欧美成人精品不卡在线观看| 国产成人久久久77777| 国产乱子经典视频在线观看| 日韩亚AV无码一区二区三区| 午夜影院在线观看免费| 亚洲国产欧美日韩在线人成| 国产自偷在线拍精品热| 欧美精品在线观看第一页| WWW亚洲色大成网络.COM| 能免费在线观看av的网站| 男女污在线亚洲午夜视频| 福利片一区二区三区| 张津瑜国内精品www在线| 欧美日韩国产无线码一区| 足疗店无套内谢少妇| 中文字幕日韩一区二区三区不卡 | 天天摸天天摸色综合舒服网| 欧美日韩精品亚洲色图视频免费 | 国产美女精品中文网蜜芽宝贝| 久久精品国产亚洲av热一区| 97成人做爰a片无遮挡直播| 《喂奶人妻厨房HD》| 日韩欧美一级视频在线观看| 国产呦交精品免费视频| 久久国产精品午夜福利看片| 亚洲成人在线免费观看| 欧美超猛烈一区二区三区| 国产成人精品精品日本亚洲| 无人码一区二区三区视频| 欧美一区二区精品在线观看视频| 四个人妻互换不戴套| 91啦丨露脸丨熟女| 精品国产不卡一区二区三区| 日本久久一级网站一欧美精品| 日本欧美一区视频在线观看| 欧美日韩在线四区| 青草久久人人97超碰| 全部免费播放在线毛片| 中文字幕av在线播放| 亚洲成a人v欧美综合天堂麻豆 | 嫩草嫩草嫩草久久水拉丝了| 一个人午夜观看在线中文字幕| 黄色片网站在线播放| 48手+真人+无码| 日本黄色视频在线观看一区| 欧美激欧美啪啪片免费看| 国产+裸体+视频| 永久综合精品网站在线免费观看 | 777米奇色888狠狠俺去啦| 国产中文字幕在线观看| www.香蕉.com| 91超碰在线播放| 久久精品免费成人| 精品视频一区二区三区中文字幕| 亚洲AV日韩AV永久无码网站| 国产主播一区二区| 国产精品美女久久久久av爽| 亚洲综合视频在线看一区二区三区| 亚洲制服丝袜中文字幕国产| 国产成人久久精品亚洲小说| 九九综合va免费看| 国产精品xxx在线观看a| 黑外教弄人妻波多野结衣| 国产乱码久久久久久| 免费+日本+国产| 久久综激情丁香开心婷婷| 中文人妻av久久人妻18| 国产自偷亚洲精品页65页| 粗大猛烈进出高潮视频免费看| 天堂√最新版在线| 亚洲成品网站源码中国有限公司| 激情午夜福利在线视频观看 | 菠萝蜜影院免费播放电视剧软件| 成人动漫在线观看免费| 国产男女视频在线免费观看| 张柏芝亚洲一区二区三区| 91香蕉国产线观看免费永久| 精品国偷自产在线视频99| 国产69精品久久久久久久久久| 亚洲精品制服丝袜四区 | 91在线视频免费看| 亚洲综合色区另类小说| 亚洲婷婷综合久久一本伊一区| 国产精品+女人呻吟+在线观看| 久久国产精品伦理片国产乱| 妺妺窝色77777777野大粗| 亚洲精品久久久久久中文传媒| 亚洲va久久久噜噜噜熟女软件| 无码人妻少妇久久中文字幕蜜桃| 中文字幕日韩一区二区三区不卡| 日韩毛片+18+成人网| 中文字幕一卡二卡三卡| 欧美久久久久久久久高潮视频| 免费毛片全部不收费app下载| 国产乱人乱品精一区二区三区 | 一本色道久久精品| 污欧美视频在线免费观看| 欧美精品久久一区二区| 成人国产精品久久久春色| 小處女末发育嫩苞AV| 一区二区三区在线观看精| 欧美成人aaaa免费全部观看| 亚洲一区二区三区无码影院| 欧美老妇bbwhd| 欧美成人精品高清在线观看 | 亚洲国产视频精品一区二区| 亚洲国产日韩欧美综合另类bd| 国产成人三级一区二区在线观看一 | 亚洲国产精品第一区二区| 久久久久xxxx| 成人精品gif动图一区| www.四虎色情.com| 91精品国产麻豆久久久久久| 亚洲精品成a人在线| 妺妺窝人体色77777777| 欧美人牲交a欧美精区日韩| 天天爽夜夜爽国产精品视频| 亚洲中文字幕av一区二区三区| 中国做爰国产精品视频| 国产亚洲视频免费播放| 久久综合婷婷成人网站| 无码人妻一区二区三区免费视频| 99国产精品国产精品精品| 精品人妻系列乱码一区二区三区 | 久久尤物免费一区二区三区| 亚洲综合久久一本伊一区| 国产中文字幕免费在线观看 | 农村欧美丰满熟妇xxxx| 亚洲一区二区经典在线播放| 欧美热在线视频精品999| 一级香蕉视频在线观看| 亚洲色老汉av无码专区最| 淫臀艳妇(全)王雪琴| 亚洲黄色中文字幕免费在线观看 | 亚洲国产欧美日韩在线人成| 少妇一级娃片淫片象免费放| 国产女人18毛片水真多1| 国产女主播白浆在线观看| 97午夜理论片影院在线播放| 曰韩亚洲av人人夜夜澡人人爽| 精品成在人线av无码免费| 亚洲风情亚aⅴ在线发布| 嫩草影视911香蕉| 麻豆日产精品卡2卡3卡4卡5卡 | 亚洲一区福利视频| 国产精品码在线观看0000| 国产又粗又长又硬又爽又黄视频 | 亚洲欧美日韩中文字幕一区二区| 丰满大乳奶做爰ⅩXX视频 | 2021国产精品午夜久久| 日韩精品久久久久久久的张开腿让| 亚洲成综合人影院在院播放| 欧美国产日韩第一页| 99在线精品视频| 久久一本加勒比波多野结衣| 国产精品国产三级在线...| 久久久一区二区三区国产精品| 久久精品国产第一区| 日本国产成人国产在线播放 | 激情久久av一区av二区av| 国产第一页浮力影院草草| 亚洲视频手机在线观看| 丰满少妇高潮久久三区| 久久久久xxxx| 国产情侣在线播放| 午夜理论片yy8860y影院| 国产精品日韩欧美一区二区| 国产黑丝在线观看| 第一页中文字幕在线观看| 蜜臀国产精品久久久久久| 在线看片免费人成视频久网| 久久久久久国产精品| 99国产精品污污污网站免费看| 久久精品国产一区二区| 亚州国产av一区二区三区伊在 | 国产在线欧美精品| 国产+另类+乱片| 国产三级不卡在线观看视频| 国产乱xxxxx97国语对白| 国产精品久久久久久久久久久痴汉| 国产97人人超碰cao蜜臀| 妺妺窝色77777777野| 91精品国产色综合久久不8| 国产伦理五月av一区二区| 国产精品主播在线| 国产精品久久久久久久久潘金莲| 搡老熟女老女人一区二区| 波多野结VS黑人无码| 国产在线观看免费播放电视剧| 伊人亚洲大杳蕉色无码| 欧美精品久久一区二区| 37p粉嫩大胆色噜噜噜| 国产亚洲成人av| 国产一级特黄aaa大片评分| 亚洲美女网站免费观看一区| 亚洲精品国产精品乱码不99| 亚洲国产精品日日爽爽视频| 国产精品久久久久久超碰| 男人午夜免费视频观看在线| 成人做爰黄A片免费看三区蜜臀| 欧美+国产+极品| 国产伦子伦一级A片免费看小说| 国产精品久久久久久成人| 国内精品麻豆美女在线播放视频 | 日韩特级无码av中文字幕| 天天躁日日躁狠躁欧美| 国产午夜精品福利视频| 免费+国产+白浆| 别揉我奶头~嗯~啊~少妇| 日本无码人妻波多野结衣| 欧美三级在线播放| 无码人妻精品中文字幕不卡| 尹人久久久香蕉精品| 天堂在线中文网www| 欧美xxxx精品另类| 亚洲理论中文字幕| 白浆+高潮+蜜桃| 99精品国产免费观看图片| 国产美女视频一区二区三区| 国产精品欧美久久久久久日本一道| 日韩中文在线播放| 白丝+美女+高潮| 人妻OL佐々木あき破解| av动漫在线观看一区二区| 国产在线观看免费播放电视剧| 黑外教弄人妻波多野结衣| 日韩成人av福利在线| 精品一区二区三区四区| 国产区在线观看视频| 美女黄网站免费福利视频| 久久久精品视频网站| 久草在线视频免费资源观看| 国产又粗又猛又爽的视频a片| 青椒国产97在线熟女| 偷拍做爰吃奶视频免费看 | 午夜看片在线观看| 日韩精品人妻无码久久影院| 日本一二三不卡精品视频免费| av最大免费网站在线观看| 国产不卡av免费在线观看| 久久99er精品国产首页| 国产+免费+综合| 国产精成人品日日拍夜夜| 高潮+国产+白浆| 亚洲成aⅴ人片在线观| 亚洲а∨天堂+久久精品| 中文字字幕永久在线观看| 少妇做爰全过内谢| 亚洲日韩av一区二区三区中文| 国产精品嫩草影院久久久| aaa午夜级特黄日本大片| 波多野结衣中文字幕一区二区三区 | 黄色av一区二区三区四区| 亚洲最大av在线| 一个人午夜观看在线中文字幕| 亚洲国产91福利在线播放| 国产+午夜福利+精品一区| 你懂的欧美一区二区三区 | 亚洲成a人片在线观看无遮挡| 亚洲系列中文字幕| 国产在线观看免费人成视频| 欧美视频在线观看一区| 少妇p可以进入的视频网站| av中文字幕+潮喷+在线观看| 欧美日韩国产高清一区二区三| 国产成人综合久久亚洲精品| 99久久精品久久久久久动态片| 97国产精品久久| 麻豆精品无人区码一二三区别| 日韩欧美+亚洲+国产| 日本欧美一区二区三区乱码| 素人fc2av清纯18岁| 亚洲情a成黄在线观看动| 99久久免费精品国产72精品| 国产亚洲精品福利视频| 亚洲国产成人久久久网站| 夜夜国自一区+1080P| 亚洲成在人网站av天堂| 粉嫩小泬18XXXⅩ高潮| 波多野结衣《温泉人妻》| 2022年国产精品一区二区| 欧美大片一区二区三区视频| 欧美成人aaaaaaaa免费| 中文字幕+乱码+中文字幕电视剧| 粗大的内捧猛烈进出视频| 97色精品视频在线观看| 激情文学午夜视频在线观看| 波多野结衣精品一区二区三区| 国产精品久久久久成人 | 国产96精品久久久久久妇| 国产92成人精品视频免费| 麻豆妓女爽爽一区二区三| 爆乳亚洲一区二区'| 在线视频在线观看国产一区| 亚洲一区二区三区在线观看精品中文| 精品国产色综合久久| 国产成人在线公开免费视频| 69人妻精品丰满熟女区| 亚洲综合区图片小说区| 国产亚洲欧美精品久久久| 亚洲欧美视频在线观看| 久久天天躁狠狠躁夜夜97| 国产农村乱人伦精品视频| 在线看片人成视频免费无遮挡| 亚洲欧洲精品成人久久曰影片 | 中文亚洲精品字幕在线观看| 精品人妻中文字幕在线| 国产欧美一区二区三区午夜精品 | 波多野结衣视频在线国产二区| 国产又粗又硬又大爽黄| 免费av不卡在线观看| 久久久国产精品一级夜夜爽| 亚洲欧美日韩_欧洲日韩| 国产精品二区视频| 国产精品丝袜www爽爽爽| 99re视频在线| 国产精品国产成人国产三级| 国产精品破处一区二区三区| 欧美群伦AAAAA片| 亚洲欧美一区二区精品久久久| 最新国产精品拍自在线观看| 欧美超碰精品中文字幕在线| 伊人久久久久久久久| 日韩欧美中文字幕在线播放| 年轻内射无码视频| 52avavjizz亚洲精品| 国产+日本+另类| 欧美人牲交a欧美精区日韩| 少妇乳大丰满高潮喷水| 最新国产在线观看中文字幕| 国产成人精品日本亚洲麻豆| 亚洲男人天堂一区二区在线观看 | 欧美日韩国产精品成人| 美女视频黄的全免费视频网站| 国产综合色在线精品| 