精品欧美无人区乱码毛片,欧美人与动牲交久久,91久久久久久亚洲精品,日韩人妻中文一区二区三区,久久精品国产一区二区,欧美精品午夜理论片在线网址,久久久久久久麻豆,欧美永久免费精品,欧美在线播放一区二区欧美馆

佳學(xué)基因遺傳病基因檢測(cè)機(jī)構(gòu)排名,三甲醫(yī)院的選擇

基因檢測(cè)就找佳學(xué)基因!

熱門搜索
  • 癲癇
  • 精神分裂癥
  • 魚鱗病
  • 白癜風(fēng)
  • 唇腭裂
  • 多指并指
  • 特發(fā)性震顫
  • 白化病
  • 色素失禁癥
  • 狐臭
  • 斜視
  • 視網(wǎng)膜色素變性
  • 脊髓小腦萎縮
  • 軟骨發(fā)育不全
  • 血友病

客服電話

4001601189

在線咨詢

CONSULTATION

一鍵分享

CLICK SHARING

返回頂部

BACK TO TOP

分享基因科技,實(shí)現(xiàn)人人健康!
×
查病因,阻遺傳,哪里干?佳學(xué)基因準(zhǔn)確有效服務(wù)好! 靶向用藥怎么搞,佳學(xué)基因測(cè)基因,優(yōu)化療效 風(fēng)險(xiǎn)基因哪里測(cè),佳學(xué)基因
當(dāng)前位置:????致電4001601189! > 檢測(cè)產(chǎn)品 > 生殖健康 > 男性生殖 >

【男性不孕癥】男性不孕癥的遺傳因素和非遺傳因素——基因檢測(cè)準(zhǔn)嗎

(1) 環(huán)境壓力是如何降低精子質(zhì)量和降低男性生育能力的;(2)哪些化學(xué)元素會(huì)導(dǎo)致男性生殖系統(tǒng)的氧化應(yīng)激和免疫遺傳學(xué)改變;(3) 多態(tài)性如何與生殖潛能和促抗氧化機(jī)制的變化相關(guān),作為男性生殖條件的病理生理障礙的標(biāo)志;(4)免疫遺傳性疾病的環(huán)境應(yīng)激因素如何伴隨男性不育和反應(yīng);環(huán)境和遺傳危險(xiǎn)因素的分布和流行程度如何。

男性不孕癥的遺傳因素和非遺傳因素

Abstract

We explain environmental and genetic factors determining male genetic conditions and infertility and evaluate the significance of environmental stressors in shaping defensive responses, which is used in the diagnosis and treatment of male infertility. This is done through the impact of external and internal stressors and their instability on sperm parameters and their contribution to immunogenetic disorders and hazardous DNA mutations. As chemical compounds and physical factors play an important role in the induction of immunogenetic disorders and affect the activity of enzymatic and non-enzymatic responses, causing oxidative stress, and leading to apoptosis, they downgrade semen quality. These factors are closely connected with male reproductive potential since genetic polymorphisms and mutations in chromosomes 7, X, and Y critically impact on spermatogenesis. Microdeletions in the Azoospermic Factor AZF region directly cause defective sperm production. Among mutations in chromosome 7, impairments in the cystic fibrosis transmembrane conductance regulator CFTR gene are destructive for fertility in cystic fibrosis, when spermatic ducts undergo complete obstruction. This problem was not previously analyzed in such a form. Alongside karyotype abnormalities AZF microdeletions are the reason of spermatogenic failure. Amongst AZF genes, the deleted in azoospermia DAZ gene family is reported as most frequently deleted AZF. Screening of AZF microdeletions is useful in explaining idiopathic cases of male infertility as well as in genetic consulting prior to assisted reproduction. Based on the current state of research we answer the following questions: (1) How do environmental stressors lessen the quality of sperm and reduce male fertility; (2) which chemical elements induce oxidative stress and immunogenetic changes in the male reproductive system; (3) how do polymorphisms correlate with changes in reproductive potential and pro-antioxidative mechanisms as markers of pathophysiological disturbances of the male reproductive condition; (4) how do environmental stressors of immunogenetic disorders accompany male infertility and responses; and (5) what is the distribution and prevalence of environmental and genetic risk factors.

1. Introduction

Nowadays a large pool of substances potentially harmful for human health is incessantly present in the natural environment. Toxic metals (Cd, Pb, Hg, As, Be, V, Ni), dioxins, anti-metabolites, dyes, herbicides, fungicides, or even house dust constitute a detrimental mixture that people are exposed to practically every day [1,2,3,4]. Therefore, essential systems of the human organism are continually subjected to potential damage. Among them, the reproductive system, especially spermatogenesis, appears to be affected, too [5]. Long-term exposure to destructive factors may lead to occupational diseases, irreversible changes in the reproductive system (worsening of sperm quality, disorders in spermatogenesis), or even to infertility [6]. In this respect, toxic heavy metals and certain chemical pollutants (dichloro-diphenyl-dichloro-ethane DDT or methoxychlor) are considered as oxidative stress inducers [7]. Oxidative stress is defined as a lack of balance between per-oxidation and anti-oxidation, directly connected with overproduction of reactive oxygen species ROS [8]. It is difficult to avoid certain factors that induce oxidative stress, especially in cities due to traffic and industrial activity (smog, traffic fumes), but other sources of ROS may remain under control. Cessation of smoking, introducing a low-fat diet, or regular physical activity can be simple strategies against oxidation [9]. One of the causes of oxidative stress is the decrease of antioxidant enzymes (superoxide dismutase SOD, catalase CAT or glutathione peroxidase GPx) which erodes the line of defense against reactive forms of oxygen [10]. Thus, introducing an anti-oxidative diet consisting, e.g., of fruits and vegetables rich in vitamins A, C, E, and B, is recommended and beneficial for strengthening the anti-oxidative potential of the body [11,12,13]. The male reproductive condition can be improved by supplementation of beneficial elements such as zinc or selenium that cause positive changes in sperm count and motility [14]. Melatonin, beta-carotene, or luteine also contribute to maintaining high semen quality [15,16].
Since oxidative stress contributes to serious impairments in genetic composition, such as damage of chromosomes or breakages in the deoxyribonucleic acid DNA [8], it is valuable to analyze genetic reasons for male infertility. On chromosome Y, microdeletions in the AZF-region (called the azoospermic factor) result in spermatogenic failure and a lack of sperm cells in semen [17,18]. The world frequency of AZF microdeletions is estimated in the range of 1–15% of cases of azoospermic infertile men [19,20]. Other common reason for male infertility is cystic fibrosis, i.e., a recessive disease with a frequency of occurrence of 1/2500 live births, is caused by mutations in the CFTR gene on chromosome 7 [21]. Overproduction of thick, sticky mucus in organs with mucous glands is a typical symptom of the disease. In addition to pathological changes in the alimentary or respiratory systems, cystic fibrosis also contributes to infertility through clogging spermatic ducts with mucus [22,23]. The condition often accompanying cystic fibrosis is a congenital bilateral absence of the vas deferens, manifested as aplasia of spermatic ducts and an obstruction of sperm outflow into the urethra. Similarly to cystic fibrosis, congenital bilateral absence of the vas deferens is caused by mutations in the CFTR gene [24,25]. Finally, impairments on the X chromosome play an essential role in pathogenesis of Klinefelter syndrome KS (the presence of an extra X chromosome in the male karyotype) and Kallmann KAL syndrome (mutations in the KAL1 gene on the X chromosome; KAL1 is a human gene which is located on the X chromosome at Xp22.3 and is affected in some male individuals with Kallmann syndrome). The former is manifested by small testicles, degenerative changes in spermatic ducts, azoospermia, and decay of potency [26,27,28,29,30], while the latter is manifested in a deficiency in the sense of smell, delayed maturation, small testicles, and underdevelopment of the penis [31,32,33,34].
We reviewed the recent data in an effort (1) to estimate the diversification of potentially harmful factors accumulated in the modern environment (from heavy metals to domestic dust) and their influence on human fertility; (2) to establish the relationship between various pollutants and oxidative stress intensification; (3) to find effective strategies in overcoming oxidative stress in everyday human life, thereby improving reproductive conditions; (4) to analyze common genetic factors underlying male infertility associated with chromosome Y (AZF region); and (5) to analyze the most common factors underlying male infertility associated with chromosome 7 and the X chromosome.
This review of existing research will broaden our knowledge of the impact of environmental stressors on antioxidant reactions, and changes of lipoperoxidation and immunogenetic disorders in patients with symptoms of infertility. The results can be used in the prophylaxis of male infertility among patients inhabiting degraded areas. It will also answer some questions about the causes of infertility in men in whom it was previously unknown. Linking the biochemical and morphological parameters of semen with immunogenetic disorders will bring clarification to the role of environmental factors in shaping responses to various stressors. Analysis of the activity of enzymatic antioxidative mechanisms, lipoperoxidation intensity, and the levels of stress proteins and non-enzymatic mechanisms jointly can give a more complete picture of conditions shaping the response of an organism to environmentally diversified stress. Simultaneous analysis of the degree of the accumulation of different physiological elements in the semen of men from polluted areas, as well as lipoperoxidation processes and reactions from oxidative enzymatic and non-enzymatic systems, will map the causal connections with the reproductive condition of particular patients.
Insufficient knowledge about the causes of impaired reproductive potential results in an inability to implement specific treatments, which is associated with a lack of positive outcomes [35]. This review allows an understanding of the role of environmental factors in shaping the body’s defense capabilities in the area of reproductive condition. In stress conditions physiological responses of the reproductive system can be estimated based on the changes in the activity of antioxidant enzymes, biochemical and structural modifications of proteins caused by oxidative stress involving products of advanced oxidation protein, assessment of oxidative stress by changing the quantity of products of advanced oxidation protein, or changes in the lipoperoxidation and pro-antioxidant mechanisms inactivation of ROS [8,11,12,14,15]. The lack of knowledge of the causes of impaired reproductive potential results in an inability to implement specific treatment, which is associated with the lack of positive outcomes (pregnancy). This review will make relevant environmental comparisons. It will allow an understanding of the importance of environmental factors in shaping the body’s defenses and capabilities in the field of reproductive condition. The results can be used in enhancing diagnosis and deciding on appropriate infertility treatment. Physiological responses in the semen and blood of patients (specified above) are indicative of changes in the reaction to stress conditions.
A further purpose of this review is to analyze the immunological mechanisms that determine male reproductive potential and the impact of environmental stress on semen quality parameters. This is of major significance since bioaccumulation of toxic metals causes oxidative stress, which negatively impacts the condition of the semen. These events lead to alterations in the activity of caspase proteins leading to apoptosis in the germ cells [8]. Most of the negative changes mentioned above result from degradation of the natural environment with toxic metals, pesticides, or chemicals used in the industry [4,6,7]. Since oxidative stress may contribute to DNA damage, the connected causes of human infertility appear at the genetic level. Mutations responsible for pathophysiological changes in the human reproductive system occur in Down syndrome (trisomy of autosome 21), Edwards syndrome (trisomy of autosome 18), Patau syndrome (trisomy of autosome 13), Klinefelter syndrome, Turner syndrome (complete or partial absence of one of the X chromosomes in all cells of the body or a portion thereof), or cystic fibrosis (mucoviscidosis) [23,36]. These mutations may create a serious, usually irreversible threat to male fertility with diverse prevalence. Simultaneous analysis of the degree of accumulation of different physiological elements in the semen of men from polluted sites will trace the causal connections listed above in parallel with the reactions of the biochemical systems and the level of elements, lipoperoxidation, and oxidative enzymatic and non-enzymatic systems. Here it is important to take account of links between environmental elements and conventional pathologies associated with male infertility in correlation with selected biochemistry (total protein, albumin, cholesterol, glucose, fructose, bilirubin, alanino-aminotransferase ALAT, aspartat-aminotransferase ASPAT, urea, enzymes (akrosine, alkaline, and acid phosphatase), and thioneins. Complementing this evaluation is the analysis of the extracellular matrix, the components of which also mediate intercellular communication through (1) binding of cytokines or concentrate them in certain locations; (2) presentation of cells; and (3) direct binding of the individual components with specific cell receptors, which causes specific changes in the cell metabolism.
This review analyzes the immunological mechanisms that determine male reproductive potential and the impact of environmental stress on semen quality parameters. The influence of chemical elements with different physiological groups on the morphometry of semen of people living in areas with varying degrees of contamination and degradation changes (acidification, salinity, increased levels of Ca, Fe, Mg, and trace elements) is discussed. Bioaccumulation of many elements causes oxidative stress, which leads to apoptosis and determines the condition of the semen. These events lead to alterations in the activity of caspases and induction of apoptosis in the germ cells. We examine the activity of antioxidant enzymes, which may differ significantly to the control group. Chemical elements, not yet analyzed in the study of infertility (Al, Ni, Cr, Mn, As, Se, Si), play an important role in the induction of immunogenetic changes and affect the activity of antioxidant enzymes. The changes may result from degradation of the environment with heavy metals, pesticides, and chemicals used in industry. These genetic mutations are responsible for the genetic pathophysiological changes (as above). Simultaneously, one of the causes of male infertility is immunogenetical change. Therefore, we should consider the cumulative impact of xenobiotics in the semen on the occurrence of mutations responsible for these diseases and disorders of spermatogenesis, in the form of the expression and deletion of genes. Previous studies give conflicting results about the effects of chemical elements on sperm. Much of the work relates to their direct impact or has been carried out on the seed derived from persons occupationally exposed [37]. This knowledge is incomplete and needs to be reviewed, but the condition of human sperm deteriorates significantly. Further research should broaden the understanding of the impact of elements on immunogenetic disorders in male infertility, both in lipoperoxidation and antioxidant activity, as well as reactions with reductases and stress proteins. This will determine the distribution of the prevalence of these changes in regions where such research has not been conducted. This will enable the mapping of the distribution of immunogenetic changes, the dangerous mutation of DNA, semen biochemical parameters, and concentrations of chemical elements in it. The results can be used in the prevention of infertility in women living in degraded areas. They will also shed light on the causes of infertility in those men who were previously fertile. Linking biochemical analysis of semen and immunogenetic changes elucidates the mechanisms and clarifies the role of heredity factors in shaping the response to environmental stress by oxidative enzyme systems. The results can be used in the diagnosis of male infertility undergoing environmental weakening. In addition, the levels of oxidative enzyme activity circuits and an analysis of the lipoperoxidation intensity and protein levels of stress can give an index of sperm health conditions in humans.

2. The Current State of Knowledge

2.1. Molecules Affecting Male Infertility

Currently, 30% of men suffer from idiopathic infertility [38]. The standard semen analysis is still the most important clinical assessment of male reproductive potential. The results of this analysis determine ejaculate capacity, sperm count, motility, and morphology. Among the basic components of the sperm plasma ions Na, K, Mg, Ca, Fe, Cu, Zn, and Se are the most significant [39]. The potassium concentration in the sperm plasma should be 27 ± 5 µmol (1.1 mg × mL−1). When the ratio of Na/K exceeds 1:2.5, it affects sperm motility and an increased concentration of potassium cations increases the electrical charge of the sperm cell membrane decreasing the motility of cell [40]. Each element plays a different role in the body, thus destabilizating their level has serious consequences. Ca, Mg, and other electrolytes maintain osmotic equilibrium and are involved in the transport of nutrients. Zn and Fe are involved in redox processes. Zn and Mg are stabilizers of cellular membranes and coenzymes of SOD, which prevents the harmful effects of free radicals on sperm [13,15]. Zinc, as one of the most important factors influencing male sexuality, is involved in processes of reproduction, in both hormone metabolism and sperm formation, as well as in the regulation of sperm viability and motility [14]. Zn deficiency results in decreased levels of testosterone and decreased sperm count, potency disorders, reduced sperm viability and even infertility [41]. Zinc, as an antioxidant plays an important role in the protection of spermatozoa from the attack of free radicals. High levels of Zn in the semen decrease the activity of oxygen radicals, maintaining sperm in a relatively quiet and less motile state, resulting in a lower consumption of oxygen which allows the storage of energy needed during the passage through the genital tract. Zn also has a protective effect against too high a concentration of Pb (contributing to reduction of fertility) [15]. Even with a high Pb accumulation, elevated Zn concentration has a protective effect, reducing the harmful effects of this element [42,43]. Chia et al. (2001) [44] have demonstrated a correlation between the concentration of Zn in the blood and semen plasma, and the quality of sperm from fertile and infertile men. The results showed lower Zn levels (accompanying lower morphologic parameters) in patients with impaired fertility (183.6 mg·L−1). In fertile patients Zn level was much higher (274.6 mg × L−1). Thus, Zn has a positive impact on fertility and potency through participation in spermatogenesis [44]. An important role of Zn was also described by Giller (1994) [45], indicating that semen volume decreases by 30% at a low Zn concentration. Similarly, Mohan et al. (1997) [46] have shown that men with low daily Zn intake (only 1.4 mg) displayed a significant decline in semen capacity and concentration of testosterone in serum. A relationship was also shown between the level of Zn in serum and semen in oligozoospermic infertile men, with significantly lower levels of Zn in serum and semen of men with fertility problems [46].
The second element of fundamental importance for semen quality is selenium, which occurs in high concentrations in semen and plays an important role in maintaining reproductive condition [13,14]. Selenium is an essential microelement at low levels of intake and produces toxic symptoms when ingested at level only 3–5 times higher than those required for adequate intake. Se-counteract the toxicity of heavy metals such as Cd, inorganic mercury, methylmercury, thallium and to a limited Ag extent. Although not as effective as Se, vitamin E significantly alters methylmercury toxicity and is more effective than Se against silver toxicity. Selenium can particularly counteract Hg toxicity, and is the key to understanding Hg exposure risks. Selenium compound selenide binds mercury by forming mercury selenide, which neutralizes the harmful effect of Hg. However, once that bond is made, Se is no longer available to react with selenoproteins that depend on it. Human studies have demonstrated that selenium may reduce As accumulation in the organism and protect against As-related skin lesions. Se was found to antagonize the prooxidant and genotoxic effects of As. From epidemiological point of view Se interaction with heavy metals raises a large interest. Although antagonistic influence of Se on the bioaccumulation of Hg, Cd, and As is well known, interaction mechanism between those elements in humans remain unexplained [47]. Selenium takes part in the constitution of the mitochondrial shield in sperm cells and influences the condition and function of sperm, and is effective in the treatment of impaired fertility [47]. Simultaneously, selenium as part of selenoproteins, playing a key role in defending the body against oxidative stress [48]. Phospholipid hydroperoxide glutathione peroxidase PHGPx changes the physical properties and biological activity during the maturation of sperm. In spermatids it displays enzymatic activity and is soluble, while in mature sperm it is present as an inactive and insoluble protein. Inside the mature sperm PHGPx protein constitutes at least 50% of the material of the shield [49]. However, toxic heavy metals (Cd, Pb, Hg, Ni, Cr, B, V) impair testicular function and the mechanisms of their toxic activity in the nucleus include damage of the vascular endothelium of the Leydig’ and Sertoli’ cells but these heavy metals not only damage the vascular endothelium but as stated for example, in [50,51], Cd and Pb cause an alteration in the functionality of the Sertoli cell even at subtoxic doses. Oxidative stress occurs as a result of their accumulation due to impairment of antioxidative defensive mechanisms and intensification of the inflammatory reaction leading to changes in the morphology and function of the testes [1,2,6,7,10,52,53]. The effect of these changes can be necrosis of the seminiferous tubules, which inhibits the synthesis of testosterone and impairs spermatogenesis. Short-term exposure to these metals increases the activity of SOD, CAT, GPx, and glutathione reductase GR, which is indicative of the activation of defense mechanisms and the adaptive response of cells [9,54].
In order to fully analyze the problem, we should distinguish precisely the functions of individual forms of GPx and their importance for the male reproductive system. Glutathione peroxidases are composed of eight forms that are distributed in different tissues with differences among species [55]. They catalyze the reaction needed to remove hydrogen peroxide H2O2 and other hydroperoxides using reduced glutathione GSH. In order to keep removing hydroperoxides, the oxidized glutathione disulfide GSSG must be reduced back to GSH by the GR enzyme using NADPH as reducing agent. There are selenium-dependent and selenium-independent GPx forms. The first group is represented by GPx1–4 and the second group by GPx5–8. GPx forms can also reduce peroxynitrites ONOO, a very reactive ROS capable of harming cells promoting tyrosine nitration in proteins involved in motility and sperm capacitation [55]. Of great importance for spermatozoa is the presence of the selenoprotein phospholipid hydroperoxide GPx4 (PHGPx), a structural protein which is essential for normal formation of the mitochondrial sheath and constitutes about 50% of the sperm midpiece protein content localized in the mitochondrial helix. The need for mitochondrial PHGPx (mGPx4) to assure normal sperm function has been demonstrated in humans since infertile men have shown low sperm motility with abnormal morphology [55]. It is important to highlight that what is relevant for fertility is the ability of mGPx4 to interact with hydroperoxides to form the mitochondrial sheath during spermiogenesis and not its antioxidant activity which is less than 3% of the total PHGPx protein content in ejaculated spermatozoa. Selenium is essential to assure normal GPx4 function during spermiogenesis as it was confirmed by the presence of abnormal spermatozoa with poor motility [55].
The sperm chromatin formation during spermiogenesis is accomplished in part by the nuclear isoform of GPx4 (snGPx4); this enzyme mediates the oxidation of S–H groups of protamines by hydroperoxides. It is possible then that other proteins are involved in the sperm chromatin re-modelling and potential candidates are peroxiredoxins. The contribution of GPx to the protection against ROS is limited in human spermatozoa since human spermatozoa, testes, or seminal plasma lacks GPx2, GPx3, and GPx5 and GPx4 are insoluble and enzymatically inactive in mature ejaculated spermatozoa [55]. It seems that the role of GPx1 as important antioxidant enzyme is questionable because Gpx1−/− males are fertile and they are not susceptible to oxidative stress and lipid peroxidation does not increase in human spermatozoa incubated with H2O2 in the presence of carmustine (GR inhibitor) or diethyl maleate (binds to GSH making it non-accessible for GPx/GR system) that affects the GPx/GR system activity [55].
In turn, Gladyshev et al. (2016) [56] indicates that the human genome contains genes coding for selenocysteine-containing proteins (selenoproteins). These proteins are involved in a variety of functions, most notably redox homeostasis. Selenoprotein enzymes with known functions are designated according to these ones. Selenoproteins with no known function appear to be important but require further research.
A particularly dangerous heavy metal for semen quality is lead. It is increasingly recognized that impaired fertility in men can be associated with environmental and occupational exposure to lead [10,57]. The mechanism of action of lead on male gonads is complex and includes effects on spermatogenesis, steroidogenesis, the redox system, and damage of the vascular endothelium of the gonads by free radicals, resulting in morphological changes (weight changes of the testes and seminal vesicles, their fibrosis, a reduction in the diameter of the seminiferous tubules, and a reduction in the population of reproductive cells by apoptosis) and functional changes (decreased testosterone synthesis). Lead may affect the function of Leydig’ cells impairing steroidogenesis, decreasing the levels of testosterone and worsening the quality of sperm” but this observation is valid not only for Leydig cells but also for Sertoli cells that are the sentinel of spermatogenesis [1,7,51,54]. The phenomenon of oxidative stress in animals poisoned with lead confirms an increase in lipid peroxides and decomposition of thiobarbituric acid reactive substances TBARS [58].