亚洲男人天堂一区二区在线观看| 国产日韩欧美亚洲综合v精品| 亚洲精品久久久久久不卡精品小说| 69国产成人精品二区| 国产成人精品免费视频大全五级| 国产精品永久免费av观看| 大桥未久+无码+中文字幕| 欧美视频精品免费覌看| 国产精品久久久久国产三级传媒| 精品视频在线免费播放| 国产av巨作丝袜秘书| 精品无人乱码一区二区三区的特点| 久久久国产精品免费| 99精品久久久久久琪琪| 日韩欧美中文字幕在线视频四区 | 国产精品久久久久久久一级| 国产+日产+欧美视频| 2020狠狠狠狠久久免费观看| 国产+高潮+中出| av一区二区无人区在线观看| 中美日韩精品在线免费观看| 国产+亚洲+制服| 一区二区三区日韩亚洲中文视频| www超碰97com| 日韩一区二区av网站在线观看| 国产午夜亚洲精品不卡在线观看| 国产对白叫床清晰在线播放图片| 国产又爽又粗又猛的视频| 91视频国产一区| 日韩一区欧美激情校园春色| 四虎成人精品永久网站| 99香蕉国产精品偷在线观看| 国产无遮挡又黄又大又不要vip| 欧美大片18禁aaa片免费| 亚欧洲在线视频免费观看| 制服丝袜诱惑在线观看一二区| 久久99精品久久久久久HB无码 | 苍井空第一次激烈高潮视频| 欧美亚洲国产日韩一区二区| 在线视频免费观看一区国产| 久久久久久久91| 中文字幕丰满孑伦无码专区| 国产精品女同一区二区三区| av中文字幕网免费观看| 国产一区二区自拍视频| 欧美+日韩+国产在线| 国产偷国产偷亚洲高清人乐享| 主播亚洲韩国一区二区黄片| 中文字幕在线影视| 亚洲情a成黄在线观看动| 国产在线清纯极品美女援交| 99久久精品免费国产亚洲| 色欲AV伊人久久大香线蕉影院| 免费观看已满十八岁电视剧动漫星辰| 西西4444WWW无码精品| 国产91在线免费观看视频| 国产+亚洲+制服| 日韩v亚洲v欧美v精品综合| 亚洲乱码国产乱码精品精乡村| 欧美老妇bbwhd| 国产精品99久久久久久人红楼| 韩国巜干柴烈火〉床戏| 欧美亚洲国产另类第一页| 91精品视频一区二区| 乡下借宿的丰满人妻| 天堂中文在线8最新版地址| 丰满的三级少妇欧美久久| 一本加勒比HEZYO无码| 无码中文字幕日韩专区视频| 久久露脸国语精品国产91 | 免费一级特黄特色毛片久久看| 国产精品无打码在线播放| 国产第一页浮力影院草草| 成人在线视频网址| 午夜久久久久久久久久一区二区| 国产精品久久久久婷婷| 欧美亚洲国产精品久久高清| 日韩欧美中文字幕1区在线观看| 欧美黄视频在线观看| 国精产品乱码一区一区三区四区| 亚洲欧美日韩视频一区二区| 亚洲卡一卡2卡3卡4精品| 午夜福利+无码+自拍| 中国少妇裸体bbbbb| 国模大尺度福利视频在线| 青草伊人婷婷精品视频在线观看| 久久精品国产亚洲Av久| 日韩欧美一区二区三区四区| 69xxxxx中国女人| 国产又粗又长又硬又爽又黄视频| 尤物亚洲国产亚综合在线区| 国产成人在线视频| 新无码毛片一区二区有码| 天天躁日日躁狠狠躁免费麻豆| 在线观看国产h成人网站| 亚洲日韩欧美视频| 国产网红主播一区二区视频| 农夫+导航+亚洲| 成人+欧美精品+一区二区三区| 国产精品爽爽久久久久久豆腐| 人人妻人人做人人爽精品| 国产+高潮+视频| 日本黄色免费视频| 国产+精品+在线观看| 自拍亚洲欧美日韩一区二区三区| 午夜三级a三级三点窝| 国产午夜精品一区理论片| 成熟人妻av无码专区a片| 日韩在线观看视频精品资源| 亚洲欧洲免费黄色视频| 亚洲国产精品尤物yw在线观看 | 人妻无码专区一区二区三区| 91精品国产综合久久久久| 久久精品99久久精品香蕉网| 久久久av一区二区三区| 亚洲国产精品自在拍在线播放蜜臀 | www.欧美在线观看| 日本无码一区二区三三| 被男人亲下面到高潮视频久久| 中美日韩亚洲中文专区| 精选一区二区三区免费在线观看| 国产最新精品自产在线播放| 日韩东京热无码免费视频| 一区二区三区四区欧美极品| 麻豆黑色丝袜jk制服福利网站| essuess免费观看播放| 国产精品爽爽久久久久久豆腐 | 亚洲成人一区在线| 国产+免费+福利| 淫色一非一区二区朝鲜| 自拍视频国产三级| 无码av无码天堂资源网影音先锋| 老伦熟女一区二区三区红豆| 国产成人精品一区二三区四区五区| 美女日批视频在线观看| 亚洲欧美日韩第一页| 亚洲成综合人影院在院播放| 国产成人精品精品日本亚洲| 国产午夜理伦三级好看| 色噜噜人妻丝袜av先锋影音先| 国产精品久久久久久不卡盗摄| 伦人伦xxxx国语对白| 欧美xxxx做受老人国产的| 亚洲美女黄色一级啪啪视频| 人人躁日日躁狠狠躁av| 1024国产视频| 精品国产乱码久久久久久下载| 一区二区免费视频中文乱码| 欧美又大又黄又粗高潮免费| 91久久精一区二区三区大全| 精品视频在线观看一区二区| 711公侵犯美丽人妻| 久久久欧美国产精品人妻| 无码av中文一二三区| 亚洲精品一区二区三区四区高清| 亚洲中文无码天堂一区二区三区| 国产乱色国产精品免费视频| 无码+调教+西瓜影音| 在线新版天堂资源中文www| 亚洲婷婷五月综合狠狠app| 色欲香天天天综合网站| 亚洲精品9999久久久久| 日本熟妇50乱偷交尾| 好爽又高潮了毛片| 精品国产一区二区三区免费 | 免费观看av网址| 665566综合中文字幕在线| 九九热在线精品视频| 一区二区不卡免费视频| 亚洲精品无码av专区最新| 五月婷婷激情小说| 国产精品久久久久av一区| 97久久综合区小说区图片区| 精品老熟妇一区二区三区| 狠狠狠色丁香综合婷婷久久| 日韩+欧美+毛片| av片子在线观看| 中文字幕日韩精品久久| 婷婷精品久久久久久久久久不卡 | 中文在线8资源库| 在线观看+成人免费视频+不卡 | 人妻懂色av粉嫩av浪潮av八戒| 免费在线观看中文字幕区 | 八十路で初撮り老熟妇中国| 国产免费观看高清电视剧在线观看| 国产午夜福利100集发布| 久久久久蜜臀va精品视频| 亚洲日韩久久综合中文字幕 | 国产亚洲欧美精品一区| 久蜜av色av熟女一区| 国产精品激情在线观看| 97视频在线观看免费| 欧美成人三级在线观看| 亚洲+国产+专区| 亚洲精品女同激情在线观看| 一个人看的视频www中文字幕| av男人天堂最新亚洲天堂| 色婷婷亚洲中文在线观看 | 少妇被粗大的猛进出69影院| 国产欧美大片一区二区三区| 亚洲精品一区二区不卡| 99国内视频免费在线观看| 久久精品九九热无码免贵| 亚洲国产精品日日爽爽视频| 蜜臀av国内精品久久久| 美脚恋足癖一区二区三区| 免费大片av手机看片高清 | 国产人免费人成免费视频| 成人av婷婷一区二区三区| 欧美日产国产精品日产| 中文字幕人妻丝袜成熟九色 | 中文日本字幕mv在现线观看| 国产最爽乱淫视频国语对白| 欧美一级黄色录像| 久久国产亚洲精品超碰热| 亚洲精品在线兔费观看视频| 欧美激情伦理一区二区三区| 亚洲成av人片天堂网无码】| 天堂网www中文在线| 久久久久青草大香综合精品| 国产成人精品人人2020视频| 精品无码av一区二区三区不卡| 中文字幕精品av一区二区五区| 久久躁夜夜躁天天躁| 特级西西444WWS高清视频 | 视频+成人+在线| 国产欧美日韩中文字幕第一页| 国产精品人人妻人人爽人人牛| av久一区二区国产在线观看| 亚洲欧美自拍色综合图| 国产精品久久久久久粉嫩影视| 国产精品永久免费av观看| 国产美女午夜福利视频| 国产+自慰+先锋影音| 星空传媒天美传媒有限公司| 国产精品原创av| 日韩无码中文字幕| 大伊香蕉精品在线品播放| 人妻美妇av一区二区精品| 论坛+视频+无码| 欧美在线播放一区二区欧美馆| 亚洲成人精品视频| 无码人妻一区二区三区筱田优| 天堂在线天堂新版www| 丰满成熟熟妇乱又伦精品| 五月天婷婷缴情五月免费观看| 色网站在线观看视频| 波多野结VS黑人无码| 自拍偷自拍亚洲精品10p| 黄色视频国产免费观看| 亚洲欧美中文字幕在线观看| 亚洲欲色欲色xxxxx在线 | 久久人妻少妇嫩草av蜜桃漫画| 18+免费视频网站| 欧美一级视频免费观看| 狠狠狠综合7777久夜色撩人| 国产suv精品一区二区四区三区 | www.免费在线不卡av| 国产精品国产三级国产专播精品人 | 国产欧美亚洲麻豆天堂第一页| 玩弄少妇人妻中文字幕| 中文在线观看免费| 亚洲精品视频在线观看网址网站 | 不卡一区二区视频日本| 老熟女草bx×一区二区| 亚洲精品国产一区二区在线观看| 国产主播一区二区不卡在线观看| 国产天堂123在线观看| 中文字幕岳伦妇无码中出| 人妖+码+在线观看| 日本高清免费毛片久久| 欧洲av+成人+久久| 88国产精品视频一区二区三区 | 成人一区二区三区久久精品嫩草 | 强行18分钟处破痛哭MJ| 女人做爰高潮全黄| 精品福利视频一区二区三区| 国产又色又爽又刺激在线观看| 美女+人妻+日韩毛片 | 熟妇大肉唇BB肥| 久久久久国色av∨免费看| 小蝌蚪国产午夜福利| 四川少妇BBBBBB爽爽爽欧美| 国产精品18久久久久白浆软件| 天天av影院免费看| 猫咪www免费人成网站无码| 色狠狠成人综合网| 国产成人啪精品午夜网站a片免费| √资源天堂中文在线| 山东乱子伦视频国产| 亚洲精品成人片在线观看精品字幕 | 日韩欧美中文字幕1区在线观看| 国产精品jk白丝蜜臀av小说| 欧美超碰精品中文字幕在线| 午夜精品一区二区三区在线播放 | 日韩毛片+18+欧美| 人人妻人人爽人人澡人人| 高清无套内精线观看456| 武则天被狂躁C到高潮| 国产精品欧美中文字幕在线观看| 国产欧美日韩高清在线不卡| 免费+高潮+国产| 国产又黄又猛又粗又爽的久久久 | 污欧美视频在线免费观看| 国产高清在线不卡| 色婷婷亚洲中文在线观看| 精品国产乱码久久久久久影片| 国产精品亚洲一区二区三区喷水| 亚洲国产精华液网站w| 偷拍做爰吃奶视频免费看| 成人做爰A片免费观看软件| 失禁+调教+高潮| 欧美xxxx做受老人国产的| 午夜福利亚洲专区欧美专区| 亚洲国产精彩中文乱码av| 日本欧美国产一区二区在线观看 | 精品日韩国产一区二区三区| 欧美精品一区二区三区一线天视频 | www.少妇影院.com| 久久免费国产精品1| 国产又爽又黄又无遮挡的视频| 高h肉放荡爽全文寂寞少妇| 一区二区免费视频中文乱码| gogogo免费高清完整| 漂亮少妇高潮a片xxxx| 国产午夜精品18久久蜜臀董小宛| 亚洲欧美综合7777色婷婷| 无遮挡做爰激吻国产999| 高清无码成人视频| 日本成年x片免费观看| 国产乱女淫av麻豆国产| 亚洲+欧洲+国产中文字幕| 欧美一级一级一级| 自拍亚洲欧美日韩一区二区三区| 成人午夜视频免费在线观看| 欧美午夜精品久久久久久白云 | 成年人免费看的视频| 老熟女草bx×一区二区 | 国产+激情+在线观看| 全部免费播放在线毛片| 欧美激情精品久久久久久多人| 亚洲18在线看污www麻豆| 国产精品夜间视频香蕉酒店| 中文字幕欧美一区二区在线 | 手机免费看片AV永久看片国产日韩| 淫语对白XXXHD| 熟妇人妻无码xxx视频| 国产综合在线视频| 精品国产一区二区三区色欲| 欧美亚洲国产精品第一页| 国产免费无遮挡吃奶视频| 亚洲精品无码久久久久不卡| 中文字幕精品999av| 国产无遮挡裸露视频免费| 精品国际久久久久999波多野| 亚洲精品久久久日韩美女极品| 婷婷在线精品视频免费观看| 香蕉视频+app| 色综合a怡红院怡红院| 精品国际久久久久999波多野| 久久人午夜亚洲精品无码区| 337P粉嫩大胆噜噜噜55569| jzzjzz日本丰满成熟少妇| 免费国产又色又爽又黄的网站| 色欲AV无码一区二区三区| 91啦丨露脸丨熟女| 国产在线看老王影院入口2021| 亚洲中文av字幕在线观看| 亚洲一区二区三区四区五区黄| 六十路初撮り完熟在线播放| 日本中文字幕+在线播放| 精品国产乱码久久久久久乱码| 亚洲精品无码不卡久久久久| 日本熟妇色xxxxx日本免费看| 免费观看mv大片高清| 国产黄片视频主播在线观看| 日韩+欧美+毛片| 婷婷五月深深久久精品| 亚洲精品国精品久久99热一| 美女裸体色黄污视频网站| 久久精品欧美一区二区| 日本人妻丰满熟妇www色| 大波美女一级a久久午夜| 一本大道道久久综合av| 美女免费精品毛片在线播放| 懂色av蜜臀av粉嫩av分享吧最新章节| va亚洲va天堂va视频在线| 国产+日韩+欧美| 明星乱淫免费视频欧美| 亚洲色成人网站www永久四虎| 在线视频国产99| 日韩中文字幕av在线| 真人抽搐一进一出视频| 美女黄色视频网站入口在线看| 日日碰狠狠添天天爽超碰97| 初撮り五十路老女人| 欧美肥屁videossex精品| 亚洲天天做夜夜做天天欢人人 | 太骚了全程对白Spa69| 久久久久亚洲AV无码专不卡 | 91丝袜呻吟高潮美腿白嫩综艺| av在线播放+亚洲+不卡| 婷婷成人综合一区二区三区| 91亚洲成a人片在线观看www| 8888888888免费观看在线nba| 四川少妇搡搡BB| 中文字幕国产在线| 成年人午夜免费视频| 日韩不卡高清视频| av中文字幕在线免费观看| 国产精品入口久久| 91Porn人妻第一页| 日韩免费在线播放一级黄片| 国产美女又黄又爽的视频| 懂色av蜜臀av粉嫩av分享吧最新章节| 国产+刺激+高潮| 国产精品美女久久久久久久久| 国产一区二区三区在线免费| 精品人妻一区二区三区四区| 大地资源二中文官网| 国产女人爽的流水毛片| 在线日韩中文字幕av网站| 最近最新在线中文字幕mv免费| 操老女人一区二区三区视频tv| 人妻激情乱人伦视频| 亚洲乱码国产乱码精品精小说| 偷偷要色偷偷中文无码| 网站+激情+国产| 国产精品成人一区二区三区吃奶 | 亚洲s久久久久一区二区| 少妇伦子伦精品无吗| 久久精品国产精品| 91午夜福利欧美日韩一区二区| 人妻丝袜中文字幕在线视频| 国产精品露脸国语对白| 久久婷婷狠狠综合激情| 国产精品99久久久久久久久久久久 | 国产精自产拍久久久久久蜜| 欧美精品v国产精品v曰韩品| 一区二区三区国产日韩欧美在线| 国产精品中文字幕日韩精品| 91精品福利视频| 久久精品无码一区二区软件| 国产+欧美+激情| 国产精品不卡av在线播放| 国产免费av一区二区在线观看| 精品亚洲国产成人av在线| 日本三级中文字幕在线观看| 久久品道一品道久久精品| www.97色色| 久久99国产精一区二区三区| 久久久午夜精品理论片中文字幕| 美女成人亚欧色区视频网| 国产成人精品免费视频大全五级 | 久久久久亚洲十八禁精品国产 | 久久婷婷五月综合成人d啪| 国产美女的第一次好痛在线看| 妺妺窝WWW仙踪林粗大野| 欧美婷婷六月丁香综合区| 日韩免费无码专区精品观看| 国产寡妇树林野战在线播放| 熟妇全身大保健(对白)| 伊人色综合久久天天小片| 女同+影音先锋+在线| 亚洲美女视频网站| 亚洲国产成人精品女| 中国女人黄色大片| 国内大量偷窥精品视频| 亚洲一区二区三区乱码av麻逗| 国产手机av片在线观看| 亚洲色老汉av无码专区最| 国产片淫级awww| 久久久青草青青亚洲国产免观| 天天天天做夜夜夜做| 国产乱子经典视频在线观看| 国产午夜av在线一区二区三区| 国产剧情一区在线| 国产剧情v888av| 啪啪视频最新地址发布页| 欧美高清在线免费观看视频| 国产偷国产偷亚洲高清人乐享| 久久无码一级免费| 麻豆国产VA免费精品高清在线 | 久久久久久免费毛片| 欧美区亚洲区国产区一区二区| 女女女女女裸体开bbb| 男人的天堂亚洲中文字幕| 91麻豆短视频免费观看| 日韩在线亚洲综合| 欧美高清在线免费观看视频| 亚欧美日韩香蕉在线播放视频| 校园春色亚洲色图| 日韩激情一区二区三区| 在线观看+中文字幕| 欧美一区二区三区四| 欧美xxxx做受欧美69| 嫩草影视911香蕉| 狠狠噜天天噜日日噜色综合 | 六十路の完熟豊満无码| 中文字幕一二三区波多野结衣| 天天狠天天添日日拍捆绑调教| 国产+日韩+欧美成人| 少妇激情av一区二区| 亚洲一区二区三区国产中文| 国产美女精品中文网蜜芽宝贝| 欧美日韩国产成人| 欧美亚洲国产精品久久高清| 新大地资源在线影视观看| 国产专区在线视频| 国产精品黑色丝袜在线观看| 免费在线观看中文字幕区| 国产suv精品一区二区69| 国产精品国精产品一二三区| 午夜免费观看视频| 亚洲成人一区在线| 清纯唯美亚洲专区国产精品| 狠狠色综合Tⅴ久久久久久| 亚洲国产中文一区二区99re| 色狠狠成人综合网| 国产精品69久久久久不卡| 国产午夜精品18| 亚洲亚洲人成网站网址| 不卡色老大久久综合网| 少妇久久久久久久| 中文在线字幕观看电视剧hd| 国产男生午夜福利免费网站| 美女黄页网站国产在线观看 | 美足+丝袜+影音先锋| 久久综合88中文字幕| 又粗又黑又大的吊av| 国产精品成人一区二区三区吃奶| 99国产超薄肉色丝袜交足的后果| 日韩精品免费一区二区三区四区 | 羞羞漫画+在线播放| 亚洲精品久久久久久久久久久 | 破了亲妺妺的处免费视频国产| 日日摸夜夜添夜夜添欧美毛片小说| 国产免费一区二区三区视频| 97人伦色伦成人免费视频| 欧美精品久久久久a片18的试看| 欧美日韩在线视频免费播放| 欧美+国产+精品| 国内精品伊人久久久久777| 国产免费一级淫片a级中文 | 欧美最猛黑人xxxxx猛交| 免费+高清+在线观看| 午夜精品久久久影视优势| 99久久精品无码一区二区免费 | 娇妻被黑人伦轩1~14| 女女女女女裸体处开bbb| 久久视频这里有久久精品视频11| 苍井空一级婬片A片AAA片动漫| 91精品国产色综合久久不8| 色综合久久88色综合天天人守婷| 亚洲欧美制服另类国产二区| 国产一区二区三区在线乱码| 色噜噜人妻丝袜av先锋影音先| 日本免费一级特黄⊙大片欧美| 综合久久婷婷综合久久| 淫臀艳妇(全)王雪琴| 精品久久久久久久免费人妻| 久久久久波多野结衣高潮| 三级高清日本久久| 伊人色综合久久天天五月婷| 波多野结衣绝顶高潮喷水| 最近高清日本免费| 妺妺窝人体色WWW聚色窝孕妇| 成版人看片app私人影院| 成在线人免费视频播放| 国产亚洲AV片在线观看18女人| 欧美伊香蕉久久综合网另类 | 熟女露脸91Porn| 天堂av无码大芭蕉伊人av孕妇| 亚洲精品日韩中文字幕久久久| 国产在线观看免费人成视频 | 日本熟妇黑毛浓密白浆| 日韩欧美国产一区二区三| 日韩精品国产一区在线久草| 欧美在线视频在线观看一区| 黄金网站app免费入口大全| 一级二级三级亚洲欧美大片 | 国产a在亚洲线播放| 五月天综合网缴情五月中文 | www.国产一区二区三区av| 久久成人免费网站| 日韩一级片中文字幕| 国产免费av一区二区在线观看| 足疗店无套内谢少妇| 免费午夜无码18禁无码影院| 九九久久99综合一区二区| 久久精品国产一级特黄片| 亚洲成人动漫在线观看| 国产美女网站18禁| 亚洲成人AV在线| 国产精品久久久区三区天天噜| 欧美艳星nikki激情办公室| 91狠狠色综合久久久夜色撩人| 美女网站免费福利视频| 最近中文字幕完整版免费视频| 日韩v欧美v中文在线| 中出あ人妻熟女中文字幕| 99久久精品国产一区二区三区| 亚洲欧美另类麻豆综合网| 亚洲乱码国产乱码精品精乡村| 国产精品久久..4399| 欧美.日韩在线一区二区三区| 人妻懂色av粉嫩av浪潮av八戒| 99热门精品一区二区三区无码| 国产九九久久99精品影院| 黑外教弄人妻波多野结衣| 辽宁老熟女啪啪对白| 欧美网站大全在线观看| 娇妻被朋友日出白浆| 主播亚洲韩国一区二区黄片| 熟妇精品一区二区三区四区 | 国产亚洲综合区成人国产| 久久亚洲精品无码aⅴ大香| 最新2019中文字幕第一页| 亚洲高清国产av一二三区| 国产精品+丝袜+制服| 国产+欧美+日产| 久久久久久久福利国产一级| 国产毛片久久久久久久18 | 吃瓜爆料+每日大赛| 337p大尺度啪啪人体午夜| 亚洲∧V久久久无码精品| 五月天激情久久久| 国产又粗又猛又爽又黄的a视频 | 一个人看的免费高清视频www| 国产精品剧情在线中文字幕| 邪恶肉肉全彩色无遮盖| 欧美在线色视频在线观看| 亚洲自拍高清免费| 少妇高潮喷水视频| 国产精品4huwww| 成人免费毛片东京热| 日韩精品一二三区| 久久+蜜臀+综合| 国产一区二区三区视频在线播放 | 人妻双飞互换不戴套| 强开小婷嫩苞又嫩又紧韩国视频| 国产精一品亚洲二区在线播放| 精选av一区二区三区| 好色妻降临av一区二区| 国产综合在线观看免费视频| 办公室制服丝祙在线播放| 国产成人精品1沈娜娜| 91嫩草国产线观看亚洲一区二区| 中文在线观看免费| 亚洲综合小说另类图片五月天| 亚洲高清www色好看美女| 中文字幕人妻丝袜成熟九色| 精品视频在线免费观看一区| 极品s级大美女国产精品| 成人无码一区二区三区网站| 橘梨纱连续高潮在线观看| 久久国产精品免费| 国产+免费+麻豆| 国产伦精品一品二品三品哪个好| 777777国产7777777| 国语对白刺激精彩久久精品| 国产精品欧美激情在线播放| 女人17片毛片90分钟| 久久中文字幕一区二区三区| 国产乱子精品免费视观看| 