2.2. Antioxidant Mechanisms

A significant role in the pathogenesis of infertility involves redox reactions because the germ cells are capable of producing ROS. A certain physiological amount of reactive metabolites of oxygen, rising in the respiratory chain, is necessary to maintain normal sperm functionality. However, due to overproduction of ROS or the exhaustion of the compensating possibilities of antioxidative mechanisms in sperm, oxidative stress begins to increase [7,9]. Subsequently, it leads to changes in peroxidation of lipid membranes of sperm, impairing the structure of membrane receptors, enzymes, transport proteins, and leads to an increase in the level of DNA fragmentation of sperm [59,60,61]. The balance between ROS formation and the protective actions of antioxidative system is necessary to sustain normal functions of an organism [8]. The important area of influence of essential elements are metabolic mechanisms, i.e., reactions involving compounds quenching excited molecules, non-enzymatic mechanisms (ceruloplasmin, transferrin, polyamides, transitional metals, sequestration of metals, thioneins), antioxidant enzymatic mechanisms (SOD, CAT, GPx, GR, glutathione S-transferase GST, secretory phospholipase A2 sPLA2, reactions involving heat shock protein HSP, chaperones, and proteases [59,60,61]. Due to the particular sensitivity of male reproductive cells to the oxidative action of ROS, mammalian semen is equipped with a variety of enzymatic and non-enzymatic compounds, which neutralize the excess of ROS, localized in the seminal plasma and inside sperm cells [59,60,61]. A direct relationship between the SOD activity and sperm damage and sperm motility was confirmed by numerous researchers [9]. The addition of exogenous SOD to a suspension of sperm cells protected their vitality and significantly affected motility by inhibiting the destruction of biological membranes. However, some researchers could not confirm the effect of SOD on semen quality and sperm fertilizing potential [62,63].
The most effective antioxidative enzyme in sperm apart from SOD is CAT [12,13]. It was found inside sperm cells and seminal plasma, with activity significantly reduced in infertile men [64]. Another important enzyme that protects cells from the toxic effects of H2O2 is GPx. The sperm GPx is located in the mitochondrial matrix. Its activity is largely related to the level of Se in semen [13,14,15]. The important protective role of GPx in counteracting the loss of sperm motility as a result of spontaneous lipoperoxidation has been widely confirmed. Many researchers have proved the relationship between peroxidative damage of sperm and male infertility [62], because lipoperoxidation is one of the most important processes related to the action of ROS. The accumulation of damaged lipid molecules lowers the fluidity of biological membranes and the structural damage of membranes has a direct impact on their receptor and transport functions [9].

2.3. Genetic Effects

The accumulation of heavy metals in an organism and the impact of free radicals can cause immunogenetic disorders, chromosomal aberrations and consequently lead to serious genetic defects, causing infertility include numerical and structural aberrations that may affect autosomes or sex chromosomes [65,66,67,68]. Chromosomal aberrations appear in 7% of infertile men, that is 30 times more frequently than in the general population [69,70]. The most common chromosomal cause of male infertility is Klinefelter syndrome (>4%) [71]. In this disease, similarly to Turner syndrome, partial fertility is maintained only in mosaicism [66,72]. In Klinefelter syndrome changes in nuclear structure leading to infertility may be a result of the presence of two alleles of many genes associated with the X chromosome, which typically operate on the principle of disomy and do not undergo inactivation during lyonization of extra chromosome. In 15% of males with azoospermia and 5% with oligozoospermia display an abnormal karyotype [71,73]. Another cause of male infertility is microdeletions of the Y chromosome or aberrations and mutations of genes responsible for male sexual development, e.g., located in the short arms of the Y chromosome in the region Yp11.2 (the Yp11.2 region containing the amelogenin gene on the Y chromosome AMELY locus). The amelogenin gene on the Y chromosome, AMELY, is a homolog of the X chromosome amelogenin gene AMELX, and the marker is employed for sexing in forensic casework, SRY gene (a sex-determining gene on the Y chromosome). SRY gene, as a sex-determining gene on the Y chromosome in mammals that determines maleness and is essential for development of the testes; testis-determining factor TDF, known as sex-determining region Y SRY protein, is a DNA-binding protein (known as gene-regulatory protein/transcription factor) encoded by the SRY gene that is responsible for the initiation of male sex determination in humans). Another reason for male infertility is the partially symptomatical form of cystic fibrosis, responsible for 60% of the so-called obstructive azoospermy [23,36]. The true symptomatic form of cystic fibrosis is the result of mutations in the CFTR gene and in 95% cases of men leads to infertility [74,75].
The current state of knowledge about male fertility conditions does not give clear and unambiguous answers to the cause of the growing problem of infertility. We cannot determine unambiguously which environmental factors have the greatest impact on human fertility. It is, therefore, necessary to continue research in the field of concentration of elements, oxidative enzyme activity, and the incidence of immunogenetic disorders in the seed. These analyses are a benchmark in project design, making it possible to verify the views on the impact of environmental stressors on male fertility. The results of these studies can be applied in the prevention of infertility and contribute to the development of new diagnostics.

3. Potentially Harmful Factors in the Natural Environment: From Heavy Metals to Domestic Dust

Toxic heavy metals are one of the main sources of causative male infertility. From the beginning of their activities at the cellular level, they generate a series of reactions that destabilize normal processes within the cell organelles. Such a permanent and deepening interaction causes a gradual shift of the metabolic pathways and biochemical processes of the cell, including a change in normal transcription and translation in the nucleus. This ultimately generates genetic polymorphisms, responsible for the formation of changes in the male reproductive condition [1,2,52]. Among other destructive factors generally present in the environment we can enumerate combustion products, traffic fumes, dioxins, polychlorinated biphenyls, pesticides, food additives, and persistent pollutants, such as DDT [4,5,6,53]. A separate group includes potentially harmful factors that remain under human control, such as smoking, obesity, and a sedentary lifestyle. All of these can play the role in lowering reproductive condition resulting in decreased sperm counts, even among very young men [6]. Certain metals that we are exposed to almost every day, e.g., Cu, Pb, Cd, or Mo influence reproductive hormone levels (such as testosterone). Simultaneously, Meeker et al. (2010) [2] proved that certain interactions between metals in humans can modify serum testosterone level. Based on analysis of 219 relatively young men, researchers observed a 37% reduction in testosterone levels in the case of men with high Mo and low Zn concentrations in blood. Additionally, they observed higher Cu and Cd levels accompanying low Zn concentration among smokers. However, Buck et al. (2012) [53] broadened their investigation to both men and women reproductive conditions with environmental Cd and Pb exposure. This study sampled over 500 couples willing to have a child. The researchers measured the time to pregnancy in each case, and included daily questionnaires, filled by couples, about their lifestyles. The investigation encompassed two regions, selected to ensure a range of environmental exposures to heavy metals. Their results confirmed that environmentally relevant concentrations of blood Pb and Cd make time to pregnancy longer. Thus, couple fecundity decreased with more frequent exposures to toxic metals.
Generally, toxic metals are considered as strong oxidative stress inducers and endocrine disruptors in humans, and are particularly harmful to the testis. Similarly to Pb, Hg, and estrogenic compounds, Cd can seriously disrupt the functionality of the testis and, as a consequence, reduce sperm count and quality. Siu et al. (2009) [52] enquired how exactly Cd damaged the testicles and stated that the disruption of the blood-testis barrier applied to complex pathways of signal transduction and signaling molecules like kinase p38 (human mitogen-activated protein kinase 14/p38 alpha (active enzyme recombinant, human protein kinase p38; stress-activated protein kinase). Cadmium exposure appears to be a potential risk factor for testis injury via oxidative stress stimulation, endocrine destabilization, and certain interactions with protective elements, such as Zn [52]. Moreover, in the study conducted by [1], researchers expanded the pool of analyzed metals and testified to the environmental toxicity of Cd, Cr, Pb, Hg, As, and especially Mo. The authors linked semen quality with estimated blood concentrations of the enumerated elements. That investigative group involved over 200 men (patients from infertility clinics). The most surprising finding concerned molybdenum. Researchers observed a dose-dependent relationship between Mo and a decrease in sperm concentration and motility. Based on this result we could add molybdenum to the list of potential threats to male fertility. However, the toxicity of Cd, As, Pb, and Hg and their influence on a decline in semen quality was more obvious [1]. Simultaneously, Vaiserman (2014) [4] mentions that endocrine-disrupting chemicals are invariably present in the environment of industrialized societies. The list includes dioxin, dioxin-like compounds, phthalates, polychlorinated biphenyls, pharmaceuticals, agricultural pesticides, and industrial solvents. Their destructive role in chronic endocrine pathologies is doubtless and leads to negative estrogenic and anti-estrogenic activity. However, the damage is particularly detrimental at a genetic level, causing a threat to the normal development of the organism, which has been widely analyzed in animal models, e.g., exposure to dioxins disrupts the expression of genes involved in extra-cellular matrix remodeling in the cells of the cardiac muscle. Methoxychlor alters the methylation pattern of paternally and maternally imprinted genes in the sperm of mice offspring. Bisphenol A causes hypermethylation of the estrogen receptor promoter region in the adult testis of rats in addition to modifying hepatic DNA methylation [4]. Despite the fact that in Vaiserman’s [4] study the negative effects mentioned were verified mostly on rats and mice, the author suggested that a similar impact on people was of high probability. He highlighted that in the last number of decades the endocrine condition of humans has decrease seriously, subsequently worsening reproductive condition. In both problems the most serious changes occur due to toxic exposure in the prenatal period or early childhood, resulting in defective development of the organism in later years. These statements agree with [5], who also considered long term exposure to herbicides, formamide, antimetabolites, fungicidal preparations, dyes, and obviously toxic metals (Cd, Pb, Cr, Ni) as harmful factors that considerably worsen the quality of sperm.
If the realization that heavy metals and certain chemicals decrease human reproductive condition still does not bother us, then there is an example of a further disruptor from our close surroundings. Meeker and Stapleton (2010) [3] proved that even house dust can modify levels of reproductive hormones and diminish sperm quality. Researchers analyzed organophosphate compounds, commonly used as additive flame retardants and plasticizers in popular domestic materials. Semen parameters and reproductive hormone levels were measured in 50 men from infertility clinic who had frequent contact with these materials. They concluded that organophosphate compounds from typical domestic equipment (contained in house dust) may not only alter certain hormone levels (such as prolactine or thyroxine), but also decrease sperm concentration by as much as 19% [3].

3.1. Environmental Pollutants and Oxidative Stress

Oxidative stress is a damaging process that happen when there is an excess of free radicals in the body cells. The body produces free radicals during normal metabolic processes. Intense oxidation can damage cells, proteins, and DNA, which can contribute to aging. Disturbances in the normal redox state of cells can cause toxic effects through the production of peroxides and free radicals that damage all components, including proteins, lipids, and DNA. Oxidative stress from oxidative metabolism causes base damage, as well as strand breaks in DNA. ROS and free radicals are generally known to be detrimental to human health. A large number of studies demonstrate that, in fact, free radicals contribute to initiation and progression of the changes in genetic material, i.e., genetic polymorphisms [8]. Oxidative stress happens when the balance between peroxidation and anti-oxidation is disturbed, i.e., when the production of ROS exceed cellular concentrations of small molecular antioxidants or activity of antioxidative enzymes [8]. Researchers widely consider ROS as a source of dangerous reactions, uncontrolled and harmful to structures at a molecular level [11,12,13]. As a proof Bartosz (2009) [8] enumerates several negative effects of ROS activity (degradation of collagen, depolymerization of hyaluronic acid, oxygenation of hemoglobin, inactivation of enzymes and transport proteins, lipid peroxidation in cellular membranes, damage to chromosomes, and breakages in DNA). In the face of so many threats, it is valuable to know precisely how ROS comes about. Bartosz (2009) [8] identified several factors that stimulate the formation of ROS (ionic radiation, sonication, UV radiation, oxygenation of reduced forms of molecular components of cells, oxygenation of xenobiotics, photoreduction, and oxygenation of respiratory proteins).

3.2. Intensification of Oxidative Stress due to Pollution—Influence on Human Fertility

The close relationship between environmental pollution and oxidative stress is central to understand why human fertility has decreased in past decades, because the most environmental toxicants induce ROS, causing oxidative stress [7]. In the human reproductive system, the testes are especially susceptible to destructive changes due to this phenomenon. The after-effects are often irreversible and include a decline in testosterone levels, disorders in spermatogenesis, and eventually infertility. Certain physiological levels of ROS are even necessary for the proper course of spermatogenesis. However, an excess of reactive oxygen radicals, formed due to environmental pollutants, destroy testicular functionality and manifest as a diminished sperm count and quality. Among toxicants inducing apoptosis in germ cells, Mathur and D’Cruz (2011) [7] have singled out methoxychlor which decreases the levels of anti-oxidative enzymes in testicles, especially in the mitochondrial and the microsomal fractions of testis. Dichloro-diphenylo-trichloro-ethane DDT metabolites, on longer exposure, cause incremental changes in lipoperoxidation and a decrease in enzymatic antioxidants such as SOD or GPx in the testis. Exposure to certain fungicides have been found to contribute to reduced prostate mass and decreased sperm count, as well as induced impairments in expression of apoptosis-related proteins such as p51. Other enumerated chemicals such as pesticides, bisphenol A and certain herbicides also damage testicles and interrupt spermatogenesis through oxidative stress stimulation [7]. Therefore, many substances that humans associate with in everyday life are, in truth, very dangerous pro-oxidants and stimulants of uncontrolled ROS formation in several body systems. Data by Agarwal et al. (2014) [9] found similar conclusions; they assert that about 15% of couples trying to conceive are struggling with infertility. Male factors can be the reason for nearly half of such cases. Oxidative stress and overproduction of ROS damage DNA, proteins, and lipids, change the functionality of enzymes and, finally, cause cell death. Like Mathur and D’Cruz (2011) [7], Agarwal et al. (2014) [9] also affirm that certain levels of ROS are necessary for correct fertilization. In normal conditions and controlled concentrations, ROS regulate sperm maturation, stimulate signaling processes and more. However, in uncontrolled ROS overloading, there is a risk of infertility. They suggest that impairments in sperm cells arise via induction of per-oxidative damages of sperm plasma membranes (per-oxidation of lipids), as well as DNA breakages. The best way to minimize the negative effects of ROS excess is to eliminate as many factors as possible. Cessation of smoking, discontinuation of alcohol abuse, a reduced-fat diet, physical activity, and antioxidant intake (supplementation of diet with carotenoids or vitamins C, E) constitute simple tactics against oxidative stress, which patients can initiate even on their own. Thus the problems of oxidative stress and ROS overproduction may be significantly reduced by reasonable changes in lifestyle. On the other hand, routine estimations of semen ROS levels should become a standard procedure in the diagnosis of male fertility [9].
Elucidation of the destructive impact of oxidative stress and factors that stimulate the phenomenon are well presented in the studies conducted by Al-Attar (2011) [10]. He provided mice drinking water with a mixture of Pb, Hg, Cd, and Cu. After seven weeks, he assessed renal function by measuring the concentrations of creatinine, urea, and uric acid. Furthermore, he measured levels of antioxidants, including glutathione GSH and SOD in kidney and testicles. Compared to the control group (mice drinking water without heavy metals) the experimental group had considerably increased creatinine (by 152%), urea (by 83%), and uric acid (by 65%). Decreases of anti-oxidative enzymes, both in kidney and testis were significant (glutathione: 28% in kidney, 24% in testicles; SOD: 40% in kidneys, 27% in testis). Moreover, in histological examination of the testis of mice exposed to heavy metals, Al-Attar (2011) [10] noted degenerative changes in the seminiferous tubules leading to disruption of spermatogenesis. In a separate experimental group the diet was supplemented with vitamin E [10], noting insignificant changes in renal parameters and a considerably smaller downgrade in testicular anti-oxidative enzymes due to the heavy metals. Thus, research demonstrated not only a negative effect of oxidative stress, but also the positive anti-oxidative potential of vitamin E in a daily diet.