亚洲精品久久久久久蜜臀| 麻豆ā片免费观看在线看| 日韩特黄一级片一区二区三区| 久久天天躁狠狠躁夜夜2o2o| 亚洲+国产+日本视频| 77久久人妻视频| 国产+欧美+欧洲| 18+在线观看视频| 国产va在线观看| 无遮挡又色又刺激的视频+黄| 真实乱偷全部视频| 国产一级婬片A片免费无成人黑豆| 熟女老阿V8888AV| 国产+欧美+亚洲视频| 亚洲欧美丝袜精品久久中文字幕| 无套熟女av呻吟在线观看| 国产在线精品一区二区在线看| 97国语精品自产拍在线观看| 亚洲精品国产精品国自产小说 | 日韩在线欧美在线| 日韩亚洲国产中文字幕欧美| 一区一区三区产品乱码亚洲| 中文+字幕+国产| 国产在线精品一区二区夜色| 欧美精品少妇videofree720| 一本大道道久久综合av| 丰满少妇大力进入av亚洲葵司| www九九热com| 最新2019中文字幕第一页| 十八禁污视频在线观看无遮挡| 成人精品网站在线观看| 久久大香香蕉国产免费网vrr| 欧美乱子伦一区二区三区| 国产精品成人免费久久黄av片| y111111111免费观看电视| 国产精品+日韩精品+在线播放| 精品国产亚洲av丝袜高跟| 国产精品一av一免费爽爽 | 国产精品夜间视频香蕉酒店 | 国内自拍av手机在线免费观看| 精品久久久久久777米琪桃花| 三级高清日本久久| 国产欧美精品一区| 500部大龄熟乱4K视频| 在线看片免费人成视频久网| 手机看片福利永久国产香蕉| 影视av久久久噜噜噜噜噜三级| 国产+资源+视频播放器| 日本一区二区三区视频在线观看| 亚洲欧美一区二区三区另| 欧美+日韩+国产中文字幕| 一级特黄aa大片免费播放| 0855午夜福利| 蜜桃传媒av免费观看麻豆| 亚洲国产日本韩国欧美mv| chinese开小嫩苞videos| 一级做a爰片久久毛片16| 精品欧美日韩中文字幕在线观看 | 无码丰满熟妇一区二区| 韩日在线视频观看| 东京热一本大交乱HD| 日韩一区二区在线观看视频| 国模大胆一区二区三区| 亚洲va久久久噜噜噜久久天堂| 天天色香色欲影视| 东京热无码中文字幕av专区| 国产精品亚洲欧美日韩在线观看| 久久久精品小视频| 国产亚洲网曝欧美台湾丝袜| 亚洲国产精品+嫩草影院+久久| 五月狠狠亚洲小说专区| 无翼乌18禁全肉肉无遮挡彩色| 久久精品国产亚洲av久野外| 免费啪视频观在线视频在线| 日本三级高清视频| 日韩欧美高清在线观看| 一本色道久久88综合日韩精品| 亚洲午夜影院在线观看视频| 久久亚洲国产男女日穴精选| 中文字幕亚洲图片| 国产av精国产传媒| 天堂av无码大芭蕉伊人av孕妇| 波多野结衣无码一区| 人人妻人人澡人人爽欧美一区双| 国产精品扒开腿做爽爽| 久久天天躁狠狠躁夜夜av不卡| 国产区欧美区日韩区| 亚洲第一区欧美国产不卡综合| 国产又粗又黄又爽又硬网站| 亚洲+日本+高清| 青草视频在线观看视频| 国产精品久久久久久久免费大片| 国产吞精囗交免费视频| 久久久青草婷婷精品综合日韩| 这里有精品中文字幕在线视频| 国产在线+123| 男人的天堂色偷偷| 无码+会员+动漫| 国产成人精品白浆免费视频试看| 欧美一级午夜福利免费区| 国产美女无套爽到高潮视频| 亚洲超清丝袜无码网站| 无码人妻丰满熟妇区网站| 无码专区亚洲制服丝袜| 中文字幕永久视频| 摸进她内裤里疯狂揉她的桃子视频 | 苍井空亚洲精品AA片在线播放| 成年女人免费视频| 啊灬啊灬轻点第一次和外国人| 日韩精品一区在线观看视频| 可以在线观看免费av的网站| 亚洲精品美女久久久久99| 嫩草一区二区极品在线观看| 国产精品一区二区三区va| 国产美女久久久久久久久久久久| 欧美视频免费观看午夜在线| 国产精品偷伦视频免费手机播放| 射进来av影视网| 永久免费无码日韩视频| 亚洲精品国产精品国自产中出| 午夜福利国产小视频在线| 国产av亚洲aⅴ一区二区| 精品国产乱码久久久久久88av| 欧美黑人xxxx又粗又长| 欧美成人+www+一区二区| 国产老熟女高潮毛片a片仙踪林| 精品久久久久久中文墓无码| 精品人妻av区乱码色片| 日韩欧美一级片一区二区| 国产在线观看免费全集电视剧网站| 午夜精品久久久久久久99热额| 国产精品破处一区二区三区| 91麻豆精选国产自产免费观看| 欧美丰满肥婆videos| 玩弄少妇人妻中文字幕| 国产精品自在线拍国| www.日韩精品在线观看| 黄色软件网站入口| 青草视频在线观看视频| 三年片在线观看免费观看大全+下载 | 欧美+日本+国产在线观看| 国内自拍av手机在线免费观看| av片子在线观看| 成人做爰视频www| 18禁国产精品久久久久久网站| 成人国产精品一区二区免费看| 婷婷色香五月综合激激情| 成人乱码一区二区三区四区| 精品区一区二区三区| 亚洲乱码国产乱码精品精不卡| 亚洲视频欧美视频中文字幕| 91这里都是精品久久久久| 一区二区三区国产91久久久 | 国产精品久久久久久av福利| 久久国产成人亚洲精品影院老金| 成年人在线观看视频| 国产在线+123| 亚洲精品成人国产黄瓜视频| 在线观看亚洲天堂视频网站| 最新黄色在线观看一区二区三区 | 无码国产精品一区二区免费模式 | 久久久久久久无码高潮| 7788在线观看免费高清电视剧| www.日韩精品在线观看| 欧洲av+成人+久久| 亚洲高清av在线| 磁力链接+日韩高清无码| 日韩Aⅴ黄日韩a影片| 东北少妇BBBB搡BBB搡| 国产乱人伦精品一区二区_国产91在线| 欧美热在线视频精品999| 久久国产自偷自偷免费一区调| 久久婷婷五月综合色和啪| 亚洲狠狠色成人综合网| 日韩在线视频+在线播放| 国产+激情+综合| 亚洲乱码精品一区二区三区国产 | 精品久久久久中文字幕app | 国产亚洲日韩在线a不卡| 亚洲五月丁香综合视频| 香蕉视频+在线观看+色吧| 亚洲日韩国产欧美一区二区三区| 青青草免费在线视频| 国产+欧美+日本| 亚洲综合Av一区二区三区| 国产精品亚洲欧美中文字幕| 91视频成人免费| 国产高清一区二区三区四区| 精品亚洲77777www| 国产浮力第一页草草影院| 90岁老太婆乱淫| 女人被狂c到高潮视频网站| 午夜三级av在线播放| 37p粉嫩大胆色噜噜噜| 国产日韩欧美综合精品一区二区| www波多野结衣com| 4399午夜理伦免费播放大全| www91免费视频| 东京热加勒比久久| 四虎影视在线观看国产精品| 中文字幕在线观看网址| 欧美日韩人成视频在线播放| 欧美+国产+中文| 国产精品毛片在线完整版| 亚洲欧美日韩_欧洲日韩| 无码精品人妻系列| 欧美区亚洲区国产区一区二区| 国产精品女同一区二区久久夜| 97碰成人国产免费公开视频| 中文字幕一区二区三区久久网站| 日本无码一区二区三三| 亚洲国产精品一区二区999| 在线人人车操人人看视频 | 又粗又紧又湿又爽的视频| 国产欧美日韩一区二区三区| 69国产精品久久久久久人妻| 超碰在线最新地址| 亚洲+欧美+麻豆视频| 99久久国产自偷自偷免费一区 | 国产精品欧美激情一区二区三区| 久久久青草婷婷精品综合日韩 | 重庆美女揉BBBB搡BBBB| 波多野结衣+中文字幕公交车催情| 亚洲国产精品一区二区制服换脸 | 电击奶头の尿失禁调教视频| 国产精品白嫩极品美女视频| 国产无遮挡裸体免费视频| 欧美午夜精品久久久久久视| 成人高清免费观看| 日韩精品欧美一区二区三区| 久久国产精品免费久久久| 日本老熟欧美老熟妇| 婷婷91麻豆精品国产红杏| 丰满熟女人妻中文字幕免费| 亚洲国产成人精品女人久久久久| 亚洲精品免费视频| 9l国产精品久久久尤物av| 四虎精品美女国产在线观看| 成人资源在线观看| 国产精品久久久久久久久久不蜜月| 最新国产成人av网站网址麻豆| 漫画免费观看漫画大全| 欧美老妇bbbwwbbbww| 波多野结衣美女中文字幕视频| 久久国产亚洲高清观看| 91在线精品亚洲一区二区免費資訊| 久久精品国产亚洲av高清色| 神宫寺奈中文无码字幕| 野花成人免费视频| 人妻中文字幕一区二区三区视频 | 成人嫩草97A片| 国产精品久久久久久久久久98| 国产伦理久久精品久久久久| 天天在线精品视频一区二区| 久久免费看少妇高潮a| 97国产精品久久| 国产亚洲欧美在线观看三区| 山东乱子伦视频国产| 国产高清成人免费视频在线观看| 欧美国产日韩第一页| 黄网在线免费观看| 果冻天美麻豆一区二区国产 | 亚洲国产人成自久久国产| 日本免费无遮挡毛片的意义 | 91久久婷婷国产一区二区 | 亚洲伊人精品伊人7777| 日韩精品亚洲aⅴ在线影院| 一区二区三区在线欧洲污| 1000部拍拍视频18勿入| 麻豆产精品一二三产区区| AV无码无在线观看免费| 国产+免费+视频| 亚洲欧美日韩人成在线播放| 2020中文字字幕在线不卡| 欧美大片一区二区三区视频| 在线视频免费观看一区国产| 国产成人精品午夜福利女同| 91兰州熟女富婆露脸| 亚洲欧美精品久久久久| 国产欧美精品日韩区二区麻豆天美| 好大好湿好硬顶到了好爽视频| 东京热无码人妻系列综合网站| 大粗长J日小嫩B| 日韩欧美+亚洲+国产| 国产成人精品免费久久久久| 亚洲无AV在线中文字幕| 97免费视频在线观看| 久久久激情一区二区三区| 高潮+国产+白浆| 好男人社区www在线视频| 伊人久久精品无码av一区| 无码人妻精品一区二区蜜桃网站| 亚洲aⅴ综合色区无码一区| 欧美日韩国产激情一区二区三区| chinese开小嫩苞videos| 日韩欧美精品一区二区三区四区 | 国产在线高清精品二区| 免费观看又色又爽又黄的崩锅| 国产偷抇久久精品a片69| 国产无精乱码一区二区三区| 国产精品卡1卡2卡三卡四| 日韩av手机在线| 两人午夜免费观看www| 精品国产成人在线一区二区| 免费+成人+在线观看| 亚洲中文字幕av一区二区三区| 亚洲一区日韩在线| 青青青国产手机在线观看| 少妇久久久久久久| 国产传媒精品1区2区3区| 亚洲福利国产网曝| 国产极品粉嫩在线观看的软件 | 久久精品www人人做人人爽 | 色网站在线观看视频| 什么网站可以看毛片| 国产精品六九久久久久不卡| 国产欧美国产精品第一区| 国产一区二区在线观看视频免费| 卡一卡二卡三专区免费| 亚洲欧美一区二区三区日产| 国产偷抇久久精品a片69| 亚洲国产精品久久久久秋霞小| 中文字幕韩国欧美视频在线| 免费在线观看午夜片网站| 熟妇人妻av中文字幕老熟妇| 视频区另类中文字幕欧美日韩 | 中文在线字幕免费观看电视剧大全| 九九99久久精品在免费线18| 亚洲精品午夜无码成人| 国产精品久久久久久影院| 欧美mv天堂在线免费播放| 一区二区三区在线观看精| 亚洲日韩精品一区二区三区无码 | 亚洲中文字幕人成乱码| 老司机成人精品视频在线观看| 久久99久久99精品免观看粉嫩| 主播福利视频一区二区三区| 亚洲国产精品日日爽爽视频| 亚洲欧美视频在线播放| 99热这里有的只是精品| 亚洲无AV在线中文字幕| 国产成人三级在线视频网站观看| 中文字幕亚洲精品一区| 真实国产精品视频400部| 少妇9999九九九九在线观看| 国产精品久久久久婷婷| 亚洲欧美日韩国产精品网| 国产精品久久久久成人| 亚洲AV无码片一区二区三区 | 亚洲精品成人av| 久久91女精一区禁18看片| 国产亚洲精品久久久久久老妇| 免费看60分钟涩涩视频| 亚洲精品国男人在线视频| 久久人人爽人人爽人人av| 日本夜爽爽一区二区三区| 日本人乱人乱亲乱色视频观看| 国产无人区码一码二码三mba| 精品久久久久久亚洲中文字幕| 久久露脸国语精品国产91| 女人被爽到高潮免费视频国产| 91中文字幕视频| 爆乳喷奶水无码正在播放| 欧美+成人精品+三级在线| 亚洲精品欧美黄片在线免费看 | 中文字幕在线不卡黄色a| 无码国产精品一区二区免费模式| 国产精品白丝美女免费在线观看| av影片在线观看| 中文字幕人妻少妇引诱隔壁| 美女被咬小头头的视频 | 国产成人精品AV| 精品国产sm最大网站蜜芽| 成人秘视频一区二区三区| 中文字幕丰满乱孑伦无码专区| 日本乱妇乱子视频网站| 黄色免费网站在线| 国产女同一区二区三区久久| 天堂在线中文网www| 国产成人精品午夜福利在线观看 | 五月丁香久久丫婷婷一区不卡 | 国产探花视频91av视频| 国产精品户露av在线户外直播| 久久人人97超碰国产亚洲人| 亚洲精品一区二区精华| AV天堂无码资源网| 97视频在线播放| 久草香蕉在线视频国产乱码精品一区二区三上| 精品人人妻人人爽人人牛牛| 激情综合亚洲色婷婷五月app| 91精品在线视频观看| 亚洲精品92内射| 摸bbb揉bbb揉bbb视频| 黄色av网站免费观看| 亚洲日韩av一区二区三区中文| 国内精品视频一区二区三区| 亚洲国产精品一区二区999| 在线精品亚洲一区二区小说 | 久热中文字幕第一区二久| 国产精品一品二区三区四区18| 日韩欧美三级在线| 国产少女免费观看高清电视剧大全可| 自拍偷自拍亚洲精品10p| 黄片久久久久久久黄片久久| 久久精品国产亚洲av成人久久| 亚洲国产成人精品女| 太骚了全程对白Spa69| 久艹视频在线观看| 欧美区亚洲区国产区一区二区| 怡红院一区二区三区在线| 免费+成人+国产| 最新日韩中文字幕| 欧美成人乱码一区二区三区| 区二区三区玖玖玖| 男人的天堂色偷偷| 免费国产又色又爽又黄的网站| 《交换3》金智媛演技评价| 欧美日韩亚洲一区二区蜜桃臀| 正在播放+日韩+无码| 亚洲欧美日韩中文加勒比| 痉挛高潮喷水av无码免费| 久久99精品视频免费观看| 国产欧美日韩综合精品二区| 图片小说视频一区二区| 欧美一区二区三在线观看| 欧美一区二区三区激情桃蜜臀| 亚洲精品国产福利| 日韩欧美AⅤ综合网站发布| 国产亚洲精品久久午夜玫瑰园| 国产精品女同一区二区三区| 在线看片免费人成视久网不卡| 国产精品久久久久久亚洲综合网| 精品日韩在线播放| 老司机久久精品视频| 亚洲黄色免费观看| 亚洲精品国产a久久久久久| 动漫成年美女h漫网站漫画| 亚洲日韩国产精品第一页一区| 美女免费精品毛片在线播放| 久久嫩草影院免费看| 99精品国产99欠久久久久| www国产+欧美| 香蕉视频在线观看黄| 成人+免费+在线观看| 国产亚洲久久久久久久| 51吃瓜网每日大赛今日大赛| 日韩东京热无码免费视频| 亚洲精品国产A久久久久久| 中文字幕++中文字幕明步| 亚洲色18禁成人网站www| 91精品国产成人观看免费九色| 又粗又紧又湿又爽的视频| 丰满+迅雷+中文字幕| 91精品啪在线观看国产81旧版| 午夜福利一区二区不卡| 国产一级真人做受| 亚洲欧美在线一区中文字幕| 播放日韩美女免费毛片视频| 亚洲欧美日韩第一页| 欧美一区二区三区在线视频观看| 永久av免费在线观看| 亚洲+国产+日本视频| 国产超爽人人爽人人做人人爽| 麻豆国产成人av高清在线| 欧美成人三级在线观看| 初撮五十路人妻熟女| 国产在线观看欧美二区三区 | a片+影音先锋资源网站| 中文字幕日韩精品有码视频| 蜜臀久久99精品久久久无需会员 | 欧洲精品在线播放| 久久亚洲精品无码观看网站| 国产97人人超碰cao蜜臀| 美足+丝袜+影音先锋| 国产精品成人免费播放| 亚洲成aⅴ人在线视频| 国产精品美女无遮挡在线观看 | 成人无码一区二区三区网站| 亚洲一区二区美女在线观看| 天堂网一区二区在线播放| 国产精品手机视频| 99香蕉国产精品偷在线观看| 高潮+国产+白浆| 日日躁夜夜摸月月添添添| 久久aⅴ人妻少妇嫩草影院| 国产欧美日韩综合精品二区| 九九九久久国产免费| 久久久久国产精品夜夜夜夜夜| 河南熟女粗口叫床高潮| 日韩三级视频在线观看| 155fun黑料热点事件| 亚洲综合另类小说色区一| 亚洲中文十区字幕在线播放 | 亚洲国产精品一区二区成人片不卡 | 在线看片人成视频免费无遮挡| 91视频88av| 变态另类天上人间| 欧美高清在线免费观看视频| 波多野结衣被躁120分钟小说| 毛片国产精品完整版| 亚洲伦无码中文字幕另类| 国产精品入口免费软件| 少妇无码一区二区三区| 亚洲精品视频在线观看网址网站| 少女国产免费观看高清电视剧大全| 亚洲Av日韩精品久久久久| 久久久久人妻精品一区蜜桃| 91精品视频在线看| 精品欧美乱码久久久久久 | 成人国产精品日本在线观看| 打屁股+do+调教文| 国产激情视频在线| 欧美毛多水多黑寡妇| 亚洲国产精品一区二区成人片不卡| 成年日韩片av在线网站| 亚洲手机在线人成网站| 狠狠色噜噜狠狠狠777米奇小说| 中文字幕av手机版| 日本豐滿熟婦BBXBBXHD| 国产高清视频在线播放www色 | 亚洲精品第一国产综合麻豆 | 日韩v欧美v中文在线| 五十路豊満熟女のお婆ち在线播放| 国产精品欧美精品日韩专区一乛方 | 美女诱惑一区二区| 国产精品一国产精品一k频道| 一本色道久久综合狠狠躁邻居| 四虎影视国产精品| 午夜精品一区二区三区在线播放| 91精品众筹嫩模在线私拍| 国产传媒精品1区2区3区| 国产成人av综合久久视色| 玖玖无码中文字幕五月天| 91黄视频在线观看| 国产综合精品在线| 日本欧美久久久久免费播放网| yy6080亚洲精品一区| 亚洲成在人线av品善网好看| 亚洲色一色噜一噜噜噜| 水牛影视一区二区三区久| 视频一区二区三区免费| 国产明星精品一区二区刘亦菲| 久久亚洲美女精品国产精品| 在厨房拨开内裤进入毛片| 人妻少妇精品无码专区app| 国产精品毛片在线完整版SAB| 日韩精品无码免费专区午夜不卡| 在线bt天堂网.www最新版| 电视剧大全免费全部在线观看| 日韩一区二区三区视频| 影音先锋+欧美+爆乳| 亚洲国产精品一区二区制服换脸| 欧美激情一区二区三区高清视频| 欧美综合一区二区三区在线播放| 特级西西444www大精品视频| 九九99久久精品综合| 精品美女自拍99RE热视频这里只精品| 日韩亚洲欧美亚洲欧美亚洲国产| 成人毛片18女人A片免费观看成人在| 亚洲日韩av一区二区三区四区| 美女搡BBB又爽又猛又黄www| 漫蛙漫画(网页入口)| 久久久精品7777777| 韩国三级l中文字幕无码| 欧美精品乱人伦久久久久久| 三级黄色免费网站| 水蜜挑国产成人精品视频| 久久国产V一级毛多内射| 亚洲av乱码国产精品观看麻豆| 国语对白刺激在线视频国产网红| 伊人热热久久原色播放www| 毛片在线免费视频| 亚洲国产日韩欧美愉拍精品| 在线观看一区二区国产欧美| 自偷自拍亚洲综合精品麻豆| 一区二区免费视频中文乱码| 免费av不卡在线观看| 精品无人国产偷自产在线| 欧美bbbbbbbbbbbb精品| 小早川怜子大战三黑人| 久久99亚洲5精品片片| 国产成人三级在线观看| 国产+欧洲+在线观看| 无码AⅤ精品一区二区三区| 人妻av中文字幕一区二区三区| 爆乳亚洲一区二区'| www.igao.comwww.yjt| 精品久久久久中文字幕app| 久久久www成人免费毛片女| 国产美女精品中文网蜜芽宝贝| 国产在线一卡2卡三卡4卡免费| 综合久久婷婷综合久久| 欧美日韩免费高清一区色橹橹| 最近更新中文字幕2019视频| 少妇张慧献身1一5集在线播放 | 《表妺3》伦理hd| 女人的天堂a国产在线观看| 欧美在线视频在线观看一区| 久久伊人色av天堂九九| 17c一.起草看片| 伊人国产精品影院在线观看| 美女视频黄是免费| 亚洲自拍高清免费| 国产99久久久久久免费看农村| 老熟妇乱子交视频一区| 欧美日韩一区二区三区aa| 亚洲欧美综合7777色婷婷| 亚洲精品国产自在现线最新| 亚洲欧美动漫卡通另类bt| 国产高清av在线一区二区三区| 亚洲乱码精品久久久久| 国产91精品久久免費資訊| 日韩欧美在线观看污视频| 亚洲欧洲国产成人综合在线| 999国产精品欧美在线a| 国产在线观看精品一区二区三区| 久久精品亚洲天堂| 中文字幕欧美亚洲视频免费| 久久se精品一区二区| 老熟女草bx×一区二区| 2021国产精品午夜久久| 日韩精品手机在线| 国产精品成人一区二区三区吃奶 | 91精品久久久蜜桃网站| 亚洲欧美日产综合在线网| 国产伦子伦一级A片免费看刘亦菲 エッチなh0930熟女俱乐部 | 妺妺窝人体色88888美女吗| 日韩激情图片一区二区三区粉嫩| 在线天堂中文最新版资源| 99久久一区二区| 无码精品人妻系列| 蜜桃tv一区二区三区| 久久99精品久久久久久HB无码| 成人无码一区二区三区网站| 国产一二中文字幕91影院日韩欧美| 亚洲中文字幕一区二区麻豆| 人妻在厨房被色诱| 久久夜色精品国产噜噜亚洲SV| 久久亚洲春色中文字幕久久久 | 国产精品线在线精品| 国产精品区一区二区三| 亚洲超清丝袜无码网站| 97成人精品视频在线播放| 四虎精品寂寞少妇在线观看| 欧美日韩国产一区二区三区在线| 国产精品久久网站| 精品蜜臀av在线天堂| 国产在线乱码一区二三区| 免费成人网一区二区三区| 国产午夜一区二区三区| 中文字幕+乱码+在线观看| 中日精品无码一本二本三本| 国产精品美女久久久久AV福利| 国内自拍一二三四2021| 黄色免费在线视频| 美女+国产+免费| 毛片视频在线免费观看| 欧美午夜精品久久久久久杨幂| 欧美激情一区二区视频| 国产日韩欧美不卡在线二区| 亚洲色成人网站www永久四虎| 