3.3. Tactics against Oxidative Stress—Antioxidative Diet

The reduction in oxidative stress markers found by [10] explored only one of several tactics which can be deployed in the fight against uncontrolled ROS. Ruder et al. (2008) [11] explored the after-effects of oxidative stress in female infertility. Researchers suggest that lifestyle and diet, rich in antioxidants, during pregnancy also play a critical role in reproductive success. They found that high oxidation levels increase the risk of disorders during successive stages in pregnancy. On the contrary, antioxidants intake, even in the simplest form, by eating fruits or vitamin supplementations, minimizes the threat of pregnancy loss. In the case of male fertility, it is valuable to know which metals bring positive effects to the reproductive condition. One of the most important chemical elements with anti-oxidative properties is zinc. It protects sperm cells against ROS, contributes to the formation of semen and stabilizes the levels of reproductive hormones (such as testosterone) and, in general, lengthens the vitality of sperm cells [14]. Therefore, zinc is widely considered as an effective antioxidant. Oteiza (2012) [76] highlighted the beneficial Zn properties of in reducing oxidative stress. It maintains the cell redox balance, regulates oxidants production, contributes to the repair of cell damage, and regulates the metabolism of glutathione and conditions of redox signaling. Furthermore, Zn mediates in the induction of Zn-binding protein metallothionein, preventing overproduction of ROS [76]. An important beneficial element is selenium, which favors the functional efficiency of sperm cells and, as a consequence, increases semen quality [14,77]. Indeed, both elements (Zn, Se) are the molecular components of important anti-oxidative enzymes. Zn is present in SOD type 1 and 3 (as well as Cu) and Se is a component of GPx. These facts clearly demonstrate their antioxidative significance [8]. Additionally, Atig et al. (2012) [14] compared Zn and Se levels in semen samples from fertile and infertile patients. Compatible with expectations, fertile men’s sperm showed higher levels of these elements compared to infertile patients. Zinc exhibits positive and significant correlations with sperm motility and sperm count. Selenium is also significantly correlated with semen motility. Selected parameters of anti-oxidative response, such as the concentration of glutathione enzymes and the quantity of malondialdehyde MDA, a lipoperoxidation end product, were also analyzed. Glutathione enzymes were considerably decreased in infertile semen and there was a greater amount of MDA in sperm from infertile patients. On the contrary, fertile semen show high levels of glutathione enzymes and only small amounts of lipoperoxidation products. Even more, researchers confirmed a positive correlation between glutathione enzymes and sperm motility. On the contrary, MDA was negatively associated with sperm motility and concentration, as well as positively correlated with the percentage of abnormal sperm. On this basis, the authors concluded that a serious decrease in seminal antioxidants (such as Zn, Se, as well as glutathione enzymes) favors the risk of impairments in sperm quality. Additionally, increased MDA reflects a diminished sperm quality and reproductive condition [14].
Zini et al. (2009) [12] stated that the sperm of infertile men contains considerably more DNA damage than in the case of fertile patients. Therefore, the authors analyzed the potential of antioxidant therapy. They found that dietary antioxidants can efficiently reduce sperm DNA damage, especially in high levels of DNA fragmentation. In their opinion, the risk of ROS overproduction is connected with unsaturated fatty acids in sperm plasma membranes. These acids are necessary for membrane fluidity, but also predispose it to free radical attacks. On the other hand, semen contains certain levels of anti-oxidative enzymes (SOD, CAT, GPx), as well as non-enzymic antioxidants (vitamin C, E, lycopene, or l-carnitine). Accordingly, researchers proved that dietary supplementation of antioxidants (e.g., vitamin C oral intake) may cause positive effects in the improvement of sperm integrity and lowering oxidation levels. However, Walczak-J?drzejowska et al. (2013) [13] described the destructive effects of oxidative stress on sperm cells including a decrease in activity of anti-oxidative mechanisms, damage to DNA and accelerated apoptosis. As a consequence they found a diminished number of sperm cells and their reduced motility. They highlighted that the large endogenous sources of reactive forms of oxygen in semen are white blood cells and immature sperm cells. This study emphasizes the physiological role of ROS in sperm maturation, but for the same reason any infection or inflammation process in the body could be considered as a moderator of oxidative radicals. However, unfavorable environmental factors may also initiate the analogous problem. Walczak-J?drzejowska et al. (2013) [13] further widened the list of potentially beneficial antioxidants, adding vitamins A and B, coenzyme Q10, carotenoids, and carnitine to the known list including glutathione, Zn, Cu, Se and SOD, CAT, and GPx. Explaining the role of vitamins E and C in the defense against oxidative stress, it can be concluded that vitamin E reduces lipoperoxidation and mainly protects sperm cell membranes, while vitamin C, preventing sperm DNA damage, is a very abundant seminal antioxidant, since it is present in concentrations about 10 times higher in seminal plasma than in blood serum. They strongly recommend the initiation of antioxidant therapy in cases of men with fertility problems. Additionally, Mier-Cabrera et al. (2009) [78] compared the levels of oxidative stress markers and concentrations of anti-oxidative enzymes among women with a high antioxidant diet and a normal diet. After four months of observation, in the group on the anti-oxidative diet, the researchers noted an increase of vitamin levels (A, C, E), as well as considerable growth in activity of SOD and GPx. Furthermore, the levels of MDA and lipid hydro-peroxides (oxidative stress markers) were relatively low in this group. Conversely, in the case of women on a normal diet there was no improvement in anti-oxidative parameters or decrease in oxidative stress markers. Thus, supplementation of the daily diet with certain antioxidants (vitamins A, C, E, or Zn) may be a simple way to overcome oxidative stress on our own. Rink et al. (2013) [79] decided to check in practice how the recommended intake of fruits and vegetables (five times a day) influenced oxidative and anti-oxidative parameters. They selected 258 pre-menopausal women, observed their diet and measured pro- and anti-oxidative parameters over a period of about two menstrual cycles. Particularly important parameters were the erythrocyte activity of SOD and GPx. They noted that eating fruits and vegetables five times a day, over a longer period, considerably diminished oxidative stress (levels of lipoperoxidation markers) and improved antioxidant status (high levels of antioxidative enzymes, as well as non-enzymatic antioxidants).
Summarizing, Aitken and Roman (2008) [15] considered oxidative stress as a major factor in the etiology of male infertility. Similarly to the previously quoted research, lipoperoxidation and DNA fragmentation were considered as the most serious damage, caused by ROS in sperm cells. Furthermore, in the testicles, oxidative stress may destabilize the process of differentiation of spermatozoa. They identified and characterized the basic anti-oxidative defense line, e.g., they noted that all three types of SOD are found in the testicles. Type I (cytoplasmic) containing Zn and Cu ions, type II (mitochondrial) with Mn and, finally, type III (extra-cellular) containing Cu and Zn. There are also various isoforms of GPx located in mitochondria and the nucleus, particularly in differentiating semen. Researchers emphasize the relationship between the activity of glutathione enzymes and the presence of selenium (lower concentration of Se is connected with a decrease in activity of GPx). Among non-enzymatic antioxidants researchers listed the essentials Zn (interrupting lipid peroxidation by displacing from catalytic sites such metals as Fe and Cu and attenuating damage in sperm DNA caused by Pb or Cd), vitamin C or E (supporting the maintenance of spermatogenesis and testosterone production), as well as melatonin and cytochrome C. Melatonin is an especially valuable protector from oxidative stress due to readily crossing the blood-testis barrier, while cytochrome C assists in the elimination of damaged germ cells [15]. On the other hand, Zareba et al. (2013) [16] analyzed the influence of regular carotenoid intake in the improvement of sperm quality in 189 young, healthy men. Researchers measured such parameters as semen volume, total sperm count, motility, and morphology. After a period on a high-antioxidant diet, they found that beta-carotene and lutein intake increased sperm motility. Lycopene improved semen morphology and a longer application caused a greater amount of morphologically normal sperm. Additionally, a healthy lifestyle (regular physical activity, non-smoking) favors assimilation of antioxidants (such as vitamins C, E, A, and carotenoids). On the contrary, the intake of alcohol or caffeine was negatively associated with antioxidants assimilation, e.g., caffeine decreased the assimilation of vitamin C [16].

4. Genetic Reasons for Spermatogenesis Disturbances: Impairments on Chromosomes Y and 7

We are currently conducting experimental studies of male infertility determinants and we found (demonstrated) that external environmental factors and so-called internal (according to World Health Organization WHO criteria) are closely related to each other. At the same time, these detailed factors generate specific changes in genetic material (i.e., genetic polymorphisms), which are just the direct cause of male infertility. Simultaneously, the review presented above clearly explained that certain factors (environmental, artificial, or just connected with individual lifestyle) may considerably depress the human reproductive condition. Most of these factors, especially heavy metal ions, chemical compounds, and active organic residues, act by stimulating overproduction of ROS. Additionally, oxidative stress is the main reason for spermatogenesis disturbances. Many authors assert that long-lasting oxidative stress seriously damages human DNA [12,13,15]. Furthermore, genetic factors are considered responsible in at least 10–15% of cases of male infertility [80]. Therefore, it is necessary to analyze external and internal environmental genetic reasons for male infertility, as aside from the most common phenotypes.
Azoospermia is defined as a condition where a man has no measurable level of sperm cells in the semen [81]. There are various reasons for this condition, including underdevelopment of the testicles, obstruction of the spermatic ducts or, a typical genetic cause, deletions in the AZF region of chromosome Y [36]. Additionally, cystic fibrosis is an autosomal recessive disease, common in Caucasian races (with frequency of occurrence of 1/2500 live births). The genetic reasons for cystic fibrosis are mutations in the CFTR gene on chromosome 7. The most common mutation is the deletion of three nucleotides resulting in the loss of phenylalanine in position 508 of the protein (F508del). Approximately 70% of cases are determined by this mutation [21,22]. The manifestation of cystic fibrosis results in the production of a thick, sticky mucus in all organs containing mucous glands, coupled with pathological changes in the respiratory system (recurring pneumonia, bacterial infections) and the alimentary system (cholelithiasis, clogging of salivary glands). In the reproductive system cystic fibrosis causes an accumulation of mucus in the spermatic ducts and, as a consequence, their total obstruction [23].

4.1. Microdeletions in the Azoospermic Factor AZF Region

The first reported association between Y chromosome deletions and abnormal spermatogenesis was reported in 1976 by Tiepolo and Zufardi [82]. The AZF region (called azoospermia factor) was described as located in the long arm of the human Y chromosome (Yq11) and consists of the three genetic domains azoospermic factor of region “a” AZFa (proximal), azoospermic factor of region “b” AZFb (intermediate), and azoospermic factor of region “c” AZFc (distal). AZFc is one of the most genetically dynamic regions (c) in the human genome, possibly serving as counter against the genetic degeneracy associated with the lack of a partner chromosome during meiosis. Since the AZF region contains genes essential for proper spermatogenesis, microdeletions in the range of particular domains were implicated in spermatogenic impairments [17,18,83,84]. Many authors consider not three but four AZF domains as associated with spermatogenesis disturbances. This classification is based on structural observation which found that AZFb and c partially overlapped. This region of overlap is now called azoospermic factor of region “d” AZFd and is located between AZFb and AZFc [84,85]. Depending on the location of the AZF microdeletion, the phenotypes vary from mild (<15 × 106 spermatozoa × mL−1) or severe (<5 × 106 spermatozoa × L−1) oligozoospermia to azoospermia (complete lack of sperm cells in ejaculation) [19,81]. The complete deletion of AZFa leads to azoospermia and Sertoli Cell Only Syndrome SCOS while microdeletions in AZFb are connected with azoospermia due to the failure of sperm maturation usually at the spermatocyte/spermatid stage (subsequently there is practically no sperm in the testis of such patients). The AZFc deletion is connected with various possible seminal damages, but usually in patients a small amount of semen is present in the ejaculate (up to 60% of cases). Such patients are classified as azoospermic or oligozoospermic [18,83]. Microdeletions in AZFd lead to a mild form of oligozoospermia and abnormal sperm morphology [35,84]. Among infertile men the prevalence of AZF microdeletions is estimated at 7–8%, with a wide variation across populations [81,86]. Massart et al. (2012) [86] estimated the world frequency of Yq microdeletions among infertile men at 7.4%, based on over 90 articles, including over 13,000 patients suffering from infertility in different populations. Some researchers stated that the prevalence of Yq microdeletions is higher in azoospermic men (9.7%) than in oligozoospermic (6.0%). Moreover, they estimated the average frequency of microdeletions in particular domains. Complete deletion of AZFa is rare, responsible for a maximum 7% of all AZF incidents, while microdeletions in AZFb are twice as frequent, i.e., accounting for 14% of cases. AZFc impairments are considered the most common accounting for 69% of all AZF microdeletions. The rest of the pool (10% of AZF cases) is made up of a mixture of microdeletions in several domains, such as AZFa+b, AZFb+c, or AZFa+b+c [86]. Amongst the various AZF genes, the DAZ gene family (essential for regulation of spermatogenesis) is reported as the most frequently deleted AZF candidate [35]. DAZ genes are located within the AZFc domain, which undergoes deletion most commonly [36]. However, the exact frequency of AZF microdeletions among infertile men is difficult to determine. The differentiation in prevalence among patients from various populations ranges from 1% to as much as 35%. It has been estimated as 15% in Spain and Italy, 1–4% in Germany and France, 10% in China and the USA, 8% in India and Netherlands, and 12% in Tunisia and Mexico [20,80,83]. Furthermore, ethnic mutability in modern populations tends to increase the incidence making the matter more complex [81,86]. As a result, research teams usually concentrate on respective regions of the world and individual populations.
Wang et al. (2010) [19] generally regarded chromosome Y as structurally variable and susceptible to duplications, inversions and deletions. As it was mentioned, microdeletions in the AZF region are quite frequent among infertile male patients leading to spermatogenesis disruption (for instance as a consequence of sperm arrest). Therefore, Wang et al. (2010) [19] investigated the frequency of AZF microdeletions in infertile men from Northeastern China. In the experimental group, which consisted of 305 patients, researchers diagnosed 28 cases of AZF microdeletions. Their frequency was in following order; AZFc+d, AZFc, AZFb+c+d, with AZFa being least common. These authors also stated that the observed frequency of AZF microdeletions in the region they investigated, paralleled the levels in neighboring regions of the world. Additionally, Balkan et al. (2008) [35] conducted a similar analysis with 80 infertile men from Southeast Turkey. Most of them were azoospermic (54) and oligozoospermic (25). The researchers found chromosomal abnormalities in nine cases. Among them, Klinefelter syndrome was diagnosed in seven patients. Two patients had balanced autosomal rearrangements. In addition, AZF microdeletions were localized in one patient (with apparently normal karyotype and azoospermia) both in the AZFc and the AZFd regions [35]. These authors did not observe any cases of impairments in the AZFa or AZFb domains. Simultaneously, [80] examined the frequency of AZF microdeletions in a central Indian population: 156 patients (95 with oligozoospermia and 61 with azoospermia). Thirteen showed deletions in the AZF region (eight from the azoospermic subgroup and five from the oligozoospermic subgroup). They reported the most frequent deletions in the AZFc, followed by the AZFb and AZFa regions. Küçükaslan et al. (2013) [84] focused their study on a similar population which included 3650 infertile Indian men (combining patients from their own experimental group with other described cases of Yq deletions in India). They reported 215 cases with Yq microdeletions. Impairments in the AZFc domain predominated both in oligozoospermic and azoospermic patients. However, the frequency of AZF microdeletions differed significantly between regions in India.
Hellani et al. (2006) [87] claimed that among the genetic reasons for spermatogenesis disruption microdeletions in chromosome Y represent one of the most common causes. They conducted an analysis of the frequency of AZF microdeletions in the Kingdom of Saudi Arabia. Among 257 male patients with various forms of spermatogenesis disturbances (from oligozoospermia to azoospermia), 10 had chromosomal rearrangements, while in the remaining 247, eight men had microdeletions in AZF. Six of them in AZFc, one in AZFb, and one in AZFa+c. Moreover, Khabour et al. (2014) [20] identified several reasons for male infertility, such as hormonal abnormalities, the presence of antispermic antibodies, erectile disfunction, testicular cancer, and exposure to radiation and chemical agents. Thus, infertility is usually connected with complex etiology. They mentioned that nearly 40% of cases of male infertility are idiopathic. Amongst genetic causes, they still place chromosomal abnormalities as the number one reason for infertility (e.g., aneuploidy in sex chromosomes), however, AZF microdeletions are, in their opinion, the second most common reason. Therefore, similar to previously quoted studies, Khabour et al. (2014) [20] analyzed the frequency of AZF microdeletions, this time in the Jordanian population. His analysis included infertile men with azoospermia and oligozoospermia. They found partial AZF deletions in three patients from the azoospermic subgroup, two with microdeletions in the AZFc domain and one in AZFb+a+c domains.
The majority of authors agree that deletions in chromosome Y, particularly in the AZF region are one of the most important factors causing spermatogenesis disturbances and male infertility. The majority of analyses confirmed that microdeletions in AZFc are the most frequent and mostly connected with spermatogenic failure. Alongside karyotype abnormalities (affecting about 15% of azoospermic and 6% of oligozoospermic patients), AZF microdeletions are widely considered as the second most common genetic reason for male infertility [17,18,20]. It is more and more accepted to use AZF microdeletions as a specific marker of male infertility. Immense advantage results from the fact that small Yq deletions cannot be visualized in standard karyotype analysis. Therefore, their detection may explain the reason of infertility among men with apparently normal karyotypes [17,18,87]. The detection of AZF microdeletions is also recommended prior to assisted reproduction procedures such as intra-cytoplasmic sperm injection ICSI or testicular sperm extraction TESE. It is critically important in the case of patients with AZFc microdeletions, which are able to produce a certain amount of normal sperm during ejaculation and may achieve reproductive success using these techniques. Since AZF microdeletions transmit to male offspring, such patients should be advised of the possible consequences of assisted reproduction [35,83,84]. Therefore, screening for AZF microdeletions is becoming one of the first steps in diagnostics of potential causes of male reproductive problems. Typical AZF analysis includes DNA extraction (usually from peripheral blood) analyzed by polymerase chain reaction PCR-multiplex procedure with special markers for AZF microdeletions, i.e., sequence-tagged sites STS [80,85]. Ultimately, the detection of AZF microdeletions can be useful both in explaining idiopathic cases of male infertility as well as in genetic consulting prior to assisted reproduction [87]. In the case of idiopathic infertility (30–40% cases of male infertility) a genetic cause is a usually suspected [35]. Therefore, the analysis of the AZF region of the Y chromosome is necessary for accurate diagnosis.

4.2. Cystic Fibrosis and Congenital Bilateral Absence of the Vas Deferens

As mentioned previously, cystic fibrosis may also play a critical role in infertility (due to complete obstruction of spermatic ducts). As well as the congenital bilateral absence of the vas deferens CBAVD, Klinefelter and Kallmann syndromes are all connected with spermatogenesis disruptions [36]. CBAVD is manifested as aplasia of the spermatic ducts. Similarly to cystic fibrosis, CBAVD is caused by mutations in the CFTR gene. As a consequence it has been considered as an expression of cystic fibrosis or as a separate disease [21,23,24], estimated that CBAVD appeared in 99% of adult men with cystic fibrosis. However, in their analysis they concentrated on congenital bilateral absence of the vas deferens among young boys with cystic fibrosis aged 2–12. In the examined group which consisted of boys there were two subgroups identified. The first one contained children with pancreatic insufficiency and the second contained pancreatic sufficient boys. In five boys with congenital bilateral absence of vas deferens CBAVD seminal vesicles were observed. Furthermore, testicular micro-lithiasis was diagnosed in the subgroup with pancreatic insufficiency. They concluded that genital impairments in cystic fibrosis may appear at a very early age. Such manifestations were less common in young patients than in adults and appeared more frequently among youngsters with pancreatic insufficiency [24]. Moreover, Xu et al. (2014) [25] consider CBAVD as an abnormality in the male reproductive system, directly connected with the obstruction of sperm outflow into the urethra. On the basis of data review, the authors concluded that this impairment is responsible for 2% of cases of male infertility. They assert that in about 97% of male patients with cystic fibrosis, CBAVD is also diagnosed (comparable to that estimated by [24]). This fact is explained by the common genetic background, both for cystic fibrosis and CBAVD, namely mutation in the CFTR gene on chromosome 7. Abnormalities in the expression of CFTR also contribute to reduced functionality of the respiratory system, sweat glands, and reproductive system (a classical set of anomalies in cystic fibrosis patients). Thus, Xu et al. (2014) [25] confirmed the relationship between the most common variations of CFTR and CBAVD. Their results also suggest that certain CFTR variations are responsible for the more frequent occurrence of CBAVD in some populations, e.g., variation 5T creates a threat of CBAVD among French, Spanish, Japanese, Chinese, Iranian, Indian, Mexican and Egyptian populations, whilst variation of deltaF508 creates a risk for Slovenians, Canadians, Iranians, and Egyptians.
Simultaneously, Du et al. (2014) [88] considered CBAVD as a reason of nearly 6% of cases of obstructive azoospermia. Furthermore about 75% of CBAVD cases were direct manifestations of CFTR mutations F508del, 5T, and R117H (types of mutations in CBAVD). Accordingly, the observation that mutations of the CFTR gene (F508del, as well as 5T allele of the intron 8 of CFTR) are connected with CBAVD parallels with the results of [25]. Additionally, variations of the TG-repeats (TG13T5 or TG12T5; type of mutations in CBAVD), in their opinion, also play a part in the manifestation of CBAVD [88]. However, Massart et al. (2012) [86] noticed that about 88% of patients with two CFTR mutations carry severe mutation transformed to a mild mutation (respectively no CFTR function or residual CFTR function), whilst only 12% carry two mild mutations. Bareil et al. (2007) [89] investigated the connections between CBAVD and cystic fibrosis, while checking the participation of polymorphisms of transforming growth factor TGFB1 and endothelin receptor type A EDNRA in CBAVD manifestation. They suggest that both factors contribute to the lung manifestation of cystic fibrosis. This confirmation of the contribution of TGFB1 or EDNRA to CBAVD could point to another common link between cystic fibrosis and CBAVD. Du et al. (2014) [88] analyzed DNA samples from 80 patients with CBAVD (experimental group) and 51 healthy men as a control group. They indicated that polymorphism of the EDNRA may be connected with the manifestation CBAVD. Additionally, Havasi et al. (2010) [90] stated that nearly 98% of men with cystic fibrosis also suffered from CBAVD and infertility, while in 80–97% of CBAVD cases the disease were caused by at least one defective CFTR allele and in 50–93% of cases they detected two abnormal CFTR variants. These data support the statements of Bareil et al. (2007) [89].
Moreover, Noone and Knowles (2001) [22] characterized cystic fibrosis as a recessive genetic disease caused by mutations on both CFTR alleles. They described a standard set of symptoms including sino-pulmonary disease, male infertility, pancreatic exocrine insufficiency, and abnormal sweat electrolytes adding that the classic form of cystic fibrosis can be easily diagnosed in early life by conducting a sweat test (detection of abnormal chlorine and sodium levels) or by CFTR mutation analysis. They found that two-thirds of patients in the USA carry at least one copy of the deltaF508 mutation (one of the most common mutations in cystic fibrosis). However, they explain that the spectrum of possible impairments in the CFTR is extremely variable and, therefore, many phenotypes are described depending on the severity of the mutations involved (severe, mild, or atypical sets of symptoms). Therefore, about 7% of cystic fibrosis patients are still not diagnosed by the age of 10 or 15 years [22]. These researchers more recently ascribed the CFTR gene to the production of a trans-membrane protein securing epithelial cell functionality, especially in ion and water transport. Thus, the formation of thick, sticky mucus in the respiratory, alimentary, and reproductive systems is directly connected with inappropriate water distribution and chloride deficiency (major contributors to mucus consistency). In normal conditions the excess mucus is easily eliminated, while in cystic fibrosis the sticky mucus are clogs the pathways making it difficult to remove the mucous (due to its abnormal consistency). Furthermore, a wide range of bacteria, fungi, and acari can stick to the mucus and cannot be eliminated. This results in reoccurring pneumonia and other bacterial infections, typically found in cystic fibrosis [21,23,36]. Additionally, Almeida et al. (2013) [91] analyzed the testicular tissue after biopsies from patients displaying abnormal spermatogenesis to describe the role of apoptosis in azoospermia. They conducted testicular treatment biopsies from 27 male patients. Five were cases with previously diagnosed oligozoospermia, nine with obstructive azoospermia (among them four patients with CBAVD), and in 13 cases non-obstructive azoospermia (5 men with hypo-spermatogenesis, there cases with sperm maturation arrest and five with Sertoli cell syndrome). These data focused on the activity of certain caspases: 8 and 9 which inaugurate the apoptotic pathways, as well as caspase 3, which determines the point of no return in apoptosis of cells. They found an increased activity of caspase 3 in Sertoli cell syndrome and germ cells with higher activity of caspases in hypo-spermatogenesis. In secondary obstructive disorders they noted diversified caspase activity, while in oligozoospermia significantly higher activity of caspase 9 in comparison to caspase 8 in spermatogonia was noticed. Finally, in primary obstructive disorders and hypo-spermatogenesis, caspases 3 and 9 showed significantly increased activity. That is why the importance of caspase-signalling pathways in human spermatogenesis is significant [91]. These authors point out that germ cells apoptosis is even necessary for normal spermatogenesis. The problems arise when the rate of sperm apoptosis is too high. The concentration of sperm decreases and abnormal seminal motility appears. Thus, these studies confirm a direct relationship between the apoptosis of germ cells and the failure of spermatogenesis.