精品一区二区三区国产| 国产+r级+磁力链接| 嫩草欧美曰韩国产大片| 安徽少妇BBB凸凸凸BBB| 999久久久久久久久6666| 中文字幕乱偷无码av先锋蜜桃| 中文字幕+丝袜+女上司| 国产精品久久久久成人| 午夜精品乱人伦小说区| 精品亚洲中文字幕东京热网站 | 国产亚洲精久久久久久叶玉卿| 精品欧美亚洲一区国产高潮| 草莓APP黄污下载| 99久久久精品免费国产| 精品视频在线免费观看一区| 国产日韩欧美精品| 国产婷婷av片在线观看| 中文字幕Aⅴ人妻一区二区| 欧美一级淫片007| 久久99精品久久久久婷综合| 男人天堂亚洲天堂视频在线观看| 国产极品美女到高潮| 在线а√天堂中文官网| 久久这里只有精品久久91| 九九99久久精品在免费线bt| 中国少妇大战黑人白浆| 空姐吹箫完整版mv| 波多野结衣绝顶高潮喷水| 黄网在线免费观看| 国产目拍亚洲精品99久久精品| 国产传媒淫语对白AV| 国产精品视频一区二区免费不卡| 亚洲成l人在线观看线路| 好吊色国产欧美日韩免费观看| 《美丽妻子替弟还债》剧情| 在线观看国产免费高清不卡| 欧美人与动牲交xxxxbbbb| 国产成人亚洲精品青草| 精品视频在线免费观看网址| 亚αv无码久久久久久不卡网站| 国内精品国产成人国产三级粉色| 免费黄色网址在线观看| 亚洲欧美动漫卡通另类bt| 中文字幕成人精品影院免费看| 亚洲欧美国产日本一区二区| 国产a国产片国产| 国产曰又深又爽免费视频| 中文字幕大看蕉在线观看| 国产男女骚话淫语对白| 超碰国产精品久久国产精品99| 91久久精品无码专区嫖妓| 欧美成人免费在线观看| 国产免费拔擦拔擦8x高清在线人| 中文字幕有码免费在线观看| 一级做a免费观看大全| 无码人妻精品一区二区三区免费| 99精品国产再热久久无毒不卡| 免费视频永久免费人| 人妻少妇无码精品专区| 国产欧美福利v888av| 少妇人人凹凸XX凹凸爽凹凸| 696息子精品一区| 免费成人进口网站| 大胆欧美熟妇xxbbwwbw高潮了 | 炕上肉交亲伦69XX| 国产人妻人伦精品潘金莲| 欧美在线视频免费播放| 亚洲一区二区三区无码影院| av在线播放日韩亚洲欧| 日韩裸体人体欣赏pics| 中文字幕在线播放第一页| 亚洲欧美日韩国产成人一区| 成人免费在线观看h视频| 成人欧美一区二区三区在线观看| 97国产人成视频免费在线播放| 国产精品美女久久久久av爽| 欧美+日韩+精品久久久| 国产高清免费在线观看精品| 日韩人妻无码免费视频一二区| 中文字幕国产在线| 无码人妻精品一区二区三区9厂 | 91精品人妻麻豆一区二区| 真实乱子伦厨房A片| 热久久这里只有精品18| 国内精品伊人久久久久影院麻豆| 精品一区二区三区影院在线午夜| 在线aⅴ亚洲中文字幕| 久久丫精品国产亚洲AV| 久久精品国产亚洲Av久| 日韩欧美亚洲精品成人福利| 中文字幕不卡视频| 国产主播户外勾搭人xx| 日本一区二区三区四区在线 | 国产老头和老太xxxx视频| 国产麻豆一精品一av一免费| 黄色免费av网站| 99久久一区二区| 在线天堂中文最新版www| 自拍视频一区二区| 日韩精品一区二区免费视频| 草草久久97超级碰碰碰| 青青草免费在线视频| 天天视频在线观看免费精品| 国产美女在线观看| 欧美一区二区激情| 一本大道东京热无码aⅴ| 亚洲va欧洲va国产va不卡| 成人av片手机在线播放| 久久91精品国产91久久小草| 六月丁香婷婷综合| 精品无码成人久久久久久| 在线播放真实国产乱子伦| 欧美+高清+喷水| 久久精品99久久精品香蕉网| 日韩精品一卡2卡3卡4卡新区| 人妻丰满熟妇av无码区免 | 日韩内射人妻1区2区3区| 伊人国产精品影院在线观看| 亚洲日韩欧洲无码av夜夜摸| 先锋啪啪A片中文字幕| 欧美日韩中文字幕久久久不卡| 视频+国产+免费| 国产精品久久久久久三级| 免费无码一区二区三区a片18| 三个熟睡少妇的按摩中文字幕| 久久伊人精品影院一本到综合 | 西西人体大胆ww4444图片| 国产精品天干天干综合网| 国产三级精品三级在线| 污网站在线免费看| 高清亚洲中文字幕在线观看| 九九精品视频在线观看| 狠狠综合久久av一区二区蜜桃| 久久精品aⅴ无码中文字字幕| 91狠狠色丁香婷婷综合久久| 国产成人久久精品二区三区| 精品一区二区三区国产| 久久无码一级免费| 黄色毛片一级黄色| 无遮挡又色又刺激的视频+黄| 国产资源在线观看| 国产一区二区三区久久久久久久| 老汉tv永久视频福利在线观看| 娇妻被黑人伦轩1~14| 日本毛片高清免费视频| 国产剧情国产精品一区| 漂亮人妻被黑人久久精品| 亚洲国产精品久久久久婷婷图片| 美利坚合众国av| 亚洲精品久久久久中文字幕欢迎你 | 午夜激情福利视频| 国产成人a在线观看网站站| 国产特黄大片aaaa毛片| 成人孕妇专区做爰高潮| 国产又大又黄又硬又爽的视频| 天堂中文在线8最新版地址| 国产曰又深又爽免费视频| 西西大胆人体视频| 最新国产av最新国产在钱| 久久久精品视频网站| 先锋影音+中文字幕| 国产免费一区二区三区视频| 亚洲综合无码一区二区三区不卡 | 中文字幕乱码亚洲无线三区| 精品视频在线免费观看一区| 欧美在线视频免费观看综合一区 | 少妇特黄一区二区三区| 国产国产午夜精华| 在线视频中文字幕一区二区三区| 伊人久久大香线蕉综合bd高清| 久久综合精品亚洲| 国产精品视频六区| 久久99这里只有精品| 国产中文字幕在线观看| 亚洲精品1卡2卡3卡| 99精品国产99欠久久久久| 久久香蕉国产线熟妇人妻| 美女黄色视频网站在线观看| 99国产精品免费播放| 亚洲aⅴ天堂av天堂无码麻豆 | 免费在线观看一区| 亚洲精品456在线观看第一页| 奇米777四色成人影视 | 久久成人人人人精品欧| 亚洲欧美中文字幕在线net| 日本熟妇无码一区二区 | 午夜在线观看网站| 欧美午夜精品久久久久久白云| 无码人妻aⅴ一区二区三区玉蒲团| 麻豆黑色丝袜jk制服福利网站| 成人做爰高潮片免费视频| 日本一卡二卡不卡视频查询| 一区二区三区国产日韩欧美在线| 日本免费无遮挡毛片的意义 | 鲁大师影视在线观看高清免费 | 好爽好湿好硬好大免费视频| 无码+调教+西瓜影音| 日本人六九视频69jzz免费| 福利片+国产+合集| 亚洲欧美在线一区中文字幕| 《公交车欲淫》伦理| 亚洲精品国产精品国自产中出| 97夜夜澡人人双人人人喊| 久久亚洲精品成人无码网站| 欧美午夜精品久久久久久视 | 国产乱人伦精品一二三区二区 | 久久av中文字幕| 青青青免费在线视频亚洲| 妖精视频在线观看免费| 国产大片内射1区2区| 天堂在线天堂新版www| 日本一区二区三区四区在线| 国精品产品区三区| 91成人在线视频| www.五月婷婷.com| 国产高清视频一区| 三年片在线观看免费观看大全+下载 | 艳妇乳肉豪妇荡乳av无码福利| 亚洲免费av网站| 日本一区二区三区四区18| 天天免費国产在线观看| 婷婷色九月综合激情丁香| 国产成人精品综合| 黄页免费观看一区二区三区| 欧美高清69xxvideos18hd| 少妇做爰又色又紧夜视频| 91精品国产成人观看免费九色| 日韩+欧美+高潮| 77久久人妻视频| 国产精品白嫩极品美女视频| 最新中文字幕免费在线观看| 一个人看的免费高清视频www| 中文字幕淑女丝袜人妻在线| 亚洲第一精品久久| 亚洲综合小说另类图片五月天| 天堂www天堂在线资源网| 影音先锋+欧美+爆乳| 亚洲欧美综合精品另类天天更新| 邪恶肉肉全彩色无遮盖| 亚洲中文字幕无码爆乳AV| 亚洲国产精品s8在线观看 | 窝窝影院在线播放免费观看电视剧| 久久精品国产精品青草app| 国产+午夜福利+久久精品| 午夜免费av啪啪噜噜| 日本在线观看一区| 久久精品国产亚洲av成人久久| 国产精品一级AA毛片不收费| 亚洲精品久久久无码av片软件| 成年人免费看的视频| 国产精品白丝美女免费在线观看| 久久久亚洲欧洲日产国码二区| 亚洲人交乣女bbw| 日韩精品一区二区免费视频| 91视频成人免费| 失禁+调教+高潮| 激情午夜福利在线视频观看 | 拔插拔插海外华人永久免费| 真人做爰高潮全过视频| 免费在线观看a级片毛片| 99国产在线视频有精品视频| 深圳妇女搡BBBB搡BBBB| 综合久久综合久久| 国产在线视欧美亚综合| 国产在线精品一区二区夜色| 日韩欧美一区二区在线观看视频| 综合激情久久综合激情| 69精品人人人人人人人人人| 三级慰安女妇威狂放播| 波多野结衣绝顶高潮喷水| 久久精品国产亚洲av水果派| 曰欧一片内射vα在线影院| 天美MV星空大象MV免费观看| 欧美一区二区三区四区91| 日韩一区二区三区无码影院| 先锋影音av最新资源| 男人操女人免费看网站亚洲欧美| 中文字幕+乱码+www| 少妇嫩搡BBBB搡BBBB| 亚洲福利国产网曝| 97在线观看免费观看高清| 免费一级欧美片在线观看欧美| 亚洲乱码中文字幕综合234| 偷拍亚洲综合20p| 亚洲人成色在线观看| 少妇人妻无码专区毛片| 人妻av无码专区久久| 少妇做爰又色又紧夜视频| 三级慰安女妇威狂放播| 午夜免费无码福利视频麻豆| 亚洲AV综合A色AV中文| 影音先锋+在线+国内| 国产精品久久久久久久久久蜜臀| 国产精品99久久最新视频| 亚洲欧美精品中文一区二区三| 粉嫩99精品99久久久久久桃色| 久艾草在线精品视频在线观看| 久久综合精品视频| 人人超人人超碰超国产97超碰| 精精国产xxxx视频在线观看 | 无遮挡又色又刺激的视频+黄| 国产+精品+在线观看| 国产真人真事毛片视频| 日韩免费一区二区三区高清| 中文字幕av在线播放| 久久亚洲美女精品国产精品| 国产+免费+自拍| 日本不卡在线视频二区三区| 淫语对白XXXHD| 国产伦子伦一级A片免费看刘亦菲| 精品亚洲一区二区三区一| 日韩专区亚洲综合在线观看免费完整版 | 一区二区国产午夜视频在线| 日韩乱码在线观看免费视频网站 | 99亚洲精品久久久99 | 国产一区日本二区在线观看 | 中文字幕日本亚洲欧美不卡| 泽井芽衣+磁力链接+mp4| 国产激情综合五月久久| 丁香五月激情综合亚洲| 国产美女极度色诱视频www| 国产精品一区二区av麻豆| 欧美精品三级黄片| 绿巨人黄瓜香蕉草莓秋葵丝瓜绿巨人污破解 | 97caoporn国产免费人人| 日本道免费精品一区二区| 欧美成人高清视频| 婷婷在线精品视频免费观看| 国产+欧美+日韩在线| 亚洲国产大胸一区二区三区 | 中国女人熟毛茸茸a毛片| 国产精品18久久久久久人| 玖玖资源站无码专区| 高h肉放荡爽全文寂寞少妇| 亚洲香蕉视频综合在线| 国产欧美日本亚洲精品一5区| 人妻少妇精品无码专区app| 精品欧美一区二区三区不卡视频| 国产91精品久久久久91黄色| 99久久久精品国产美女| 自拍亚洲欧美日韩一区二区三区| 亚洲乱码精品一区二区三区国产| 免费av大全在线看不卡| 日本久久高清免费观看| 色欲色香天天天综合网站| 欧美激欧美啪啪片免费看| 亚洲国产91福利在线播放| 亚洲美女视频网站| 天天av影院免费看| 欧美+日韩+中文| .17c嫩嫩草色视频| 在线观看视频免费观看91| 无码aⅴ精品一区二区三区浪潮| 亚洲第一毛片18我少妇| 国产成人精品午夜福利软件| 亚洲+欧美+综合| 91n免费处女在线| 日本欧美一区二区三区乱码 | 白嫩少妇各种bbwbbw| 一边摸一边抽搐一进一出口述| 亚洲国产精品第一区二区三区| 成人无码www免费视频嘿嘿软件| 国产精品卡1卡2卡三卡四| 国产av精国产传媒| 熟妇大肉唇BB肥| 日日摸天天摸97狠狠婷婷| 中文字幕第一頁亞洲| 国产+闺蜜+磁力链接| 99与久久国产精品视频| 国产亚洲欧美日韩在线一区| 国产一二中文字幕91影院日韩欧美 | 亚洲成a人片在线观看天堂| 特级精品一α级毛片视频| 美日韩熟女与少妇精品激情| 亚洲国产精品久久一线app| 亚洲国产欧美在线成人aaaa| 国产精品无打码在线播放| 亚洲第一成年免费网站| 一本一道久久综合狠狠老| 99热精品国产三级在线观看| 亚洲香蕉视频综合在线| 久久久久国产精品人妻aⅴ网站| 丫丫影院免费观看电视剧| 亚洲欧美日韩另类精品一区二区三区| 欧美一级淫片007| 黄页+国产+在线观看| 日韩人妻无码精品久久久不卡| 日韩视频中文字幕精品偷拍| 国产免费观看高清电视剧| 欧美视频在线观看免费www| 亚洲欧美闷骚影院| 亚洲一区二区三区高清在线看| 亚洲乱码国产乱码精品精不卡| 最新东京热+中文字幕| 少妇太爽了在线观看视频| 又黄又爽全无遮挡的免费视频| 久久久这里只有精品10| 男人天堂视频网站| 成人亚洲a片v一区二区三区蜜月| 尤物亚洲国产亚综合在线区| 影音先锋+川上优| 日韩激情免费视频一区二区| 国产欧美日韩亚洲18禁在线| 夜夜嗨av一区二区三区四季av| 一区二区三区+国产+欧美日韩| 顶级欧美熟妇xx| 高潮+白浆+在线观看| 97久久久亚洲综合久久88| 亚洲国产精品久久久毛片| 五月婷婷激情小说| 国产在线无遮挡免费观看| 亚洲成aⅴ人片在线观| 精品亚洲国产成人av制服丝袜| 国产精品高潮久久久久久| 中文字幕人妻无码专区app| 日韩无码中文字幕| 精品成人乱色一区二区| 手机在线看片1024| 国产精品丝袜黑色高跟鞋v18 | 国产视频在线一区二区| 女同一区二区三区在线观看| 美女黄色视频网站在线观看| 妺妺窝色77777777野大粗| 欧洲av成本人在线观看免费| 丰满女房东的奶真大| 中国国产野外1级毛片视频| 日韩欧美中文字幕视频在线看 | 天堂久久久久va久久久久| 国产一级真人做受| 精品国产制服丝袜高跟| 80s+毛片+免费观看| 少妇愉情理伦片丰满丰满午夜| 中文字幕久热精品视频在线| 国产精成人品日日拍夜夜| 青青国产香蕉视频在线观看| 欧美日韩无套内射另类| 国产精品夫妻视频| 欧美+高清+喷水| 色婷婷精品久久二区二区蜜臂av| 色综合天天综合网站在线观看 | 亚洲欧美制服另类国产二区 | 一区二区免费视频| 亚洲人视频在线观看视频在线 | 粉嫩av一区二区三区四区免费| 成人无码www免费视频嘿嘿软件| 亚洲欧美日韩在线观看一区二区三区 | 91精品视频在线| 337p日本欧洲亚洲大胆裸体艺术| 国产精品久久久久久亚洲AV| 欧美亚洲国产精品久久高清| 亚洲第一综合成人在线观看| 欧美精品一区二区高清在线观看| 亚洲国产成人久久久网站| 午夜福利啪啪体验区| 亚洲欧美日本在线观看视频| 辜莞允+无码+视频下载| 午夜精品久久久久久久久久| 久久婷婷丁香七月色综合| 奇米影视亚洲春色| 欧美一级视频在线观看三级| 精品国产一区二区三区四| 国产精品视频在线观看| 国产精品高潮久久久久久| 超碰+国产+在线| 区二三区四区精华日产一线二线三| 欧美极品中文字幕在线观看| 一本大道苍井空波多野结衣| 99精品国产综合久久久久五月天| 欧美精品黄片一区二区三区| 精品一区精品二区| 麻豆国产VA免费精品高清在线 | av天堂东京热无码专区| 精品视频在线免费观看一区| a级特黄一级一大片多人| 91看片淫黄大片一级在线观看| 在线免费看av网站| 日韩午夜福利无码专区a| 人妻过夜+中文字幕+在线| 黑人精品XXX一区一二区| 国产+免费+自拍| 国产精品最新乱视频二区| 精品国产一区二区av麻豆| 在线+成人+日韩毛片| 色阁精品香蕉一区二区| 色婷婷噜噜久久国产精品12p| 亚洲一区二区久久久| 欧洲精品色在线视频看看| 五月天丁香婷婷亚洲综合一区| 天美麻花果冻视频大全英文版| 粉嫩小泬无遮挡久久久久久| 成人免费一区二区三区视频软件 | 国产成人精品视频国产| 国产一级av一区二区在线| 四虎影视在线观看国产精品| 亚洲av成人一区国产精品一| 精品蜜臀av在线天堂| av久久悠悠天堂影音网址| 久久久久久久av麻豆果冻| 一本一道人人妻人人妻ΑV| 91九色在线视频| 极品气质女神呻吟娇喘91| 欧美日本日韩aⅴ在线视频| 久久国产午夜精品理论片| 色婷婷亚洲中文在线观看| 翁含着我的奶边摸边做小视频| 欧美一区二区三区巨免费| 中文欧美日韩久久| 粉嫩99精品99久久久久久桃色 | 欧美国产成人免费观看| 亚洲国产精品s8在线观看| 美女视频黄是免费| 国产精品一区二区久久| 自慰系列无码专区| 精品乱码久久久久久久| 欧美日韩视频在线观看免费 | 乱公伦媳..~啊~视频| 亚洲制服丝袜中文字幕国产| 喂奶试戏NP(高H| 正在播放懂色av| 亚洲欧美日韩国产成人精品影院| 精品人人妻人人爽人人牛牛| 干离异富婆的骚B| 91精品国产综合久久国产大片| 亚洲人成影院免费国产精品成人| 苍井空第一次激烈高潮视频| 亚洲日韩精品一区二区三区无码| 亚洲精品欧美激情专区在线观看| 视频一区二区中文字幕在线 | 久久精品国产亚洲av水密被窝 | 成人午夜片在线免费观看| 青青草国产在线视频综合| 亚洲一区二区三区国产中文| 无套内谢波多野结衣| 苍井空亚洲精品AA片在线播放| 国产精品中文字幕一区二区 | 视频一区二区三区亚洲天堂网| 国产精品白丝久久Av网站| 偷窥+国产+综合| 西西人体窝窝仙踪林| 久久精品国产首页国产欧美| 日韩第一页视频在线观看| 沈清秋屁股扒开臀缝调教| 久久久精品成人免费影院| 国产欧洲色婷婷久久99精品91| 国产又黄又爽又色视频免视频 | 成人+高潮+国产| 丰满+迅雷+中文字幕| 欧美日韩国产高清一区二区三| 亚洲+视频+免费| 18禁美女黄网站色大片免费看 | 国产美女免费网站| 国产在线观看免费观看99| 国产精品一av一免费爽爽 | 人人爽人人奭人人片AV| 乱公伦媳..~啊~视频| 青青草无码精品伊人久久蜜臀| 午夜精品乱人伦小说区| 国产亚洲精品久久www| 正在播放:良家人妻翘起屁股狂插内射| 久久久噜噜噜久久熟女色| 亚洲丝袜制服诱惑第一区二区| 国产又黄又爽又猛视频在线观看 | jiZjiZ中国少妇高潮水多| 亚洲+欧洲+国产精品| 国产99久久精品一区二区| 中国东北少妇bbb真爽| aaa女人18毛片水真多| 久久国产亚洲精品超碰热| 国产日产高清欧美一区| 国产xxxx视频在线观看| 老熟妇午夜毛片一区二区三区| 亚洲综合中文字幕无线码| 日韩欧美三级在线| 国产女人18毛片水真多成人如厕 | 偷拍东北熟女乱xxxxx| 香蕉精品视频在线观看| a毛片终身免费观看网站 | 91绿帽黑人系列一区| 极品白嫩少妇无套内谢| 国产成人精品一区二区在线观看| 精品视频在线免费观看网址| 久久久久久人妻精品一区二区三区| 天堂а√在线地址中文资源| 国产熟妇另类久久久久久| 99久久久久国产精品免费| 中文+字幕+国产| 日本在线a一区视频| 婷婷激情偷拍在线| 欧美又大又粗又湿a片| 亚洲精品无码久久久久不卡网址| 青青青免费在线视频亚洲| 国产精品露脸视频| 国产黄a大片真人免费视频| 粉嫩小泬无遮挡BBBBB图片| 久久国产精品精品| 亚洲精品一区二区成人| 香蕉久久av一区二区三区| 中日韩国产高清在线观看| 日韩精品视频在线观看一区二区| 四房播播五月天+在线播放| 久久精品国产欧美日韩亚洲| 国产精品黑色丝袜在线观看| 欧美亚洲国产精品第一页| 久久精品国产亚洲av水果派| 亚洲欧美国产国产综合一区| 亚洲高清无码视频| 午夜视频在线在免费| 亚洲人成伊人成综合网小说| 国产一区高清视频在线观看| 亚洲第一狼人伊人av| 日韩成人av免费在线观看| 国产极品美女高潮抽搐免费网站| 蜜桃91丨九色丨蝌蚪91桃色| 美女黄页网站国产在线观看| 精品熟人一区二区三区四区| 国产精品久久视频| av免费看片一区二区三区| 99久久精品无码一区二区毛片| 激情国产欧美一区二区三区| 怡春院国产精品视频| 国产成人主播在线视频看看| 猫咪免费人成网站在线观看| 少妇内射兰兰久久| 亚洲国产福利成人一区| 日韩欧美精品v片免费看| 亚洲欧美另类在线图片区| 国产又色又爽无遮挡免费| 亚欧洲一区二区三区伦理| 亚洲精品图片区小说区| 欧美极品中文字幕在线观看| 成人免费国产精品视频| 国产精品久久久久久婷婷天堂| 成人免费在线网站| 91久久久久久国内免费视频| 天堂一区二区mv在线观看| 精工厂777免费观看电视剧| 精品99一卡2卡三卡4卡| 91精品国产免费久久久久久| 91福利视频在线| 《交换3》金智媛演技评价| 亚洲精品成人天堂一二三| 亚瑟女厕盗摄视频大全| 久久久午夜精品理论片中文字幕| 交专区videossex| 国产精品尤物铁牛tv| 中国一级一区二区三区黄色视频 | 麻豆精品久久久久久久99蜜桃| 欧美日韩激情在线观看免费| 欧美极品少妇xxxxⅹ免费视频| 野外强伦姧女教师高清在线| 粉嫩呦福利视频导航大全| 日本一卡二卡三卡在线观看| 91淫语熟女骚话连篇| 在线播放av网站| 国产亲子乱婬一级A片| 国产午夜精品福利视频| 99久久国产综合久久精品| 国产精品18久久久首页| 天天狠天天天天透在线| 欧美+日本+国产在线观看| 97成人精品区在线播放| 97色精品视频在线观看| 十八禁污视频在线观看无遮挡| 激情文学午夜视频在线观看| 2018av无码视频在线播放| 99r在线精品视频在线播放| 久久国产免费直播| 91久久久精品国产一区二区蜜臀| 国产又黄又猛又粗又爽的久久久| 国产亚洲视频在线播放香蕉| 国产美女视频免费观看www| 高清无码成人视频| 国产精久久久久久一区二区三区| 亚洲精品无码久久不卡| 大香蕉精品手机在线观看| 欧美一区二区三区在线| 国产精品久久久区三区天天噜| 亚洲第一综合网站| 重囗味sM群虐老女人| av网站在线免费看| 天天狠天天添日日拍捆绑调教| mm131亚洲国产美女久久| 亚洲欧美日韩视频一区二区 | 精品亚洲国产成人av制服丝袜| 菠萝蜜影院免费播放电视剧软件| 一区二区在线视频播放| 一边摸一边抽搐一进一出口述| 久久国产综合尤物免费观看| 国产精品国产自线拍免费软件| 国产综合精品在线| 一级特黄aaaaaa大片| 另类天堂网不卡另类系列| 亚洲中文字幕无码爆乳AV| 又色又爽又黄的三级视频| 亚洲精品av网站在线观看| 中文字幕一区三级久久日本| 亚洲一区二区三区日韩在线视频 | 黑人与人妻无码中字视频| www.