4.3. Other Genetic Diseases Connected with Infertility: Klinefelter Syndrome and Kallmann Syndrome

Klinefelter syndrome and Kallmann syndrome are also considered common reasons for male infertility. Both diseases are connected with impairments of the X chromosome. The presence of an extra X chromosome in men, karyotype (XXY), is responsible for Klinefelter syndrome (47-XXY or XXY, i.e., the set of symptoms that occurs in two or more X chromosomes in males). The condition was first described in 1942. The symptoms include fibrosis of spermatic ducts, small testicles, azoospermia, and a decay of potency. In biochemical analysis Klinefelter syndrome patients display high levels of gonadotrophins and low levels of testosterone [28,36,92]. In Kallmann syndrome there are several possible mutated genes involved in pathogenesis. Mutations of the KAL1 gene located on the X chromosome are most important. KAL1 gene is located on the X chromosome at Xp22.3 and is affected in males with Kallmann syndrome. This gene codes for a protein of the extra-cellular matrix, anosmin-1, which is involved in the migration of nerve cell precursors (neuro-endocrine GnRH-cells). Deletion or mutation of this gene results in loss of the functional protein and affects the proper development of the olfactory nerves and olfactory bulbs. Neural cells that produce GnRH fail to migrate to the hypothalamus. However, other mutated genes are important, mainly fibroblast growth factor receptor 1 FGFR1, known as basic fibroblast growth factor receptor 1, fms-related tyrosine kinase-2/Pfeiffer syndrome, and CD331, as a receptor of tyrosine kinase, whose ligands are specific members of the fibroblast growth factor family. FGFR1 has been shown to be associated with Pfeiffer syndrome. Moreover, the fibroblast growth factor 8 FGF8 is a protein that is encoded by the FGF8 gene, and protein coding gene PROKR2 (prokineticin receptor 2) encodes a protein expressed in the supra-chiasmatic nucleus SCN circadian clock that may function as the output component of the circadian clock, and also WDR11 (WD repeat domain 11), known as bromodomain and WD repeat-containing protein 2 (BRWD2), a protein that is encoded by the WDR11 gene. WDR11 is a protein coding gene and PROKR2; a G protein-coupled receptor encoded by the PROKR2 gene. Prokineticins are secreted proteins that can promote angiogenesis and induce smooth muscle contraction. These proteins encoded by PROKR2 gene are membrane protein, which G protein-coupled receptor for prokineticins may contribute to manifestation of the condition. The symptoms of Kallmann syndrome include disorders of reproductive system (hypogonadism) with anosmia [32,34]. Thus while PROK2 is type of gene mutation (protein coding gene; this gene encodes a protein expressed in the SCN circadian clock that may function as the output component of the circadian clock), PROKR2 is a type of gene mutation (prokineticin receptor 2; a G protein-coupled receptor encoded by the PROKR2 gene in humans). The protein encoded by this gene is an integral membrane protein and G protein-coupled receptor for prokineticins.)

4.3.1. Klinefelter Syndrome

Høst et al. (2014) [30] defined Klinefelter syndrome as the most abundant sex-chromosome disorder, connected with hypogonadism and infertility. They state that this disease affects one in 600 men, but because of its high diversification in clinical presentation only 25% of men with Klinefelter syndrome are diagnosed with the disease. Among the typical symptoms of the condition they noted azoospermia, as well as various psychiatric problems (manifesting for instance in learning difficulties). However, the long term manifestations may encompass degradation in muscle mass and bone mineral mass, increased risk of diabetes type 2 and the threat of metabolic syndrome. In Klinefelter syndrome the loss of germ cells begins during the fetal period, continuing through infancy and intensifying in puberty. Fibrosis of the seminiferous tubules and a reduction in testis size are accompanied by long-lasting germ cell degradation [30]. Subsequently, the researchers described the appearance of adult patients with this syndrome as above average height, sparse body hair (due to androgen deficiency), narrow shoulders, broad hips, and small, firm testicles, while adding that deviations from that description are quite frequent. Nieschlag (2013) [29] remarked that the Klinefelter syndrome karyotype (47, XXY, aneuploidy of sex chromosomes) appears in up to 0.2% of male infants (one of the most frequent types of congenital chromosomal impairment). Among psychiatric aspects connected with the disease, they observed verbalization difficulties and problems with socialization among the youngsters. Furthermore, they described several pathological conditions accompanying Klinefelter syndrome including a lack of libido, erectile dysfunction, azoospermia, as well as gynecomastia, osteoporosis, thrombosis, and even epilepsy. Nieschlag (2013) [29] also mentioned that treatment of the disease is based on testosterone supplementation, instigated where low testosterone levels occur. He maintained that without proper treatment, as well as without treatment of the conditions accompanying Klinefelter syndrome (type 2 diabetes, varicose veins, embolism), the length of life of those patients may be up to 11 years shorter than the average age of male population. Simultaneously, Molnar et al. (2010) [26] stated that behavioral problems and learning delays in children often appear as the first step in this syndrome recognition. As proof the authors described the case of an 18 year old Somali boy with Klinefelter syndrome: recognition of the disease started with the observation of behavioral problems at school. During further investigation (determination of prolactine, testosterone, follicle-stimulating hormone, and luteinizing hormone levels, as well as the analysis of thyroid functionality and measurement of testis size) this syndrome was confirmed. Therefore, Molnar et al. (2010) [26] suggested that in cases of boys with learning problems, physicians should consider this syndrome as a possibility in their diagnosis. Some authors describe a range of treatment methods available for patients with Klinefelter syndrome who desire to have offspring. Certain amounts of testicular sperm can be retrieved surgically from the testis of adult men with this syndrome (testicular sperm extraction and intra-cytoplasmic sperm injection). There are also several techniques employed to increase testosterone levels, while classical testosterone supplementation supposedly even improves cognitive abilities in patients [26,30].
Gi Jo et al. (2013) [28] stated that Klinefelter syndrome is present in about 10% of azoospermic men. The frequency of morbidity amounts to 0.1–0.2% in general population whilst in 0.15–0.17% cases of the syndrome is recognized in prenatal diagnoses. The researchers tested over 18,000 pregnant women to detect Klinefelter syndrome in their offspring at the fetal stage. Twenty-two fetuses had Klinefelter syndrome, which was 0.12%, while after restriction of the group to only male features the proportional incidence was 0.23%. In the interpretation of their results Gi Jo et al. (2013) [28] note that fetal frequency of syndrome was higher than commonly observed. The researchers suspect that the possible reason for the occurrence of such a high syndrome level in features in their study was the advanced maternal age of mothers (over 35 years). They suggested that the risk of Klinefelter syndrome in offspring may increase with maternal age. Moreover, Turriff et al. (2011) [27] focused on psychiatric impairments accompanying this syndrome. They examined 310 participants of diverse age, from 14–75 years old. They analyzed the attitude of participants to such problems as perception of stigmatization, perceived negative consequences of karyotype XXY, and the matter of having children. Karyotype XXY is a Klinefelter syndrome known as 47, XXY or XXY, i.e., the set of symptoms that result from two or more X chromosomes in males. These authors established that nearly 70% of men with this syndrome displayed symptoms of depression and described several psychiatric manifestations associated with Klinefelter syndrome, including depression, anxiety, schizophrenia, psychoses, hallucinations, and paranoid delusions. They concluded that both adolescents and adults with this syndrome have an increased risk of psychiatric disorders. In their opinion, depression was the most important psychiatric symptom, appearing in syndrome, a condition which significantly decreases the quality of life of patients and may even lead to suicide [27]. Accardo et al. (2015) [92] considered the risk of testicular cancer in men with Klinefelter syndrome; adult patients with show testicular abnormalities such as fibrosis of the seminiferous tubules, hyperplasia of the interstitium, diffuse hyanilization, and cryptorchidism with a six times higher frequency than in the general male population. In addition to destructive changes in the testis, the authors describe several other diseases, possibly accompanying syndrome including venous disease, leg ulcers, and a higher morbidity due to certain malignant tumors, for instance malignancies in the lungs. These data analyzed the risk of testicular cancer in patients with Klinefelter syndrome. They measured several markers, such as serum levels of lactate dehydrogenase and alpha-fetoprotein. They conducted testicular ultrasound and in certain cases magnetic resonance imaging, and did not find increased signs of testicular cancer [92]. Accordingly, despite the risk of pathological conditions accompanying Klinefelter syndrome, the threat of testicular cancer appears to be low.
Additional disorders accompanying Klinefelter syndrome including abdominal obesity and metabolic syndrome were found by [93]. Eighty-nine adult patients had a higher risk of these conditions, but the researchers focused on younger patients, pre-pubertal boys, aged from 4–12.9 years old (measurements included height, weight, waist circumference, blood pressure, the concentrations of insulin, fasting glucose, and lipids). Compared to healthy controls, children with Klinefelter syndrome had wider waist circumference and engaged in less physical activity. Furthermore, in over one third of children, increased LDL cholesterol was noted, nearly one fourth had insulin resistance, and 7% fulfilled the criteria for metabolic syndrome diagnosis. Thus, Bardsley et al. (2011) [93] confirmed that certain disorders, which usually accompany this syndrome, may appear in youngsters. Additionally, Van Rijn et al. (2012) [94] examined the cognitive disorders which commonly appear in Klinefelter syndrome stating that the analysis of cognitive functionality of patients’ brains may deliver valuable information about neural mechanisms involved in social processing. In an experiment conducting a task based on judging facial expressions, men with this syndrome and healthy men were asked to assess faces as trustworthy or untrustworthy and asked to guess the age of the faces. During the first part of the task men obtained a lower valuation in several brain activities, including poorer screening of socio-emotional information (amygdala), poorer subjective emotional experience (insula), and poorer perceptual face processing (fusiform gyrus and superior temporal sulcus). During the second part of the task the perceptual face processing was also reduced in men with this syndrome. The studies elucidated direct relationships between abnormal social behaviors accompanying Klinefelter syndrome and a reduced functionality of the neural network [94,95,96].

4.3.2. Kallmann Syndrome

Klinefelter syndrome, because of its relatively high frequency of occurrence in the human population, is well characterized. On the other hand, another genetically-determined condition, resulting in infertility, is Kallmann syndrome. This disease is caused by mutations of the KAL1 gene, located on the X chromosome. The symptoms appearing in men include small testicles, underdevelopment of the penis, delayed maturation, and a lack of a sense of smell. However, the maintenance of fertility in patients is possible [36,97,98]. Additionally, Quaynor et al. (2011) [33] stated that Kallmann syndrome is often connected with hypogonadotropic hypogonadism and anosmia. The fundamental impairments arise from low levels of sex steroids and low concentration of gonadotropins. In their opinion gonadotropin-realizing hormone GnRH appeared to be the most important hormone involved. It influences the hypothalamic-pituitary-gonadal axis functionality, playing an essential role in processes at puberty. When the secretion or the activity of GnRH is disturbed, pubertal disorders and reproductive impairments result. Both Laitinen et al. (2011) and Quaynor et al. (2011) [32,33] explained the reason for atrophy in the sense of small in the Kallmann syndrome. It is caused by cessation of GnRH neuronal migration within the meninges (GnRH, as well as olfactory neurons not reaching the hypothalamus). Furthermore, they expanded the list of possible manifestations of Kallmann syndrome to idiopathic hypogonadotropic hypogonadism. They added several impairments which were not connected with fertility, such as dental agenesis, midline facial defects, and even hearing loss. Laitinen et al. (2011) [32] admitted that an exact estimation of the incidence of Kallmann syndrome in human populations is difficult because the syndrome is clinically and genetically diversified. Nevertheless it seems to be 3–5 times more frequent in men than women. These researchers examined the Finnish population collating the phenotypic and genotypic features among patients with this syndrome, as well as the incidence of the disease in Finland. The frequency of Kallmann syndrome was different among men and women, being one case in 30,000 men versus one case in 125,000 women. They assessed the phenotypic reproductive features accompanying syndrome in a group of 25 men and five women. The phenotypes found were heterogeneous, ranging from partial puberty to severe hypogonadotropic hypogonadism. In an genetic analysis the authors focused on genes possibly contributing to this syndrome manifestation, i.e., KAL1, FGFR1, FGF8, PROK2, PROKR2, CHD7 (chromodomain-helicase-DNA-binding protein 7, known as ATP-dependent helicase CHD7, is an enzyme that in humans is encoded by the CHD7 gene). CHD7 is an ATP-dependent chromatin remodeler homologous to the Drosophila trithorax-group protein Kismet and WDR11, a type of gene mutation (WD repeat-containing protein 11, known as bromo-domain and WD repeat-containing protein 2 (BRWD2) is a protein that in humans is encoded by the WDR11 gene). KAL1 mutation was detected in men, while FGFR1 mutation was noted in women and men. The results confirmed that it is difficult to give a clear diagnosis of Kallmann syndrome, because of the multitude of genetic factors contributing to the syndrome pathogenesis [32]. It goes far beyond these possible genes and is still waiting for further exploration.
On the other hand, Pedersen-White et al. (2008) [31] mentioned that the molecular basis for most cases of Kallmann syndrome and idiopathic hypogonadotropic hypogonadism is still unknown. Many mutations contributing to the disease remain undiagnosed. They suggested that the gonadotropin-releasing hormone receptor GNRHR gene (apart from KAL1 and FGFR1) could also be related to Kallmann syndrome, but in their opinion mutations in the GNRHR, KAL1, and FGFR1 genes account for only 15–20% of all possible reasons of idiopathic hypogonadotropic hypogonadism and Kallmann syndrome (GNRHR is a protein that is encoded by the GNRHR gene, which encodes the receptor for type 1 gonadotropin-releasing hormone). Pedersen-White et al. (2008) [31] conducted a screening study including 54 patients (men and women) with Kallmann syndrome and idiopathic hypogonadotropic hypogonadism. The results found that KAL1 deletions appeared in 4 cases. After the restriction of the experimental group to anosmic men only, the result was four out of 33 patients. Thus, these researchers suggest that KAL1 mutations are one of the most common reasons for Kallmann syndrome, but impairments in the other tested genes may also participate in the disease [31]. Similarly, Dodé and Rondard (2013) [34] remarked that the phenotype of Kallmann syndrome results from interruptions in the nerve fibers located in the nasal region, the olfactory, vomero-nasal, and terminal. The impact of these impairments is manifested as disturbances in the migration of gonadotropin-releasing hormone synthesizing cells between the nose and the brain. They discussed all genes connected with Kallmann syndrome that had been previously described, including KAL1, FGFR1, PROKR2, PROK2, FGF8, CHD7, WDR11, heparan sulfate 6-O-sulfotransferase 1 HS6ST1, and semaphorin-3A SEMA3A (a protein SEMA3A that in humans is encoded by the SEMA3A gene). HS6ST1 is the protein encoded by the gene HS6ST1 and is a member of the heparan sulfate biosynthetic enzyme family. Heparan sulfate biosynthetic enzymes are key components in generating a myriad of distinct heparan sulfate fine structures that carry out multiple biological activities. This enzyme is a type II integral membrane protein and is responsible for 6-O-sulfation of heparan sulfate. This enzyme does not share significant sequence similarity with other known sulfotransferases). Dodé and Rondard (2013) [34] described the essential roles of these genes and assessed the proportion of Kallmann syndrome cases connected with their mutations. They found that KAL1 contributes to an increase in the extra-cellular matrix glycoprotein anosmin-1, while FGF8 and FGFR1 encode fibroblast growth factor-8 and fibroblast growth factor receptor-1. PROKR2 and PROK2 are responsible for the generation of prokineticin receptor-2 and prokineticin-2. According to these authors’ assessment, mutations in KAL1 appear in about 8% of cases of Kallmann syndrome, FGF8 and FGFR1 both appear in about 10% of cases and mutations both in PROKR2 or PROK2 are responsible for about 9% of cases. In addition, mutations in the CHD7 gene lead to CHARGE syndrome (coloboma, heart defects, choanal atresia, retarded growth and development, genital abnormalities, and ear anomalies) in many patients accompanying Kallmann syndrome [34]. CHARGE syndrome, known as CHARGE association, is a rare syndrome caused by a genetic disorder. First described in 1979, the acronym CHARGE came into use for newborn children with the congenital features of coloboma of the eye, heart defects, atresia of the nasal choanae, retardation of growth and/or development, genital and/or urinary abnormalities, and ear abnormalities and deafness. These features are no longer used in making a diagnosis of CHARGE syndrome, but the name remains. About two thirds of cases are due to a CHD7 mutation. Ultimately, practically all researchers agreed that, despite the estimated prevalence of this syndrome of one in 8000 men and nearly five times lower than this in women, the real frequency of the disease may be higher since so many of the genes potentially involved in Kallmann syndrome remain unexplored [31,32,33,34].

5. Summary and Conclusions

The data quoted in this review would agree that the pool of factors harmful to human health which has accumulated in the environment, is very large. Most of these factors affect the human reproductive system and fertility adversely [5,6]. Pb, Cd, Hg, Mo, and other heavy metals appear to be detrimental to sperm concentration and quality [1,52]. The authors expound a list of sperm and spermatogenesis depressors, describing the negative effects of dioxins, pesticides, phthalates, industrial solvents, as well as traffic fumes and food additives [4]. Obviously even house dust can modify reproductive hormone levels [3]. Researchers noted close relationships between many of the harmful substances mentioned above and increased oxidative stress. The problem of overproduction of ROS is usually connected with decreasing activity of certain antioxidative enzymes, such as catalase, superoxide dismutase, and glutathione peroxidase [7,10]. Many of these authors noticed certain behaviors that people can easily initiate on their own, such as a cessation of smoking or introducing a low-fat diet, can considerably reduce oxidative stress and improve reproductive condition [9]. A large pool of research has described the role of an anti-oxidative diet as an effective tactic in reducing oxidative stress. Beta-carotene, vitamin A, C, E, B complex, and lycopene have all been considered as beneficial factors in the lowering of oxidative stress markers and the improvement of anti-oxidative defense [12,13,15,16,78]. Another strategy aiding sperm quality appears to be supplementation of Zn and Se, which both improve semen concentration and motility [14].
Reactive forms of oxygen may cause destructive changes on a genetic level, for instance through DNA breakages and genetic factors were estimated to contribute to at least 5–10% of cases of male infertility [8,80]. We analyzed common genetic factors in male infertility, focusing on impairments in chromosomes Y, X, and 7. With respect to the Y chromosome, authors richly described the AZF region and microdeletions in domains AZFa, AZFb, AZFc, and AZFd [17,18,84]. It appears that a relatively minor manifestation of such deletions causes a lowering in the amount of sperm cells in semen, while the most serious deletions cause azoospermia [19,20,80]. The phenotypes vary between populations but micro-deletion and AZFc deletions are definitely the most frequent [86]. Male infertility also occurs in cystic fibrosis and the congenital bilateral absence of the vas deferens, both caused by mutations in the CFTR gene, located on chromosome 7. Obstruction of spermatic ducts by sticky mucus is a feature of cystic fibrosis, while aplasia of spermatic ducts applies to CBAVD. Regarding the common genetic cause of these conditions, CBAVD has been described as a form of expression of cystic fibrosis [22,23,25,36,89]. Finally, with respect to disorders associated with the X chromosome, Klinefelter syndrome, as one of the most frequent genetic causes of male infertility (1 in 600 men), is well characterized. The authors described genetic pathogenesis, the presence of an extra chromosome X in the male karyotype, as well as phenotypic manifestations, including small testis, azoospermia, degeneration of spermatic ducts, as sometimes coupled with psychiatric impairments and learning delays [26,27,28,29,30,93,94]. A well-characterized genetic disorder is Kallmann syndrome, where the condition results from mutations in various genes, including KAL1, FGFR1, or FGF8. It manifests as a combination of reproductive impairments (small testicles and delayed maturation) and the lack of a sense of smell [31,32,33,36]. The prevalence of this syndrome among male patients is estimated at 1 in 8000 but many genes possibly implicated in this disease are still unknown [34].
This review demonstrates that male health and fertility are directly connected with environmental conditions. We are exposed to various, potentially harmful, factors which intensify oxidative stress and decrease the natural defenses of the body. Subsequently, ROS damages the reproductive system and other essential systems and even causes impairments on a genetic level [8,97]. Further research should be undertaken to broaden our understanding of these environmental sources of immunogenetic disorders accompanying male infertility, in decreasing both lipoperoxidation and antioxidative activity. This will help determine the distribution and prevalence of potential risk factors in different regions. The results of future analysis should definitely improve the prevention of male infertility, as well as widen the diagnostic possibilities.
Summarizing: (1) Genetic factors are implicated in at least 10% of cases of male infertility [80]; (2) Amongst infertile men the frequency of AZF microdeletions is estimated at 7–8%, with a wide variation across populations [81,87]; (3) Alongside karyotype abnormalities (15% of azoospermic, 6% oligozoospermic cases), AZF microdeletions are considered as the second most common genetic reason of spermatogenic failure [18,20,83]; (4) Amongst various AZF genes the DAZ gene family is reported as the most frequently deleted AZF candidate [35]; (5) Screening of AZF microdeletions can be useful in explaining idiopathic cases of male infertility as well as in genetic consulting prior to assisted reproduction [87]; (6) An exact evaluation of how seriously pollutants and the destabilization of the elemental balance of the human organism lessen the quality of sperm and reduce male fertility should be conducted; (7) Studies of the induced oxidative stress and negative immunogenetic changes in the human reproductive system caused by toxic chemicals are important; (8) An evaluation of the significance of polymorphisms correlated with changes in reproductive potential and pro-anti-oxidative mechanisms as markers of pathophysiological disturbances of the male reproductive condition needs to be performed; (9) The inference from the relationships between environmental degradation and the occurrence of genetic diseases, connected with infertility, needs to be established.

Author Contributions

All authors (P.K., J.B., I.J., B.P.K., E.N.-C., M.P., M.S., A.W., and W.K.) jointly participated in the experimental studies on the environmental conditions of male infertility (currently, original research is being submitted, and more is underway). They developed and participated in the development of the research problem and participated in the design of this review. All authors discussed the main theses of this review and improved the working version of the manuscript. They co-edited and improved the final version of the manuscript, conceived of each part of the review article, participated in its design and coordination, and helped to draft each part of the manuscript. P.K. covered editorial staff. All authors have read and agreed to the published version of the manuscript.

Funding

This research received no external funding. The publication cost (Journal APC) was funded by the University of Zielona Góra, Licealna St. 9, PL 65-417 Zielona Góra, Poland.

Acknowledgments

We thank Joerg Boehner (Univ. Berlin, Germany) for his help with improving English.

Conflicts of Interest

The authors declare no conflict of interest.

References

  1. Meeker, J.D.; Rossano, M.G.; Protas, B.; Diamond, M.P.; Puscheck, E.; Daly, D.; Paneth, N.; Wirth, J.J. Cadmium, Lead, and Other Metals in Relation to Semen Quality: Human Evidence for Molybdenum as a Male Reproductive Toxicant. Environ. Health Perspect. 2008, 116, 1473–1479. [Google Scholar] [CrossRef] [PubMed]
  2. Meeker, J.D.; Rossano, M.G.; Protas, B.; Padmanabhan, V.; Diamond, M.P.; Puscheck, E.; Daly, D.; Paneth, N.; Wirth, J.J. Environmental exposure to metals and male reproductive hormones: Circulating testosterone is inversely associated with blood molybdenum. Fertil. Steril. 2010, 93, 130–140. [Google Scholar] [CrossRef] [PubMed]
  3. Meeker, J.D.; Stapleton, H.M. House Dust Concentrations of Organophosphate Flame Retardants in Relation to Hormone Levels and Semen Quality Parameters. Environ. Health Perspect. 2010, 118, 318–323. [Google Scholar] [CrossRef] [PubMed]
  4. Vaiserman, A. Early-life Exposure to Endocrine Disrupting Chemicals and Later-life Health Outcomes: An Epigenetic Bridge? Aging Dis. 2014, 5, 419–429. [Google Scholar]
  5. Manahan, S.E. Toksykologia ?rodowiska. Aspekty Chemiczne i Biochemiczne; PWN-Pol. Sci. Publ.; Wydawnictwo Naukowe PWN: Warsaw, Poland, 2006; 530p. [Google Scholar]
  6. Sharpe, R.M. Environmental/lifestyle effects on spermatogenesis. Philos. Trans. R. Soc. Lond. B Biol. Sci. 2010, 365, 1697–1712. [Google Scholar] [CrossRef]
  7. Mathur, P.P.; D’Cruz, S.C. The effect of environmental contaminants on testicular function. Asian J. Androl. 2011, 13, 585–591. [Google Scholar] [CrossRef]
  8. Bartosz, G. Druga Twarz Tlenu. Wolne Rodniki w Przyrodzie; PWN-Pol. Sci. Publ.; Wydawnictwo Naukowe PWN: Warsaw, Poland, 2009; 448p. [Google Scholar]
  9. Agarwal, A.; Virk, G.; Ong, C.; du Plessis, S.S. Effect of Oxidative Stress on Male Reproduction. World J. Men’s Health 2014, 32, 1–17. [Google Scholar] [CrossRef]
  10. Al-Attar, A.M. Antioxidant effect of vitamin E treatment on some heavy metals-induced renal and testicular injuries in male mice. Saudi J. Biol. Sci. 2011, 18, 63–72. [Google Scholar] [CrossRef]
  11. Ruder, E.H.; Hartman, T.J.; Blumberg, J.; Goldman, M.B. Oxidative stress and antioxidants: Exposure and impact on female fertility. Hum. Reprod. Update 2008, 14, 345–357. [Google Scholar] [CrossRef]
  12. Zini, A.; Gabriel, M.S.; Baazeem, A. Antioxidants and sperm DNA damage: A clinical perspective. J. Assist. Reprod. Genet. 2009, 26, 427–432. [Google Scholar] [CrossRef]
  13. Walczak-J?drzejowska, R.; Wolski, J.K.; S?owikowska-Hilczer, J. The role of oxidative stress and antioxidants in male fertility. Centr. Eur. J. Urol. 2013, 66, 60–67. [Google Scholar] [CrossRef] [PubMed]
  14. Atig, F.; Raffa, M.; Habib, B.A.; Kerkeni, A.; Saad, A.; Ajina, M. Impact of seminal trace element and glutathione levels on semen quality of Tunisian infertile men. BMC Urol. 2012, 12, 6. [Google Scholar] [CrossRef] [PubMed]
  15. Aitken, R.J.; Roman, S.D. Antioxidant systems and oxidative stress in the testes. Oxid. Med. Cell. Longev. 2008, 1, 15–24. [Google Scholar] [CrossRef] [PubMed]
  16. Zareba, P.; Colaci, D.S.; Afeiche, M.; Gaskins, A.J.; Jørgensen, N.; Mendiola, J.; Swan, S.H.; Chavarro, J.E. Semen Quality in Relation to Antioxidant Intake in a Healthy Male Population. Fertil. Steril. 2013, 100, 1572–1579. [Google Scholar] [CrossRef] [PubMed]
  17. Navarro-Costa, P.; Gonçalves, J.; Plancha, C.E. The AZFc region of the Y chromosome: At the crossroads between genetic diversity and male infertility. Hum. Reprod. Update 2010, 16, 525–542. [Google Scholar] [CrossRef]
  18. Navarro-Costa, P.; Plancha, C.E.; Gonçalves, J. Genetic Dissection of the AZF Regions of the Human Y Chromosome: Thriller or Filler for Male (In)fertility? J. Biomed. Biotechnol. 2010, 2010, 936–956. [Google Scholar] [CrossRef]
  19. Wang, R.X.; Fu, C.; Yang, Y.P.; Han, R.R.; Dong, Y.; Dai, R.L.; Liu, R.Z. Male infertility in China: Laboratory finding for AZF microdeletions and chromosomal abnormalities in infertile men from Northeastern China. J. Assist. Reprod. Genet. 2010, 27, 391–396. [Google Scholar] [CrossRef]
  20. Khabour, O.F.; Fararjeh, A.S.; Alfaouri, A.A. Genetic screening for AZF Y chromosome microdeletions in Jordanian azoospermic infertile men. Int. J. Mol. Epidemiol. Genet. 2014, 5, 47–50. [Google Scholar]
  21. Korf, B.R. Genetyka Cz?owieka—Rozwi?zywanie Problemów Medycznych; PWN-Pol. Sci. Publ.; Wydawnictwo Naukowe PWN: Warsaw, Poland, 2003; 365p. [Google Scholar]
  22. Noone, P.G.; Knowles, M.R. CFTR-opathies: Disease phenotypes associated with cystic fibrosis transmembrane regulator gene mutations. Respir. Res. 2001, 2, 328–332. [Google Scholar] [CrossRef]
  23. Bradley, J.R.; Johnson, D.R.; Pober, B.R. Genetyka Medyczna. Notatki z Wyk?adów; PZWL: Warsaw, Poland, 2009; 178p. [Google Scholar]
  24. Blau, H.; Freud, E.; Mussaffi, H.; Werner, M.; Konen, O.; Rathaus, V. Urogenital abnormalities in male children with cystic fibrosis. Arch. Dis. Child. 2002, 87, 135–138. [Google Scholar] [CrossRef]
  25. Xu, X.; Zheng, J.; Liao, Q.; Zhu, H.; Xie, H.; Shi, H.; Duan, S. Meta-analyses of 4 CFTR variants associated with the risk of the congenital bilateral absence of the vas deferens. J. Clin. Bioinform. 2014, 4, 11. [Google Scholar] [CrossRef] [PubMed]
  26. Molnar, A.M.; Terasaki, G.S.; Amory, J.K. Klinefelter syndrome presenting as behavioral problems in a young adult. Nat. Rev. Endocrinol. 2010, 6, 707–712. [Google Scholar] [CrossRef] [PubMed]
  27. Turriff, A.; Levy, H.P.; Biesecker, B. Prevalence and Psychosocial Correlates of Depressive Symptoms among Adolescents and Adults with Klinefelter Syndrome. Genet. Med. 2011, 13, 966–972. [Google Scholar] [CrossRef] [PubMed]
  28. Gi Jo, D.; Tae Seo, J.; Shik Lee, J.; Yeon Park, S.; Woo Kim, J. Klinefelter Syndrome Diagnosed by Prenatal Screening Tests in High-Risk Groups. Korean J. Urol. 2013, 54, 263–265. [Google Scholar]
  29. Nieschlag, E. Klinefelter Syndrome The Commonest Form of Hypogonadism, but Often Overlooked or Untreated. Dtsch. Arztebl. Int. 2013, 110, 347–353. [Google Scholar]
  30. Høst, C.; Skakkebæk, A.; Groth, K.A.; Bojesen, A. The role of hypogonadism in Klinefelter Syndrome. Asian J. Androl. 2014, 16, 185–191. [Google Scholar]
  31. Pedersen-White, J.R.; Chorich, L.P.; Bick, D.P.; Sherins, R.J.; Layman, L.C. The prevalence of intragenic deletions in patients with idiopathic hypogonadotropic hypogonadism and Kallmann syndrome. Mol. Hum. Reprod. 2008, 14, 367–370. [Google Scholar] [CrossRef]
  32. Laitinen, E.M.; Vaaralahti, K.; Tommiska, J.; Eklund, E.; Tervaniemi, M.; Valanne, L.; Raivio, T. Incidence, Phenotypic Features and Molecular Genetics of Kallmann Syndrome in Finland. Orphanet J. Rare Dis. 2011, 6, 41. [Google Scholar] [CrossRef]
  33. Quaynor, S.D.; Kim, H.G.; Cappello, E.M.; Williams, T.; Chorich, L.P.; Bick, D.P.; Sherins, R.J.; Layman, L.C. The prevalence of digenic mutations in patients with normosmic hypogonadotropic hypogonadism and Kallmann syndrome. Fertil. Steril. 2011, 96, 1424–1430. [Google Scholar] [CrossRef]