在线观看麻豆| 中文字幕国产在线| 亚洲人成未满十八禁网站| 美国午夜福利视频一二区| gogogo高清在线完整免费观看 | 日日鲁夜夜如影院| 国产成人在线一区二区| 亚洲午夜精品一区| 丰满日韩放荡少妇无码视频| 国产精品无打码在线播放 | 18+看片+日韩毛片| 久久婷婷五月综合色99啪| 成人国产精品福利| 亚洲aⅴ综合色区无码一区| 99精品国产综合久久久久| 午夜精品第一区第二区第三区 | 国产人妻人伦精品潘金莲| 国产精品黄色av| 欧美黄视频在线观看| 国产毛片乡下农村妇女bd| 国产毛片久久久久久久18| 国产一区二区三区在线| 强行交换配乱婬bd| 久久婷婷狠狠综合激情| 九九99久久精品在免费线bt| 成人在线观看视频网站| 蜜桃又黄又粗又爽av免| 欧美黄色激情视频| 大波美女一级a久久午夜| 青青国内精品视频免费观看| 国产欧美一区二区三区片| 在线观看免费高清视频大全追剧| 欧美日韩亚洲国产九色91| 亚洲免费网站观看视频| 失禁+调教+高潮| 精品无码一区二区三区潮喷 | 国产欧美日韩综合精品一区二区 | 欧美一级三级完全免费观看| 国产精品久久久久久久久裸体 | 久久精品国产亚洲av成人乳| 亚洲制服国产丝袜综合四季av| 国产精品户露av在线户外直播| 久久精品国产亚洲av高清观看| 国产亚洲曝欧美精品手机在线| 国产精品久久久久久久成人av| 欧美日韩成人在线免费观看| 亚洲中文字幕无码久久2017| 固产精品凹凸777777| 亚洲欧洲国产日韩精彩视频| 成年女人免费视频| 中文字幕+17c| 无码AV最新无码AV专区| av在线国产精品中文字幕| 亚洲国产欧美日韩在线人成| 国产自偷亚洲精品页65页| 久久久精品一区二区三区| 黄色小视频在线观看| 年轻内射无码视频| 老牛嫩草一区二区三区消防| 久久天天躁夜夜躁狠狠躁综合| 妺妺窝人体色www聚色窝| 男女猛烈激情xx00免费视频| 亚洲18在线看污www麻豆| 亚洲国产专区校园欧美| 国产91精品久久免費資訊| 真人做爰视频成人观看| 一区二区丰满视频免费观看| 国产精品久久久久久久久白女| 国产又粗又猛又爽又黄的a视频 | 久久久麻豆一区二区三区四区| 青青青国产手机在线观看| 欧美日韩激情在线观看免费| 手机无码人妻一区二区三区免费 | 亚洲日本在线在线看片4k超清| 中国女人黄色大片| 全黄久久久久a级全毛片| 制服丝袜第一页在线| 精品无码人妻视频一区视频二区| 国精产品一区二区三区x88| 美女动态视频久久久久久久久久| 在线日韩中文字幕av网站| 日韩视频欧美国产一区二区三区| 国产精品国产三级国产有见不卡| 亚洲一区二区三区av无码| 一级美国无码高清| 八戒视频在线观看免费播放电视剧| 80s+毛片+免费观看| 亚洲成人精品久久久国产精品| 97无码精品综合| 国产精品jk白丝蜜臀av小说| 久久久国产免费美女视频| 亚洲日本乱码一区二区在线二产线| 日本无码一区二区三三| 久久久久久臀欲欧美日韩| 亚洲无码高清一区二区三区视频| 扒开粉嫩的小缝喷白浆| 日韩毛片+18+成人网| 久久精品国产—精品国产| 国产精品vr虚拟专区| 欧美亚洲另类日韩在线网页| 久久人午夜亚洲精品无码区| 天堂www天堂在线资源网| 久久99国产精品尤物| 亚洲午夜久久久精品影院| 亚洲+欧洲+国产精品| 任你干在线精品视频网2| 老伦熟女一区二区三区红豆| 成人+高潮+国产| 制服丝袜诱惑一区二区三区| 日韩精品网站在线观看| 亚洲毛片在线播放| 国产又硬又粗的视频在线观看 | 日韩中精品文字幕在线一区| 99久久婷婷国产综合精品| 磁力天堂torrent在线| 99国精品午夜福利视频不卡99| 久久久精品小视频| 欧美又粗又大又硬久久久| 欧美在线视频免费观看综合一区| 久久精品人人做人人爽| 日韩欧美视频一区| 在线亚洲精品国产成人av剧情| 国产69精品麻豆| 97精品人妻一区二区视频| 日本丰满人妻久久久久久| 色又黄又爽18禁免费网站现观看| 国产成人av+在线| 日本人妻人人人澡人人爽| 97中文字幕在线观看| 绯色AV色窝窝无码久久免费酒店| 成人精品一区二区三区网站 | 亚洲欧美成人久久一区| 阿v天堂一区二区在线观看| 色婷婷av久久久久久久| 日韩三区在线观看| 乱码精品国产成人观看免费| 国产精品一区二av18款| 国产+高潮+刺激| 粉嫩一区二区三区四区公司1 | 美州a亚洲一视本频v色道| 婷婷激情五月天综合丁香社区| 精品久久久久久中文字幕大豆网| 国产精品久久久久久亚洲综合网 | 国产在线麻豆在拍91精品| 日韩av一二三四区| 中文字幕欧美一区二区在线| 美女被草+在线观看| 一区二区精品视频大全在线播放| 天堂av资源在线| 亚洲国产尤物在线观看视频| 国产亚洲视频在线播放香蕉| 日韩中文字幕在线观看一区二区| 久久精品无码中文字幕| 老牛影院在线观看免费下载电视剧 | 国产欧美另类久久久精品99| 色天天综合久久久久综合片| 熟妇精品一区二区三区四区| 黄色一级大片在线免费看产| 国产欧美一区二区精品久久久 | 中国东北少妇bbb真爽| www.91自拍| av超碰日韩成人在线观看| 国产精品亚洲w码日韩中文| 亚洲第一毛片18我少妇| 中文+乱码+欧美| 中文资源在线天堂库8| 日韩毛片+高清+下载| 国产乱子伦视频一区二区三区| 八十路で初撮り老熟妇中国| 国产在线高清理伦片a| 精品国产av一区二区三区蜜臀| 国产精品卡1卡2卡三卡四| 国产毛片久久久久久久18| 日韩国产精品一区二区| 在线亚洲综合欧美网站首页| 成人做爰A片免费观看软件| 亚洲va欧洲va国产va不卡| 99国产精品污污污网站免费看| 亚洲欧美综合在线观看| 久久久久久久国产精品影院| 亚洲国产欧美日本视频| 国产69精品久久久久男男系列| 中文字幕在线永久视频2018| 国产高清一区二区三区四区| 国产又大又长又粗又硬又爽| 爆乳の豊満な肉体| 韩国精品久久久久久无码| 欧美日韩国产成人| 在线欧美日韩三级| 国产九九久久99精品影院| 制服丝袜诱惑在线观看一二区 | 国产91精品一区二区麻豆网站| 永久免费看成人AV的动态图 | 女人做爰高潮全黄| 亚洲国产日本韩国欧美mv| 欧美中文字幕一区二区三区乱码| 久久精品国产亚洲av高清蜜臀| 欧美黑人一区二区| av久一区二区国产在线观看| 国产成人高清视频| 欧美日韩成人一区二区| 精品美女一区二区| 国产又黄又爽又粗又猛的网站| 亚洲欧美国产一区二区三| 新婚少妇无套内谢国语播放| 亚洲乱码国产乱码精品精软件 | 国产日韩欧美亚洲综合v精品| 人妻av中文字幕久久| 色网站在线观看视频| gogogo高清在线观看+视频| 巨大荫蒂视频欧美另类大| 亚洲日本在线在线看片4k超清| 日韩国产在线观看不卡免费| 中文字幕在线看高清好看的电视剧 | 国产女同一区二区在线观看| 国产精品久久久久久婷婷| 亚洲色大成网站www尤物| 久久婷婷五月综合色丁香花| 亚洲综合国产精品一区| 18+深夜福利+日韩毛片| 丁香五月激情综合亚洲| 97久久久精品综合88久久| 久久久久久久一区| 国产美女高潮呻吟视频免费| 免费网站观看www在线观看| 日韩免费一区二区三区高清| 精品一区二区三区影院在线午夜 | 久久久91精品国产一区二区三区| 日本道精品一区二区三区| 国产精品自产拍高潮在线观看| 一级国产特黄bbbbb| 国产成人免费高清在线观看| 久久91精品国产91久久蜜月 | av岬奈奈美一区二区三区| 亚洲色成人一区二区三区| 日韩欧美在线观看污视频| 日本少妇又色又爽又高潮看你| 国产午夜夜伦鲁鲁片| 亚洲熟妇AV乱码在线观看| 东京热加勒比久久| 中文字幕+乱码+中文字幕电视剧| 国产女人高潮毛片| 成人做爰a片b站| 美女成人亚欧色区视频网| 国精产品99永久一区一区| 国产免费拔擦拔擦8x高清在线人| 精品深夜av无码一区二区老年| 91精品福利在线观看| 2021av在线无码最新| gav成人网免费免播放器播放| 欧洲中文字幕日韩精品成人| 欧美不卡一区二区视频在线观看 | 新一级三级片国语版| 久久99+极品+中文字幕| 亚洲黄色免费网站| 155fun黑料热点事件| 中文字幕永久免费| 成人在线免费高清视频| 中文字幕乱码亚洲无线三区| 99久热re在线精品视频| 永久黄网站色视频免费观看| 国产精品情侣熟女毛片对白看片| 亚洲国产麻豆精品系列av| 国产日产韩国精品视频| 亚洲人视频在线观看视频在线| 福利丝袜视频一区二区三区| 香蕉97超级碰碰碰免费| www.日韩精品在线观看| 免费av男人天堂亚洲天堂| 日韩欧美精品一区在线观看| 久久亚洲精品成人无码网站| 欧美艳星nikki激情办公室| 美利坚合众国av| 男女一边摸一边做爽视频| 少妇高潮惨叫喷水正在播放| 国内自拍视频在线播放| 欧美激情一区二区三区四区 | 久久精品视频亚洲| 国产精品偷伦费观看一次| 又紧又黄的免费视频网站| 日本精品久久久久久| 毛片毛片毛片毛片毛片毛片毛片毛片毛片 | 国产又色又爽无遮挡免费动态图 | 99国精品午夜福利视频不卡99| 中文字幕在线影视| 日本精品少妇一区二区三区| 欧美日本三级少妇三级久久| 香蕉视频在线网址| 国产精品高清一区二区不卡片| 欧美日韩国产高清一区二区三 | 青青草视频+在线观看| 亚洲精品视频在线观看网址网站| 国产美女高潮呻吟视频免费| 精品国产成人在线一区二区| 久久亚洲精品无码观看网站| 欧美韩国一区二区| 日本免费一区二区三区中文字幕| 国产精品一二三区在线观看| 一级片在线免费观看| 成人在线手机视频| 多P无码视频网页| TokyoKoT大交乱| 国产婷婷一区二区三区久久|