  34. Dodé, C.; Rondard, P. PROK2/PROKR2 Signaling and Kallmann Syndrome. Front. Endocrinol. 2013, 4, 19. [Google Scholar] [CrossRef]
  35. Balkan, M.; Tekes, S.; Gedik, A. Cytogenetic and Y chromosome microdeletion screening studies in infertile males with Oligozoospermia and Azoospermia in Southeast Turkey. J. Assist. Reprod. Genet. 2008, 25, 559–565. [Google Scholar] [CrossRef] [PubMed]
  36. Drewa, G.; Ferenc, T. (Eds.) Genetyka Medyczna. Podr?cznik dla Studentów; Elsevier, Urban & Partner: Wroc?aw, Poland, 2011; 962p. [Google Scholar]
  37. Wo?czyński, S.; Kuczyńki, W.; Styrna, J.; Szamatowicz, M. Molekularne Podstawy Rozrodczo?ci Cz?owieka i Innych Ssaków; Kurpisz, M., Ed.; TerMedia: Poznań, Poland, 2002; 384p. [Google Scholar]
  38. Sinclair, S. Male infertility: Nutritional and environmental considerations. Altern. Med. Rev. 2000, 5, 28–38. [Google Scholar] [PubMed]
  39. Aitken, R.J. The human spermatozoon—A cell in crisis? J. Reprod. Fertil. 1999, 115, 1–7. [Google Scholar] [CrossRef] [PubMed]
  40. Oosterhuis, G.J.E.; Mulder, A.B.; Kalsbeek-Batenburg, E.; Lambalk, C.B.; Schoemaker, J.; Vermes, I. Measuring apoptosis in human spermatozoa: A biological assay for semen quality? Fertil. Steril. 2000, 74, 245–250. [Google Scholar] [CrossRef]
  41. Zdrojewicz, Z.; Wi?niewska, A. Rola cynku w seksualno?ci m??czyzn. Adv. Clin. Exp. Med. 2005, 14, 1295–1300. [Google Scholar]
  42. Beroff, S. Male Fertility Correlates with Metal Levels; WB Saunders Co.: New York, NY, USA, 1996; Volume 3, pp. 15–17. [Google Scholar]
  43. Skoczyńska, A.; Stojek, E.; Górecka, H.; Wojakowska, A. Serum vasoactive agents in lead-treated rats. Med. Environ. Health 2003, 16, 169–177. [Google Scholar]
  44. Chia, S.E.; Ong, C.N.; Chua, L.H.; Ho, L.M.; Tay, S.K. Comparison of zinc concentrations in blood and seminal plasma and the various sperm parameters between fertile and infertile men. J. Androl. 2001, 21, 53–57. [Google Scholar]
  45. Giller, R.M.; Matthews, K. Natural Prescription; Dr. Giller’s Natural Treatments and Vitamin Therapies for Over 100 Common Ailments; Carol Southern Books, Random House Inc.: New York, NY, USA, 1994; 370p. [Google Scholar]
  46. Mohan, H.; Verma, J.; Singh, I.; Mohan, P.; Marwah, S.; Singh, P. Interrelationship of zinc levels in serum and semen in oligospermic infertile patients and fertile males. Pathol. Microbiol. 1997, 40, 451–455. [Google Scholar]
  47. Badmaev, V.; Majeed, M.; Passwater, R.A. Selenium: A quest for better understanding. Altern. Ther. Health Med. 1996, 2, 59–67. [Google Scholar]
  48. Holben, D.H.; Smith, A.M. The diverse role of selenium within selenoproteins: A review. J. Am. Diet. Assoc. 1999, 99, 836–843. [Google Scholar] [CrossRef]
  49. Ursini, F.; Heim, S.; Kiess, M.; Maiorino, M.; Roveri, A.; Wissing, J.; Flohe, L. Dual function of the selenoprotein PHGPx during sperm maturation. Science 1999, 285, 1393–1396. [Google Scholar] [CrossRef]
  50. Luca, G.; Lilli, C.; Bellucci, C.; Mancuso, F.; Calvitti, M.; Arato, I.; Falabella, G.; Giovagnoli, S.; Aglietti, M.C.; Lumare, A.; et al. Toxicity of cadmium on Sertoli cell functional competence: An in vitro study. J. Biol. Regul. Homeost. Agents 2013, 27, 805–816. [Google Scholar] [PubMed]
  51. Mancuso, F.; Arato, I.; Lilli, C.; Bellucci, C.; Bodo, M.; Calvitti, M.; Aglietti, M.C.; dell’Omo, M.; Nastruzzi, C.; Calafiore, R.; et al. Acute effects of lead on porcine neonatal Sertoli cells in vitro. Toxicol. In Vitro 2018, 48, 45–52. [Google Scholar] [CrossRef] [PubMed]
  52. Siu, E.R.; Mruk, D.D.; Porto, C.S.; Cheng, C.Y. Cadmium-induced Testicular Injury. Toxicol. Appl. Pharmacol. 2009, 238, 240–249. [Google Scholar] [CrossRef] [PubMed]
  53. Buck Louis, G.M.; Sundaram, R.; Schisterman, E.F.; Sweeney, A.M.; Lynch, C.D.; Gore-Langton, R.E.; Chen, Z.; Kim, S.; Caldwell, K.; Barr, D.B. Heavy Metals and Couple Fecundity, the LIFE Study. Chemosphere 2012, 87, 1201–1207. [Google Scholar] [CrossRef]
  54. Bonda, E.; W?ostowski, T.; Krasowska, A. Metabolizm i toksyczno?? kadmu u cz?owieka i zwierz?t. Kosmos 2007, 56, 87–97. [Google Scholar]
  55. O’Flaherty, C. The Enzymatic Antioxidant System of Human Spermatozoa. Adv. Androl. 2014, 2014, 626374. [Google Scholar] [CrossRef]
  56. Gladyshev, V.N.; Arnér, E.S.; Berry, M.J.; Brigelius-Flohé, R.; Bruford, E.A.; Burk, R.F.; Carlson, B.A.; Castellano, S.; Chavatte, L.; Conrad, M.; et al. Selenoprotein Gene Nomenclature. J. Biol. Chem. 2016, 291, 24036–24040. [Google Scholar] [CrossRef]
  57. Sallmen, M.; Lindbohm, M.L.; Anttila, A.; Taskinen, H.; Hemminki, K. Time to pregnancy among the wives of men occupationally exposed to lead. Epidemiology 2000, 11, 141–147. [Google Scholar] [CrossRef]
  58. el Feki, A.; Ghorbel, F.; Smaoui, M.; Makni-Ayadi, F.; Kammoun, A. Effects of automobile lead on the general growth and sexual activity of the rat Gynecol. Obstet. Fertil. 2000, 28, 51–59. [Google Scholar]
  59. Ga?ecka, E.; Jacewicz, R.; Mrowicka, M.; Florkowski, A.; Ga?ecki, P. Antioxidative enzymes–structure, properties, functions. Enzymy antyoksydacyjne-budowa, w?a?ciwo?ci, funkcje. Pol. Merk. Lek. 2008, 25, 266–268. [Google Scholar]
  60. Ga?ecka, E.; Mrowicka, M.; Malinowska, K.; Ga?ecki, P. Role of free radicals in the physiological processes. Wolne rodniki tlenu i azotu w fizjologii. Pol. Merk. Lek. 2008, 24, 446–448. [Google Scholar]
  61. Ga?ecka, E.; Mrowicka, M.; Malinowska, K.; Ga?ecki, P. Chosen non-enzymatic substances that participate in a protection against overproduction of free radicals. Wybrane substancje nieenzymatyczne uczestnicz?ce w procesie obrony przed nadmiernym wytwarzaniem wolnych rodników. Pol. Merk. Lek. 2008, 25, 269–272. [Google Scholar]
  62. Hsieh, Y.Y.; Sun, Y.L.; Chang, C.C.; Lee, Y.S.; Tsai, H.D.; Lin, C.S. Superoxide dismutase activities of spermatozoa and seminal plasma are not correlated with male infertility. J. Clin. Lab. Anal. 2002, 16, 127–131. [Google Scholar] [CrossRef]
  63. Zini, A.; de Lamirande, E.; Gagnon, C. Reactive oxygen species in semen of infertile patients: Levels of superoxide dismutase- and catalase-like activities in seminal plasma and spermatozoa. Int. J. Androl. 1993, 16, 183–188. [Google Scholar] [CrossRef]
  64. Siciliano, L.; Tarantino, P.; Longobardi, F.; Rago, V.; De Stefano, C.; Carpino, A. Impaired seminal antioxidant capacity in human semen with hyperviscosity or oligoasthenozoospermia. J. Androl. 2001, 22, 798–803. [Google Scholar]
  65. Sharma, R.K.; Pasqualotto, A.E.; Nelson, D.R.; Thomas, A.J., Jr.; Agarwal, A. Relationship between seminal white blood cell counts and oxidative stress in men treated at an infertility clinic. J. Androl. 2001, 22, 575–583. [Google Scholar]
  66. Asada, H.; Sueoka, K.; Hashiba, T.; Kuroshima, M.; Kobayashi, N.; Yoshimura, Y. The effects of age and abnormal sperm count on the nondisjunction of spermatozoa. J. Assist. Reprod. Genet. 2000, 17, 51–59. [Google Scholar] [CrossRef]
  67. Black, L.D.; Nudell, D.M.; Cha, I.; Cherry, A.M.; Turek, P.J. Compound genetic factors as a cause of male infertility. Hum. Reprod. 2000, 15, 449–451. [Google Scholar] [CrossRef]
  68. Krawczyński, M.R. Genetyczny mechanizm determinacji p?ci u cz?owieka. Post. Androl. 2002, 4, 143–150. [Google Scholar]
  69. Matheisel, A.; Babińska, M.; ?ychska, A.; Mrózek, K.; Szczurowicz, A.; Niedoszytko, B.; Iliszko, M.; Mrózek, E.; Mielnik, J.; Midro, A.T.; et al. Wyniki badań cytogenetycznych u pacjentów z wywiadem obci??onym niepowodzeniami rozrodu. Gin. Pol. 1997, 68, 74–81. [Google Scholar]
  70. Midro, A. Znaczenie badań chromosomowych w andrologii klinicznej. Post. Androl. 2000, 3, 1–10. [Google Scholar]
  71. Kurpisz, M.; Szczygie?, M. Molekularne podstawy teratozoospermii. Gin. Pol. 2000, 9, 1036–1041. [Google Scholar]
  72. Jakubowski, L.; Jeziorowska, A. Aberracje chromosomów X i Y w wybranych przypadkach zaburzeń rozwoju cielesno-p?ciowego. Endokrynol. Pol. 1995, 46 (Suppl. 1), 77–95. [Google Scholar]
  73. Wojda, A.; Korcz, K.; J?drzejczak, P.; Kotecki, M.; Pawe?czyk, L.; Latos-Bieleńska, A.; Wolnik-Brzozowska, D.; Jaruzelska, J. Importance of cytogenetic analysis in patients with azoospermia or severe oligozoospermia undergoing in vitro fertilization. Ginekol. Pol. 2001, 11, 847–853. [Google Scholar]
  74. McCallum, T.J.; Milunsky, J.M.; Cunningham, D.L.; Harris, D.H.; Maher, T.A.; Oates, R.D. Fertility in men with cystic fibrosis. Chest 2000, 18, 1059–1062. [Google Scholar] [CrossRef]
  75. Viville, S.; Warter, S.; Meyer, J.M.; Wittemer, C.; Loriot, M.; Mollard, R.; Jacqmin, D. Histological and genetic analysis and risk assessment for chromosomal aberration after ICSI for patients presenting with CBAVD. Hum. Reprod. 2000, 15, 1613–1618. [Google Scholar] [CrossRef]
  76. Oteiza, P.I. Zinc and the modulation of redox homeostasis. Free Rad. Biol. Med. 2012, 53, 1748–1759. [Google Scholar] [CrossRef]
  77. Kehr, S.; Malinouski, M.; Finney, L.; Vogt, S.; Labunskyy, V.M.; Kasaikina, M.V.; Carlson, B.A.; Zhou, Y.; Hatfield, D.L.; Gladyshev, V.N. X-ray fluorescence microscopy reveals the role of selenium in spermatogenesis. J. Mol. Biol. 2009, 389, 808–818. [Google Scholar] [CrossRef]
  78. Mier-Cabrera, J.; Aburto-Soto, T.; Burrola-Méndez, S.; Jiménez-Zamudio, L.; Tolentino, M.C.; Casanueva, E.; Hernández-Guerrero, C. Women with endometriosis improved their peripheral antioxidant markers after the application of a high antioxidant diet. Reprod. Biol. Endocrinol. 2009, 7, 54. [Google Scholar] [CrossRef]
  79. Rink, S.M.; Mendola, P.; Mumford, S.L.; Poudrier, J.K.; Browne, R.W.; Wactawski-Wende, J.; Perkins, N.J.; Schisterman, E.F. Self-report of Fruit and Vegetable Intake that meets the 5 A Day Recommendation is Associated with Reduced Levels of Oxidative Stress Biomarkers and Increased Levels of Antioxidant Defense in Premenopausal Women. J. Acad. Nutr. Diet. 2013, 113, 776–785. [Google Scholar] [CrossRef] [PubMed]
  80. Ambulkar, P.S.; Sigh, R.; Reddy, M.V.R.; Varma, P.S.; Gupta, D.O.; Shende, M.R.; Pal, A.K. Genetic Risk of Azoospermia Factor (AZF) Microdeletions in Idiopathic Cases of Azoospermia and Oligozoospermia in Central Indian Population. J. Clin. Diagn. Res. 2014, 8, 88–91. [Google Scholar] [PubMed]
  81. Sen, S.; Pasi, A.R.; Dada, R.; Shamsi, M.B.; Modi, D. Y chromosome microdeletions in infertile men: Prevalence, phenotypes and screening markers for the Indian population. J. Assist. Reprod. Genet. 2013, 30, 413–422. [Google Scholar] [CrossRef] [PubMed]
  82. Yu, X.-W.; Wei, Z.-T.; Jiang, Y.-T.; Zhang, S.-L. Y chromosome azoospermia factor region microdeletions and transmission characteristics in azoospermic and severe oligozoospermic patients. Int. J. Clin. Exp. Med. 2015, 8, 14634–14646. [Google Scholar] [PubMed]
  83. Choi, D.K.; Gong, I.H.; Hwang, J.H.; Oh, J.J.; Hong, J.Y. Detection of Y Chromosome Microdeletion is Valuable in the Treatment of Patients with Nonobstructive Azoospermia and Oligoasthenoteratozoospermia: Sperm Retrieval Rate and Birth Rate. Korean J. Urol. 2013, 54, 111–116. [Google Scholar] [CrossRef]
  84. Küçükaslan, A.S.; Çetinta?, V.B.; Alt?nta?, R.; Vardarl?, A.T.; Mutlu, Z.; Uluku?, M.; Semerci, B.; Ero?lu, Z. Identification of Y chromosome microdeletions in infertile Turkish men. Turk. J. Urol. 2013, 39, 170–174. [Google Scholar] [CrossRef]
  85. Zheng, H.Y.; Li, Y.; Shen, F.J.; Tong, Y.Q. A novel universal multiplex PCR improves detection of AZFc Y-chromosome microdeletions. J. Assist. Reprod. Genet. 2014, 31, 613–620. [Google Scholar] [CrossRef]
  86. Massart, A.; Lissens, W.; Tournaye, H.; Stouffs, K. Genetic causes of spermatogenic failure. Asian J. Androl. 2012, 14, 40–48. [Google Scholar] [CrossRef]
  87. Hellani, A.; Al-Hassan, S.; Iqbal, M.A.; Coskun, S. Y chromosome microdeletions in infertile men with idiopathic oligo- or azoospermia. J. Exp. Clin. Assist. Reprod. 2006, 3, 1. [Google Scholar] [CrossRef]
  88. Du, Q.; Li, Z.; Pan, Y.; Liu, X.; Pan, B.; Wu, B. The CFTR M470V, Intron 8 Poly-T, and 8 TG-Repeats Detection in Chinese Males with Congenital Bilateral Absence of the Vas Deferens. Biomed. Res. Int. 2014, 2014, 689–695. [Google Scholar] [CrossRef]
  89. Bareil, C.; Guittard, C.; Altieri, J.P.; Templin, C.; Claustres, M.; des Georges, M. Comprehensive and Rapid Genotyping of Mutations and Haplotypes in Congenital Bilateral Absence of the Vas Deferens and Other Cystic Fibrosis Transmembrane Conductance Regulator-Related Disorders. J. Mol. Diagn. 2007, 9, 582–588. [Google Scholar] [CrossRef] [PubMed]
  90. Havasi, V.; Rowe, S.M.; Kolettis, P.N.; Dayangac, D.; ?ahin, A.; Grangeia, A.; Carvalho, F.; Barros, A.; Sousa, M.; Bassas, L.; et al. Association of cystic fibrosis genetic modifiers with congenital bilateral absence of the vas deferens. Fertil. Steril. 2010, 94, 2122–2127. [Google Scholar] [CrossRef] [PubMed]
  91. Almeida, C.; Correia, S.; Rocha, E.; Alves, A.; Ferraz, L.; Silva, J.; Sousa, M.; Barros, A. Caspase signalling pathways in human spermatogenesis. J. Assist. Reprod. Genet. 2013, 30, 487–495. [Google Scholar] [CrossRef] [PubMed]
  92. Accardo, G.; Vallone, G.; Esposito, D.; Barbato, F.; Renzullo, A.; Conzo, G.; Docimo, G.; Esposito, K.; Pasquali, D. Testicular parenchymal abnormalities in Klinefelter syndrome: A question of cancer? Examination of 40 consecutive patients. Asian J. Androl. 2015, 17, 154–158. [Google Scholar]
  93. Bardsley, M.Z.; Falkner, B.; Kowal, K.; Ross, J.L. Insulin resistance and metabolic syndrome in prepubertal boys with Klinefelter syndrome. Acta Paediatr. 2011, 100, 866–870. [Google Scholar] [CrossRef]
  94. Van Rijn, S.; Swaab, H.; Baas, D.; de Haan, E.; Kahn, R.S.; Aleman, A. Neural systems for social cognition in Klinefelter syndrome (47, XXY): Evidence from fMRI. Soc. Cogn. Affect Neurosci. 2012, 7, 689–697. [Google Scholar] [CrossRef]
  95. Lai, H.Y.; Yang, B.C.; Tsai, M.L.; Yang, H.Y.; Huang, B.M. The inhibitory effects of lead on steroidogenesis in MA-10 mouse Leydig tumor cells. Life Sci. 2001, 68, 849–859. [Google Scholar]
  96. Bertin, G.; Averbeck, D. Cadmium: Cellular effects, modifications of biomolecules, modulation of DNA repair and genotoxic consequences (a review). Biochimie 2006, 88, 1549–1559. [Google Scholar] [CrossRef]
(責(zé)任編輯:佳學(xué)基因)
頂一下
(0)
0%
踩一下
(0)
0%
推薦內(nèi)容:
來(lái)了,就說(shuō)兩句!
請(qǐng)自覺(jué)遵守互聯(lián)網(wǎng)相關(guān)的政策法規(guī),嚴(yán)禁發(fā)布色情、暴力、反動(dòng)的言論。
評(píng)價(jià):
表情:
用戶名: 驗(yàn)證碼: 點(diǎn)擊我更換圖片

Copyright © 2013-2033 網(wǎng)站由佳學(xué)基因醫(yī)學(xué)技術(shù)(北京)有限公司,湖北佳學(xué)基因醫(yī)學(xué)檢驗(yàn)實(shí)驗(yàn)室有限公司所有 京ICP備16057506號(hào)-1;鄂ICP備2021017120號(hào)-1

設(shè)計(jì)制作 基因解碼基因檢測(cè)信息技術(shù)部

嗯啊嗯啊在线观看| 亚洲婷婷五月激情综合APP| 国产精品福利网红主播| 91视频国产一区| 久热香蕉最新精品视频在线观看| 国产精品岛国久久久久久| 日日摸日日添日日透| 亚洲视频在线免费观看一区二区 | 一本在线免费视频| 熟妇人妻无乱码中文字幕| 中国少妇裸体bbbbb| 偷拍一区二区三区| 一级久久久久久久| 中文字幕一二三区波多野结衣 | 强硬进入岳A片69| 九九久久国产一区二区三区| 中国特级黄色毛片| 亚洲hdmi高清线| 美女网站一区在线观看免费国产| 国产精品美女久久久久av爽 | 少妇又粗又猛又爽又黄的视频| 天天av天天爽无码中文| 97中文字幕在线观看| 国产+麻豆+免费| 深夜国产福利小视频在线观看| a片+磁力+下载| 18禁美女黄网站色大片免费看| 精品国产91久久久久久动漫| 国产99久久精品一区二区蜜| 2021精品国产自在现线看| 久久久久国产精品人妻aⅴ网站| 国产精品二区视频| 久久久久久亚洲精品专区| 久久久www成人免费看片| 亚洲一卡二卡三卡四卡在线看| 综合亚洲伊人午夜网| 亚洲AV午夜精品无码专区| 一本一道av无码中文字幕﹣百度| 亚洲欧美在线一区中文字幕 | 少妇人人凹凸XX凹凸爽凹凸| 国产日韩欧美91| 国产妇女馒头高清泬20p多毛 | 熟妇大肉唇BB肥| 少妇高潮喷水久久久久久久久久| 91dizhi永久地址最新| 亚洲AV永久无码精品成人| 天堂资源中文最新版在线一区 | 青青青国内视频在线观看软件| 一区视频在线播放| 福利丝袜视频一区二区三区| 中文在线观看免费| 亚洲一卡二卡三卡四卡无卡姐弟| 不卡视频一区二区三区| 18+日本一区二区| WWW亚洲色大成网络.COM| 国产成人精品免费视频| 国内精品久久久久久久小说| 国产精品久久久久av一区| 亚洲免费av网站| www欧美视频在线免费观看| 高清国产一区二区| 日本成人中文字幕| 色99久久久久高潮综合影院| 亚洲一区二区无码影院| 日本丰满人妻久久久久久| 91精品久久久久久综合乱菊| 在情趣店上班被爆cao翻了| 日日操日日射日日摸欧美| 91tv国产成人福利| 亚洲国产精品热久久| 欧美日韩国产激情一区二区三区 | 国产欧美一区二区精品忘忧草| 国产精品无码v在线观看| 国产无遮挡裸体免费视频| 国产1024成人精品视频| 美女主播一区二区不卡视频 | 风韵饥渴少妇在线观看| 98精品偷拍视频一区二区三区| 国产69精品麻豆| 日韩美女视频一区二区| 黄色软件网站入口| 国产手机在线视频| av天堂中av世界中文在线播放| 亚洲国产精品一区二区久久hd | 在线日韩中文字幕| 亚洲欧美在线视频观看| 深夜国产福利小视频在线观看 | 香蕉视频+app| 亚洲啪啪aⅤ一区二区三区9色| 欧美日韩国产一区精品一区| 欧美日韩国产成人综合在线影院| 久久亚洲精品中文字幕波多野结衣| 丰满成熟熟妇乱又伦精品| 红莲两瓣夹玉柱最经典四句话| 欧美日韩免费不卡激情在线视频| 国产欧美日韩美女精品一区| japanese国产在线看| 国产成人精品网站| 欧美日韩国产制服精品第二页| 天天干天天色综合网| 国产免费观看又黄又爽视频网站| 日本最新免费二区| 国产丨熟女丨国产熟女视频 | 青草影院内射中出高潮| 国产免费拔擦拔擦8x高清在线人| 一本色道久久综合亚州精品蜜桃| 790公侵犯美丽人妻| 国产va在线观看| 成人做爰a片免费看网站网豆传媒| 无套内内射视频网站| 亚洲欧美中视频国内自拍| 在线播放+国产+清纯| 香蕉精品视频在线观看| 精品国产粉嫩内射白浆内射双马尾| 亚洲日韩久久综合中文字幕| 国产又黄又爽又粗又猛的网站| 中文字幕av网页观看日韩| 少妇人妻偷人精品无码视频| 久久精品国产精品亚洲艾草网| 亚洲+在线+国产| 亚洲AV无码乱码精品观看明里| 亚洲国产精品久久久男人的天堂| 大香蕉网国产在线观看av| 亚洲+国产+日本视频| ⅹⅹⅹ黄色片视频| 亚洲人成色99999在线观看| 欧美一区二区三区视频| 真人一级毛片全部播放| 国产三级不卡在线观看视频| 久久久综合九色综合88| 无码夜色一区二区三区| 亚洲AV成人片无码| 欧美精品v欧洲高清视频在线观看 中文字幕精品久久久久人妻 | 一区二区国产日韩欧美综合| 美女又爽又黄又免费网站| 最近更新中文字幕2019视频| 国产精品jk白丝蜜臀av小说| 人妻+种子+磁力链接| 日本国产精品亚洲专区观看| 一区二区三区久久久国产| 国产精品日本一区二区不卡视频 | 日韩大片在线永久免费观看网站 | 日日噜噜夜夜狠狠久久丁香五月| 国产精品无卡毛片视频| 中文字幕制服丝袜第57页| 国产99久久久久久免费看农村| 久久久久亚洲十八禁精品国产| 免费视频在线观看网站| 99re在线视频这里只有精品| 91亚洲狠狠婷婷综合久久久| 四lll少妇BBBB槡BBBB| 国产乱码精品一区二区三| 级r片内射在线视频播放| 亚洲va欧美va天堂v国产综合| 国产91精品久久久久久精华液| 女人18片毛片90分钟免费明星| wWWW特级西西大胆女人的艺术| 久久国产午夜精品理论片34页 | 免费一级特黄特色毛片久久看| 视频精品一区二区| 91精品成人免费国产片| 国产一区二区在线观看+在线播放| 日韩美女视频一区二区| 久久国产乱子伦精品免费女人| 国产+人人+欧美视频| 網友分享色婷婷色99国产综合精品心得| 无码人妻一区二区三区尽卡亚| 羞羞视频在线观看免费| 日韩人妻不卡一区二区三区| 亚洲天堂日韩在线观看视频| 日韩人妻无码精品久久久不卡| 泽井芽衣+磁力链接+mp4| 色欲AⅤ亚洲情无码AV蜜桃 | 日本在线看片免费人成视频| 欧美亚洲国产片在线播放| 秋霞久久久久久一区二区| 鲁大师影视在线观看高清免费 | 亚洲日本乱码一区二区产线一∨| 久久婷婷综合99啪69影院| 国产三级在线免费观看| 国产91综合一区在线观看| 久久精品国产成人av| 国产精品久久久久不卡绿巨人| 亚洲熟妇av一区二区三区痴汉| 国精品产品区三区| 亚洲s码欧洲m吗国产精品| 无码人妻一区二区三区免费手机| 亚洲色成人网站www永久尤物| 你懂的欧美一区二区三区| 成人在线精品视频| 国产+激情+在线观看| 操老女人一区二区三区视频tv | 狠狠躁天天躁日日躁欧美| 青青国产香蕉视频在线观看| 久久精品久久久久久| 天堂视频在线观看一二三区| 亚洲人成色在线观看| 欧美日韩精品亚洲色图视频免费| 亚洲精品无码不卡| 国产欧美日韩精品一区二区图片 | 天堂在线一区二区| 国产精品成人亚洲777| 欧洲一区二区成人| 国产一区二区蜜臀av在线| 国产精品一级AA毛片不收费| 中学生+国产+磁力链接| 美女视频一区二区三区| 欧洲av+成人+久久| 亚洲一区二区三区四| а√天堂+地址+在线| 人与动人物xxxx毛片人与狍| 亚洲成色777777女色窝| 清纯唯美亚洲专区国产精品| 日韩中文字幕AV| 91精品日产一二三区乱码| 中文精品人妻素人一级片| 三级片免费AV在线| 国产精品人人爽人人做av片| 八十路で初撮り老熟妇中国| 国产一区高清视频在线观看| 美女黄色视频网站在线观看| 黑丝+国产+在线视频| 一区二区三区四区亚洲| 18禁美女无遮挡在线看| 韩国中文字幕在线观看| 麻豆国产成人av高清在线| 久久久亚洲精品成人| 午夜免费一区二区三区视频| 日本护士vivoes极品另类| 三级黄色免费网站| 久久精品视频在线免费观看| 国产+欧美+日韩| 国产乱人伦无无码视频试看| 亚洲AV无码乱码精品观看明里| 中文字字幕乱码视频高清| 99久久无码一区人妻a片蜜| 玖玖热麻豆国产精品图片| 欧美一片毛国产在线视频| 亚洲欧美日韩中文久久| 欧美日韩在线四区| 91久久精品一区二区三区| 欧美一级特黄特色大片免费观看| 久久久福利视频免费观看| 国内精品伊人久久久久影院麻豆| 日韩欧美视频一区| 国产麻豆一精品一av一免费| 国产女人高潮视频在线观看| 精品乱码久久久久久久| 国产真人实拍女处实破| 国产精品igao视频网| 91亚洲视频在线免费观看| 中文字幕在线观看国产精品| 免费日本久久a视频一区二区| 娇妻被朋友日出白浆| 丰满岳乱妇三级高清| 美女诱惑一区二区| 精品无码成人片一区二区98 | 久久精品免费看一| 少妇又色又爽又刺激视频| 国产精品色婷婷久久99精品| 一本色道88久久加勒比精品| 久久俺也去丁香综合色| 777久久久风间由美中出| 国产激情99精品久久一区二区| 一个人看的视频+www+动漫| 狠狠综合久久av一区二区蜜桃| 亚洲中文字幕人成乱码| 日韩精品免费一区二区三区四区 | 日日摸日日碰夜夜爽无| 精品+免费+在线观看| 18+免费+日韩毛片| 亚洲天堂岛av一区二区| 日本中文字幕亚洲乱码| 五月综合网亚洲乱妇久久| 久久人人爽亚洲精品天堂| 亚洲精品第一国产综合野| 精品妇女一区二区三区下囿高潮 | 上海熟搡BBB搡BBBB| 国产超碰女人任你爽| 91在线视频观看| 亚洲国产大胸一区二区三区 | 亚洲第一精品久久| 亚洲精品7777777 | 欧美国产精品国产三级国产AⅤ下载| a天堂视频在线观看| 精品国产福利视频在线观看| 中文字幕乱码视频32| 久久久久国产视频| 久久99er精品国产首页| 欧美成人福利视频| 91资源新版在线天堂成人| 国产69精品麻豆| 一区三区在线专区在线| 久久精品国产免费观看| 91嫩草欧美久久久九九九| 亚洲影院丰满少妇中文字幕无码| 国产理论视频在线观看| 少妇伦子伦精品无吗| 丁香花在线高清视频完整版观看| 99久久免费国产精品6| 巨大乳の揉んで乳榨り男女男| 尹人香蕉久久99天天拍久女久| 久久99精品久久久久久HB无码 | 亚洲一区二区三区黄色| 国产综合一区在线观看97| 精品高潮白浆喷水| 丰满老熟女一级AA片色欲| 永久免费不卡在线观看黄网站| 久久久精品岩沢美穗| 扒开粉嫩的小缝喷白浆| 国产精品扒开腿做爽爽| 日韩特黄一级片一区二区三区| 亚洲日韩欧美视频| 国产+日本+欧美在线观看| 天天综合色天天综合色h| 国产麻豆91精品三级站| 成人欧美一区二区三区在线| 国产美女直播亚洲一区久久| 7777影视大全免费追剧小别离| 国产一区二区精品久久| 中文字幕一区二区三区乱码图片| 国产高清视频在线播放www色 | 午夜福利理论片高清在线观看| 人妻丰满熟妇岳AV无码区HD| 国产免费观看高清电视剧| 欧美黑人一区二区| 在线观看日韩欧美综合黄片| 亚洲精品一区三区三区在线观看| 无码人妻精品中文字幕不卡| 国产真人真事毛片| 亚洲色精品三区二区一区| 日本护士xxxxhd少妇| 日本精品一卡二卡三卡四卡视| 熟女服务区免费一区二区三区| 91精品国产综合久久久久| 国产精品久久久久久久久裸体 | 青青色国产手机在线观看| 成人乱码一区二区三区四区| 国产成人精品无缓存在线播放| 丰满少妇高潮惨叫久久久| 992tv成人国产福利在线观看| 伦利理午夜理论片| 久久久久青草线蕉综合超碰| 欧美日韩免费高清| 精品不卡一区中文字幕| 日韩精品区一区二区三vr| 中文字幕av网页观看日韩| 国产乱女淫av麻豆国产| 最近中文字幕完整版免费视频| 亚洲一区二区美女在线观看 | 麻豆国产网站入口| 亚洲中文字幕阿阿视频在线| 色欲综合久久中文字幕网| 国产激情一区二区三区小说| 精品欧美高清视频在线观看| 熟妇人妻一区二区三区四区 | 8848在线播放免费观看电视剧| 国产92成人精品视频免费| 久久丫精品国产亚洲AV| 香蕉久久久久久久AV网站| 又色又爽又黄的免费网站aa| 少妇精品偷拍高潮少妇小说| 国产尤物精品自在拍视频首页| 蜜桃人妻无码AV天堂二区| 日韩欧美精品一区| 神马视频在线观看亚洲福利| 亚洲精品无码久久久久久久| 国产亚洲又爽ⅴa在线天堂| 亚洲精品乱码久久久久久日本| 99re在线观看视频在线观| 成人在线免费高清视频| 国产成人av一区二区三区在线观看 | 国产精品一区二区三区九一麻豆| 中文字幕+媚药+日韩精品| www+制服丝袜+美女| 天堂在线中文网www| 国产高清精品久久久久久久| 午夜伦4480yy私人影院久久| 无码中文字幕日韩专区视频| 亚洲+在线+国产| 日韩人妻无码精品系列专区 | 午夜免费理论片A无码 | 18+av在线观看| 夜夜嗨av一区二区三区四季av| 人人鲁人人莫一区二区三区| 久久婷婷色综合老司机| 26uuu久久噜噜噜噜| 国产欧美亚洲首页| 亚洲欧美不卡高清在线| 色偷偷尼玛图亚洲综合| 国产成人综合久久精品推| 国产美女无套爽到高潮视频| 亚洲欧美激情五月在线观看| 影音先锋熟女人妻| 国产高潮女主播视频一区| 青椒国产97在线熟女| 扒开女人内裤猛进猛出流出白液 | 无码人妻丰满熟妇区网站| 18+sexvideos| 国产精品久久免费成年大片| 最新精品国产av片国产| 日韩精品人妻系列无码专区免费 | 99re6热在线精品视频播放| 人妻无码专区一区二区三区| 日日噜噜夜夜狠狠久久无码区| YY4480青苹果乐园免费播放电视剧| 成人在线免费高清视频| 国产精品入口久久| vvvv99日韩精品亚洲| 亚洲精品在线兔费观看视频| 一二三四日本中文在线| 亚洲欧洲免费黄色视频| 久久久国产精华液999999| 国产精品毛片一区二区| 高清国产午夜精品久久久久久| 精品福利一区二区| 九九影院在线观看免费最新电视剧| 免费看又色又爽又黄的国产| 男人天堂视频网站| 国产在线看片免费观看| 在线观看免费人成视频色| 最新国产激情视频在线观看| 日韩裸体人体欣赏pics | 精品国偷自产在线视频99| 9久久国产精品免费视频| 乱色国内精品视频在线| 国产+日韩+在线高清| 色欲蜜桃av无码中文字幕| 天堂av无码av一区二区三区| 亚洲av人人夜夜澡人人| 国产精品v欧美精品v日韩精品v| 99国产精品免费播放| 精品伊人久久久99热这里只| 国产+欧美+精品| 美女啊啊啊在线观看国产| 中文字幕不卡视频| 99国内视频免费在线观看| 茄子视频ios在线观看| 久久久91精品国产一区二区精品 | 精品国产av色欲果冻传媒| 欧美经典影片视频欧美一级网站| 青娱乐精品视频在线观看| 中文字幕av在线播放| www日韩avcom| av无码精品一区二区三区三级| 色一情一区二区三区四区+国产| 亚洲永久网址在线观看| 最新国产精品拍自在线观看| 国产亚洲在线观看| 日韩欧美成人精品一区二区三区| 国产精品人人妻人人爽人人牛| 久久久久午夜免费福利视频| 国产一卡2卡3卡四卡精品国色无边| 久久国产精品萌白酱免费| 国产又爽又黄又舒服的视频| 91免费国产高清视频| 欧洲精品色在线视频看看| 国产无套抽出白浆来| 久久精品麻豆一区二区三区美女| 国产女主播精品大秀系列| 久久精品这里热有精品| 精品国产不卡一区二区三区| 在线观看国产视频| 91女人18片女毛片60分钟| 美女高潮穿丝袜久久国产精品| 日本一区二区三区视频在线观看| 高清日韩精品一在线观看视频| 国产又黄又大视频| 中文字幕免费播放| 免费+五码+国产| 天天狠天天天天透在线| 干淫语对白骚妇视频| 日韩三级国产三级| 亚洲人成在线播放网站| 成人免费精品网站在线观看影片| 国产在线视频一区二区三区| 六月丁香五月激情综合| 交专区videossex| 韩国n号房视频+在线观看| 亚洲一区二区三区无码中文字幕| 狂躁欧美肥臀大BBBB| 国产色综合天天综合网| 国产精品美女乱子伦高| 国产又色又爽无遮挡免费动态图| 91亚洲美女在线视频观看| 国产又色又爽又黄的网站在线 | 天天狠天天天天透在线| 日本国产一区二区三区| 国产精品+丝袜+制服| 视频网站菠萝视频| 網友分享色婷婷色99国产综合精品心得| 麻豆国产丝袜白领秘书在线观看| 国产精品久久久精品影院| av中文字幕+潮喷+在线观看| 国产精品8888| 国产精品久久久久久超碰| 国产乱公伦媳在线播放| 成人黄色手机在线| 亚洲国产欧美中文手机在线| 99久久亚洲综合精品成人网| 亚洲午夜久久久久久国产精品| aa亚洲永久免费精品免费| 亚洲+国产+日本视频| 一本一本久久a久久精品综合不卡 日本在线一区二区三区欧美 | 伊人久久综合精品无码AV专区| 中文字幕乱码中文ktv| 欧美日韩亚洲中文字幕三| 激情无码人妻又粗又大中国人| 欧美日韩国产在线人成| JIZZJIZZ亚洲无乱码| 日韩+成人+自拍| 2021少妇久久久久久久久久 | 国产69精品久久久久熟女| 国产日韩欧美不卡在线二区| 亚洲欧美精品久久久久| 在线观看日本午夜高清美女| 亚洲又黑又粗又硬又爽视频| 综合图区亚洲欧美另类图片| 国产精品中文字幕日韩精品| 欧美aaaa视频| 少妇精品偷拍高潮少妇小说| 一点不卡v中文字幕在线| 2021国产精品午夜久久| 久久久久国产精品亚洲欧美| 中文字幕日韩三级| 中文人妻av久久人妻水密桃| 精品女同一区二区三区免费站| 真人做爰a片免费观看茄子视频| 可以看国产精品视频的网站| 亚洲一区二区久久久| 国产色99精品9i| 黄色一区二区三区在线观看| 东京热大輪姦多人1311| 先锋+视频+国产精品| 亚洲中文av字幕在线观看| luna精品videossex| 二个人看的www视频中文字幕| 国产成人免费一区二区三区| 免费人成视频网站在线下载| 久久aⅴ人妻少妇嫩草影院| 国产微拍精品一区| 亚洲+日本+专区| 国产亚洲精品福利在线无卡| 懂色av蜜臀av粉嫩av分享吧最新章节| 国产女人18毛片水18精品软件| 国产一区精品va在线播放| 欧美日韩精品成人网视频| 国产又黄无遮挡在线观看| 国产一区二区三区免费高清在线播放| 亚洲AV综合A色AV中文| 国产福利专区视频在线播放 | 5g影视+国产+日韩| 国产欧美日韩美女精品一区 | 日本三级带日本三级带黄| 国内精品伊人久久久久影院麻豆| 国产精品一卡2卡三卡4卡 | 久一蜜臀av亚洲一区| 91探花足浴店少妇在线| 美女网站免费福利视频| 精品国产乱子伦一区二区三区最新章节 | 日韩精品无码一二区久乐网| 欧美精品一区二区三区蜜桃臀 | 国产一区二区在线观看视频免费| 亚洲无AV在线中文字幕| 91一区二区国产精华液| 久久大香香蕉国产免费网vrr| 最新黄色网址在线观看| 九九影院在线观看免费最新电视剧| 免费人成视频19674不收费| 亚洲精品第一国产综合野| 国产成人主播在线视频看看| 国产美女在线观看| 久久亚洲精品成人无码网站| 国产三级在线免费观看| 欧美日韩一区二区三区妖精| 国产精品视频在视频| 国产综合一区在线观看97| 国产精品青草综合久久久久99| 国产免费网站在线观看 | 中字幕一区二区三区乱码| 亚洲精品456在线观看第一页| 亚洲精品无码成人网站| 天堂av一区二区| 337P粉嫩大胆噜噜噜55569| 国产对白叫床清晰在线播放图片| 欧美日韩国产欧美日美国产精品| 手机av在线不卡| 日本一区二区三区四区在线 | 免费黄色片一区二区三区| 婷婷久久久综合一区二区三区 | 98在线视频噜噜噜国产 | 久9久9精品视频在线观看| 欧美成aⅴ人高清免费观看| 菲儿+激情+影音先锋| 网友自拍+偷窥+国产| wwwcom日本| 久久机热在线国产视频手机| 蜜桃传媒人版在线观看免费| 成人做爰黄A片免费看陈冠希 | 国产高潮在线观看www| 亚洲精品国产精品乱码在线观看| 伊人久久大香线蕉亚洲五月天| 亚洲国产精品久久久久爰| 国产在线观看免费全集电视剧网站| 国产成人精品亚洲一区二区麻豆| 国产精品亚洲精品日韩动图| 警花av一区二区三区| 91精品国产麻豆久久久久久| 国产黄在线观看免费观看不卡| 久久精品国产久精国产思思!| 在线国产一区二区| 亚洲人成网址在线播放 | 精品久久久久久无码中文字幕漫画| 日韩精品一区二区三区+在线观看| 亚洲乱码国产乱码精品精软件| 99精品视频免费版的特色功能| 久一蜜臀av亚洲一区| 国产麻豆亚洲欧美高清一区二区| 国产美女91呻吟求| 日韩美女免费线视频| japan丰满人妻videoshd高清| 日韩欧美亚洲综合久久影院| 夫妻高潮淫语对白视频| 人妻中文字系列无码专区 | 可以在线观看免费av的网站| 99国产精品久久久久老师| 亚洲欧美日韩人成在线播放| 一个人在线观看国产精品www | 日韩av不卡一区| 久久中文字幕乱码久久午夜| 亚洲免费观看在线视频| av在线直播一区二区三区| 久久精品国产亚洲av桃花av| 国产suv精品一区二区6| 老司机成人精品视频在线观看| 亚洲欧洲一区二区福利片| 麻豆人妻换人妻好紧| 日本haaeX孰妇乱子高潮| 精品国产鲁一鲁一区二区三区| 欧美一区二区在线播放| 欧美日韩国产中文| 青草av.久久免费一区| 欧美另类一区二区| AV天堂无码资源网| 亚洲综合五月天婷婷丁香| 亚洲高清av在线| 韩国三级欧美三级国产三级| 久久99精品久久久久久清纯| 国产精品黄色av| 亚洲精品v欧洲精品v日韩精品| 国模大尺度福利视频在线| 成人一区二区三区国产精品| 91精品成人免费国产片| 东京热大輪姦多人1311| 日本亲子乱子伦xxxx60岁| 日韩国产欧美综合| 午夜理论欧美理论片| 亚洲国产欧美日本视频| 台湾av+在线播放| 52熟女露脸国语对白视频| 国产人妻人伦AV片三A级做爰| 骚虎视频在线观看| 久久精品农村毛片| 日本无码一区二区三三| 亚洲欧美韩国日本在线一区二区| 天天狠天天添日日拍捆绑调教| 成人午夜视频在线观看| 五月激情婷婷综合| 精品国产乱码一区二区三区小黄书 | 国产美女极度色诱视频www| 色狠狠久久aa北条麻妃| 极品少妇被后入内射视| 日韩中文字幕视频手机在线秒播| 精品无人乱码一区二区三区的特点| 中文字幕国产精品日韩精品动漫| 久久久国产免费观看视频| 天堂www天堂在线资源网| 国产成人精品一区二三区| 成人美女免费网站视频| 躁老太老太騷bbbb| 青青青爽视频在线观看| 日韩三级成人av在线网| √资源天堂中文在线| 熟女老阿V8888AV| 日本美女直播一区二区三区| 欧美丰满熟妇xxxxx| 亚洲国产日韩欧美综合另类bd| 天堂а√中文最新版在线| 日韩成人免费视频| 久久久久久综合网天天| 在线看片免费人成视频播| 国产成人一区二区三区在线播放 | 又大又粗又硬又爽黄毛少妇| 亚洲国产精品自在拍在线播放蜜臀| 亚洲熟妇av一区二区三区宅男| 日韩三级视频在线观看| 中文字幕亚洲欧美在线观看| av在线国产精品中文字幕| 日韩精品区一区二区三vr| 韩国n号房视频+在线观看| 亚洲日韩一区二区一无码| y111111111免费观看电视| 日韩国产亚洲一区二区三区| 鲁大师日韩MV在线观看| 亚洲精品一区二区三区四区乱码| 野外少妇被弄到喷水在线观看 | 免费看又色又爽又黄的国产| 国产精品成人一区二区三区| 亚洲视频欧美视频中文字幕| www国产国人免费观看视频| 亚洲女同精品一区二区| 丰满成熟熟妇乱又伦精品| aaa午夜级特黄日本大片| 男人激烈吮乳吃奶视频免费| 无码人妻一区二区三区尽卡亚| 国产老师开裆丝袜喷水视频| 亚洲乱码精品一区二区三区国产| 一区二区不卡免费视频| 九九影院在线观看电视剧| 国内精品久久久久影视| 欧美亚洲国产精品第一页| 日韩+欧美+高潮| 国产成人久久精品亚洲小说| 国产精品久久久久久亚洲综合网| 国产97人人超碰cao蜜臀| 337p日本欧洲亚洲大胆精蜜臀| 18+深夜福利+日韩毛片| 美丽的小蜜桃《美剧》| 你懂的国产高清在线播放视频| 国产精品尤物乱码一区二区| 一级黄色大片免费观看| 国产精品久久久人人看人人| 亚洲精品制服丝袜四区| 精品国产美女www爽爽爽| 日本69精品久久久久999小说| 欧美99热这里都是精品| bt天堂在线bt网| 色噜噜亚洲男人的天堂| 韩国巜干柴烈火〉床戏| 影视av久久久噜噜噜噜噜三级 | 亚洲精品久久久久久蜜桃| 日本一区二区最黄最色视频| 日本少妇中文一区在线激情| 肉欲+中文字幕+迅雷| 欧美成人看片一区二区| 69精品国产福久久久久久| 国产精品69久久久久不卡| 4k岛国精品午夜高清在线观看| 成年人午夜免费视频| 国产成人精品综合| 国产日产韩国精品视频| 成人欧美一区二区三区在线观看| 国产手机在线视频| 婷婷丁香五月激情综合 | 国产乱xxxxx978国语对白| 干淫语对白骚妇视频| 天天爽夜夜爽夜夜爽精品视频| av影片在线观看| 车上拨开岳裙子猛进入| 一边摸一边抽搐一进一出口述| 日本高清在线观看视频www | 18+成人在线观看| 天天av天天爽无码中文| 亚洲综合日韩久久成人av| 亚洲国产视频精品一区二区| 9·1免费观看完整版高清下载| 中文字幕亚洲一区视频在线观看| 亚洲国产精品久久又爽av| 99re视频在线| 国产一区精品视频| 无码色情巜肉欲办公室3| 亚洲国产精品s8在线观看| 午夜亚洲国产理论片二级港台二级| 国产欧美日韩一区二区刘玥| 特级特黄AAAAAAAA片无锁| 日本中文字幕在线不卡视频一区| 人妻仑乱少妇a级毛片| 精品视频在线观看一区二区| 亚洲hdmi高清线| 精品国产一区二区三区免费| 91久久国产精品视频| 国内精品麻豆美女在线播放视频 | 久久精品国产免费观看| 综合激情久久综合激情| 亚洲欧美日韩国产成人精品| 日本高清在线www3344| 91绿帽黑人系列一区| 亚洲成人手机在线| 国产伦精一品二品三品app| 人妻ⅰapanfreehd人妻| 中文字幕丰满乱孑伦无码专区| 国产最爽乱淫视频国语对白| 久久天天躁狠狠躁夜夜2o2o| 中文字字幕在线中文乱| 97久久超碰精品视觉盛宴| 一本大道AV伊人久久综合| 亚洲免费网站观看视频| 696息子精品一区| 国产高清av免费在线观看| 国产亚洲一卡2卡3卡4卡网站 | 特级西西444WWS高清视频 | 日本黄色视频一区二区免费| 精品视频在线免费观看网址| 播放日韩美女免费毛片视频| 天美麻花果冻视频大全英文版| 97青草超碰久久国内精品91| 偷拍+剧情+影音先锋| 精品国产一区二区av麻豆| 久久精品国产亚洲av桃花av | gogogo高清在线观看免费视频| 视频+国产+免费| 超碰97国产精品人人cao| 亚洲精品国产中文字幕在线| 欧美激情精品久久久久久多人| 伊人久久综合精品无码AV专区| 日韩a∨精品日韩在线观看| 国产suv精品一区二区四区三区| 国产精品毛片一区二区| 精品欧美在线观看视频二区| 亚洲国产精品自在线一区二区| 丰滿老熟婦HD六十| 韩国巜干柴烈火〉床戏| 茄子av在线观看| 欧美日本三级少妇三级久久| 国产+精品+日韩| 国产日韩欧美中文另类| 欧美成人手机视频| 全球成人中文在线| 国产一区二区在线视频观看| 偷拍东北熟女乱xxxxx| 国产精品九九九久久综合| 亚洲国产成人综合精品| 视频一区视频二区制服丝袜| 国产精品久久久91| 久久精品国产亚洲av麻豆尤物| 91日韩精品久久久久身材苗条| 91丨九色丨蝌蚪丰满| 国产明星精品一区二区刘亦菲| 男人天堂视频网站| 色噜噜www亚洲男人天堂| 91精品福利在线观看| 9九色桋品熟女内射| 秋霞特色aa大片| 国产主播一区二区不卡在线观看| 日本二区三区黄色视频网站| 午夜精品久久久久久久久久| 久久久久久久久久久91| 老汉tv永久视频福利在线观看 | 久久免费午夜福利院| 国产精品成人亚洲一区二区| 中文字幕av一区中文字幕天堂 | 国产精品jk白丝蜜臀av小说| 国产成人在线视频资源站 | 日韩午夜一区二区在线精品三级伦理| 狠狠躁夜夜躁人人爽天天天天97| 91porny首页入口| 久蜜av色av熟女一区| 国产+日韩+欧美精品| 亚洲一区二区免费在线观看| 500部大龄熟乱4K视频| 人妻无码久久精品人妻 | 最近最新的免费中文字幕| 青青国产香蕉视频在线观看 | 国产99久久精品一区二区| 无码专区人妻系列日韩精品少妇| 无套内射波多野结衣| 7799国产精品久久久久| 欧美视频网站www色| 亚欧洲在线视频免费观看| 91亚洲狠狠婷婷综合久久久| 伊人久久大香线蕉综合影院首页| 久久99热只有频精品6狠狠| 白嫩少妇各种bbwbbw| 女人被狂躁到高潮喷水| 西西4444www大胆高清图片| 办公室制服丝祙在线播放 | 国产乱码一区二区三视频| 成人孕妇专区做爰高潮| 久久一本加勒比波多野结衣| 综合国产免费成人在线视频| 欧美三日本三级三级在线播放| 黄网在线免费观看| 麻花传媒mv一二三区别在哪里看| 香蕉丝瓜草莓樱桃草莓榴莲污| 夜夜高潮夜夜爽精品欧美做爰| 亚洲一区二区影视| 妺妺窝色77777777野| 国产在线视频一区二区三区| 99国产超薄肉色丝袜交足的后果| 午夜福利理论片高清在线观看| 少妇无码av无码去区钱| 久久婷婷五月综合色精品| 992成人做爰视频| 午夜肉伦伦影院九七影网| 国产美女视频一区二区三区| 欧美一区二区三区四区在线| 国产亚洲精品久久午夜玫瑰园| 日本免费一区二区三区中文字幕| 精品国产一区二区三区免费| 18+sexporn| 中文字幕永久视频| 国产精品久久一区二区三区动 | 日韩中文字幕国产| 欧美国产日韩在线观看视频一区| 国产免费三级现现频在线观看| 亚洲精品无码播放。| 天天综合天天做天天综合| 亚洲乱码中文字幕综合234| 亚洲精品一区久久久久| 国产视频又黄又粗又爽又猛| 国产黄片视频主播在线观看| 亚洲永久网址在线观看| 国产一区二区三区四区| 国产精品永久久久久久久| 神马影院手机在线电视剧传家电视剧 | 国产区又黄又硬高潮的视频| 成人在线观看你懂的| 国产激情99精品久久一区二区| 91偷自产一区二区三区精| 欧美高清美女视频一区二区三区 | 八戒八戒在线www视频中文| 国产一区二区四区在线观看| 一个人看的视频+www+动漫| 夜夜爽夜夜叫夜夜高潮漏水| 成人免费视频一区| 久久91精品国产91久久小草| 手机在线视频国产第二页| 人成午夜免费视频在线观看| 久青草国产在线视频_久青草免 | 破了亲妺妺的处免费视频国产| 亚洲一区二区三区无码中文字幕| 国内外免费激情视频| 成人日韩欧美视频在线观看| 国产理论视频在线观看| 久久亚洲精品无码观看不| 日本成年x片免费观看| 国产女人高潮视频在线观看| 中文字幕在线熟女人妻| 国产精品露脸视频| 18+动漫视频网站| 河南富婆淫语露脸对白视频| KTV女技师啪啪无套内谢| 亚洲制服丝袜一区二区三区| 国产亲子乱a片免费视频| brazzers精品成人一区| 国产又粗又猛又爽又黄的a视频| 无码人妻精品中文字幕不卡| 亚洲va在线va天堂xx| 欧美天堂一区二区三区| 97超级精品综合网| 丰满女房东的奶真大| 男人天堂亚洲天堂视频在线观看| awww在线天堂bd资源在线| 亚洲美女+自拍+色| 亚洲人视频在线观看视频在线| a亚洲va欧美va国产综合| 新大地资源在线影视观看| 99久久无码一区人妻a片蜜| 中文资源在线天堂库8| 在线永久免费观看的毛片| 日本欧美大码a在线观看| 国产成人精品18禁三区| 亚洲综合色区另类小说| 亚洲国产成人精品女人久久久逼| 亚洲伊人久久大香线蕉综合图片| 日日摸日日添日日透| 国产欧美精品一区二区在线播放| 国产老师开裆丝袜喷水视频| 一本大道久久精品懂色aⅴ| 亚洲911精品成人18网站| 日日碰狠狠添天天爽五月婷| 国产又大又猛又粗视频在线观看 | 多P无码视频网页| 黄色成人在线视频| 中文字幕免费播放| 亚洲熟妇AV日韩熟妇在线| 男人的ji8怼进骚妇B里| 精品人人妻人人爽人人牛牛| 男女污在线亚洲午夜视频| 在线观看视频国产免费网站观看| 日韩一区二区三区国产| 迅雷+无码+椎名| 伊人久久精品无码麻豆一区| 久久中文免费视频| 欧美a中文字幕在线播放| 日韩国产高清在线| 日本无乱码高清在线观看| jav+中文字幕| 国产精品久久久久久久模特人妻 | 亚洲婷婷天堂在线综合| 国产+日韩+在线高清| 无码人妻一区二区三区免费n鬼逝| 中文字幕+综合+在线| 欧美+日韩+免费| 内射囯产旡码丰满少妇| 女同+影音先锋+在线| 亚洲AV综合在线| 艳妇臀荡乳欲伦交换av1| 国产亚洲第一精品好爽视频| 免费午夜无码18禁无码影院| 欧美日韩国产成人| 国产精品日韩欧美亚洲另类| xxxxhd欧美| 91香蕉国产线观看免费永久 | 国产精品午夜自在在线精品| 精品久久久久久中文墓无码| 成人国产精品免费网站| 黄片久久久久久久黄片久久| 精品人妻伦一二三久久18禁| 亚洲精品一区二区三区不| 亚洲乱码国产乱码精品精小说 | 99热门精品一区二区三区无码| 黄色片网站在线观看| 国产日韩欧美一区| 婷婷色九月综合激情丁香| 国产在线看老王影院入口2021| 精品人妻毛片久久久久久| 在线亚洲专区高清中文字幕| 试镜床戏(巨肉高h)| 成人H动漫精品一区二区无码软件| 058被黑人中出| 国产日韩欧美91| 综合色区无码一区| 五月激情婷婷综合| 国产视频一区二区在线播放| 国产精品视频来自看久久久久| 久久久综合九色综合88| 在线观看精品日中文字幕| 无码人妻精品一区二区蜜桃网站| 青草av久久免费一区| 亚洲熟女少妇精品| 国产精品好好热av在线观看 | 在线观看国产成人尤物av天堂| 黄色av网址在线| 一区二区不卡免费视频| 国产欧美日韩另类精彩视频| 秋霞特色aa大片| 欧美午夜福利理论片久久| 国产亚洲精品久久久久久小舞| 亚洲一区二区三区日韩在线视频| 韩国精品一区二区三区在线观看 | 女人被狂c到高潮视频网站| 久久精品国产字幕高潮| 色拍自拍亚洲综合图区| 国产女生高潮视频免费网站| 91av精品一区二区三区| 国产日韩av在线| 狠狠躁夜夜躁人人爽天天不卡| 国产一区二区三区四区| 综合久久久一区二区三区| 巜饥渴的少妇hd高清| 亚洲乱码日产精品bd在观看| 97caoporn国产免费人人| 久久精品无码一区二区软件| 久久久久国产精品免费免费搜索| 亚洲乱码精品一区二区三区国产| 久久久久亚洲av无码专| 草色噜噜噜av在线观看| 亚洲精品国产熟女久久久| 西西人体44WWW高清大胆| 国产精品欧美精品日韩专区一乛方| 成人免费淫片aa视频免费| 青青草无码伊人久久| 懂色av色吟av夜夜嗨| aa亚洲永久免费精品免费| 中文字幕av九五月天| 午夜欧美福利视频一区二区| 欧美xxxx做受欧美1314| 99精品国产综合久久久久| 精品自拍亚洲一区在线| 成年网站在线在免费线播放欧美| 91九色porny首页最多播放| 久久成人人人人精品欧| 午夜视频在线观看一区| 欧美+国产+韩国| 国产精品一区二av18款| 亚洲欧洲国产成人综合在线| 日韩精品一区二区Av在线| 麻豆天天躁天天揉揉av| 羞羞色院91精品网站| 久久亚洲色一区二区三区| 亚洲AⅤ无码国精品中文字慕| 一级二级三级亚洲欧美大片 | 日韩精品一区二区在线观看网址| 国产亚洲欧美专区精品| 少妇无码一区二区三区| 天天摸天天摸色综合舒服网| 亚洲国产欧美在线综合其他| 中文字幕国产精品日韩精品动漫| 午夜成午夜成年片在线观看| 精品99一卡2卡三卡4卡| 亚洲日韩精品看片无码| 无码人妻一区二区三区免费手机| 又大又紧又粉嫩18p少妇| 亚洲+自拍+高潮| 在线播放真实国产乱子伦 | 可以免费看日本黄色的网站| 免费+精品+在线看| 2020中文字字幕在线不卡| 精品人妻系列乱码一区二区三区| 亚洲最大视频在线免费观看| 亚洲国产麻豆精品系列av| www.免费在线不卡av| 亚洲免费视频在线观看| 最新版天堂中文在线| 高清日韩精品一在线观看视频| 肉大榛一进一出免费视频| 亚洲一区二区三区乱码av麻逗| 一本大道东京热无码aⅴ| 香蕉视频在线观看黄| 国产99久久久国产精品潘金| 日本+欧美+国产| 又粗又长又硬义又黄又爽| 亚洲高清在线观看一区二区三区| 情人伊人久久综合亚洲| 亚洲中文av字幕在线观看| 偷自拍亚洲综合在线| 亚洲美女中字幕视频在线观看| 国产欧美日韩精品一区二区图片| 久久综合久久自在自线精品自| 国产一区+欧美+综合| 51视频国产精品一区二区| 国产在线观看www污污污| 久久婷婷五月综合色丁香花 | 96亚洲精品久久久蜜桃| 欧美日韩亚洲一区二区三区一| 国产91精品一区二区麻豆观看| 国产成人精品自产拍在线观看| 久久精品国产亚洲av高清蜜臀| 久久久久午夜精品色av| 丰满人妻被黑人连续中出| 伊人久久精品无码av一区| 全程露脸X88AV| 欧美日韩免费观看一区=区三区| 国产乱色国产精品免费视频| 亚洲欧美精品伊人久久| 欧美+日本+国产| 国产一区二区三区免费观看潘金莲 | av观看免费在线| 国产福利高颜值在线观看| 高清有码国产一区二区| 日韩特级无码av中文字幕| 妇女bbbb插插插视频| 亚洲三区在线观看无套内射| 日韩精品无码一区二区三区久久久| 2021久久超碰国产精品最新| 精品国产一区二区三区日日嗨| 国产+日韩+欧美视频| 亚洲精品成人国产黄瓜视频| 天堂av无码大芭蕉伊人av孕妇| 日本免费无遮挡毛片的意义| 中文字幕一区二区三区久久网站 | 亚洲中文字幕在线第二页| 国产精品久久久久久婷婷| ⅹⅹⅹ黄色片视频| 最近在线更新8中文字幕免费| 国产乱子伦无套一区二区三区| 久久国产精品午夜福利影视 | 亚洲国产精品久久久毛片| 日本高清在线观看视频www| 天天干天天干天天干| YY4480青苹果乐园免费播放电视剧 | 偷柏自拍亚洲综合在线| 警花av一区二区三区| 99久久夜色精品国产网站| 麻豆+视频+免费| 日韩欧美中文字幕在线三区| 玩两个丰满老熟女久久网| 柳州莫菁菁av一区| 国产+剧情+喷水| 丰满少妇内射一区| 国产女同一区二区在线观看| 少妇一级淫片免费视频| 久久国产精品—国产精品| 亚洲av乱码国产精品观看麻豆| 欧美成妇人吹潮在线播放+下载| 在线观看免费www| 久久久精品午夜国产免费| 亚洲+日韩一区二区| 在线观看的av网址| 久久久综合九色综合88| 欧美美女免费国产一区二区| 成人精品视频网站| 欧美一级午夜福利免费区| 亚洲精品无码久久千人斩探花| 国产精品黑色丝袜在线观看| 视频久re精品在线观看| 亚洲无人区码suv| 中国少妇无码专区| 亚洲免费视频一区二区| 先锋影音男人av资源| 熟妇乱子伦海角社区 | 亚洲视频一区二区在线免费观看 | 一本大道久久a久久精品综合1| 巜波多野结衣私人教师| 中文字幕日韩精品久久| 亚洲国产精品尤物yw在线观看| 亚洲日韩一区二区三区| 99热这里只有精品九九9| 国产精品久久久天天影视香蕉| 久久精品国产精品国产精品黄| 看全色黄大色黄大片爽一次| 日韩精品无码一区二区三区免费| 国产av综合第1页| 久久精品国产萌白酱一区二区| av观看免费在线| 国产va免费精品高清在线| 久久99国产综合精品免费99| 国内国产精品久久久亚洲w码| 玖玖资源站无码专区| 亚洲日本乱码一区二区三区| 精品国产成人亚洲午夜福利| 台湾av+在线播放| 国产乱码精品一区二区三区四川 | 精品一区二区三区四区视频观看| 啪啪网站免费观看无需下载| 黄网站色视频免费观看美女 | 久久久久久久久女人体| 18+免费+日韩毛片| 伊人狠狠色丁香婷婷综合| 老汉tv永久视频福利在线观看 | yy6080亚洲精品一区| 91九色在线视频| 国产精品69久久久久不卡| 影音先锋+人妻斩| 丰满少妇高潮久久三区| 日韩欧美国产一区二区在线播放| 99精品+麻豆+国产| 免费观看成年人网站| 久久99国产精品久久99果冻传媒新版本 | 97久久免费视频| 肉大榛一进一出免费视频| 亚洲熟妇AV日韩熟妇在线| 亚洲精品无码播放。| 免费在线观看一区| 国产又猛又粗又爽又黄91| 毛片在线免费播放| 亚洲国产99精品国自产拍| 98av精品一区二区三区| 国产亚洲精品a久久77777| 中文字幕+乱码+中文字幕av| 又粗又黑又大的吊av| 日韩一区免费视频| 亚洲国产成人在线视频| 亚洲精品一区二区三区四区高清| 99久久综合精品五月天| 男人和女人在床的app| 亚洲+视频+久久| 五月婷婷综合在线观看| 全黄久久久久a级全毛片| 97视频在线播放| 欧美不卡一卡二卡三卡| 天堂网www天堂资源网| 97人人爽人人澡人人精品| 午夜在线不卡精品国产| 另类图片+动漫+日韩| 国产+日产+视频| 日本中文字幕中出在线| 少妇人妻精品无码专区视频| 国产精品一区二区三区女同 | 中文字幕乱码熟女人妻水蜜桃| 成人免费视频大全| 欧美又粗又长又色又猛视频| 韩漫免费漫画在线观看方法| 国产美女午夜福利视频| 色狠狠一区二区三区熟女p| 成人乱码一区二区三区av66| 熟睡人妻被讨厌的公侵犯深田咏美| 亚洲男人天堂一区二区在线观看| 夜夜爽一区二区三区| 视频久re精品在线观看| 亚洲AV日韩AV永久无码网站| 肉丝美足丝袜一区二区三区四| 99国产精品久久久久久久久久| 精品国产91久久久| 国产成人精品免费久久久久| 欧美日韩不卡视频合集| 国精产品一区二区三区x88| 日韩中文字幕在线观看| 少妇又色又紧又爽又高潮| 国产精品视频来自看久久久久| 日韩欧美三级在线| 久久久久久久麻豆| 欧美国产又粗又长又爽视频 | 亚洲人成色在线观看| 婷婷五月六月激情综合色中文字幕| 欧美在线观看免费播放视频| 人妻中文在线一区二区三区| 18+国产+成人| 黄片久久久久久久黄片久久| 免费无码又爽又刺激动态图| 黑人巨大精品欧美视频一区| 一级国产特黄bbbbb| 在线永久免费观看的毛片| 一级做a爰片久久毛片高清流畅| 免费+国产+在线观看| 青青青国内视频在线观看软件| 欧美日韩亚洲tv不卡久久| 午夜视频在线在免费| 一本一道久久a久久精品| 3344国产永久在线观看视频| 国产一区二区狠干| 午夜久久久久久久| yjizz视频网| 国产+喷水+高潮| 91精品视频在线观看专区| 国产精品欧美一区二区三区不卡 | 久久中文字幕一区二区三区| 亚洲精品久久久久久无码色欲四季| maturetube乱熟| 国产色哟哟免费在线观看 | 伊人婷婷六月狠狠狠去| 精品在线观看一区| 亚洲成亚洲乱码一二三四区软件| 美女视频黄的全免费视频网站 | 又爽又色禁片1000视频免费看| 国产91在线观看丝袜| 亚洲AV无码久久精品色欲| 羞羞视频在线免费| 亚洲热久久国产经典视频| 亚洲乱码日产精品bd在观看| 亚洲va中文字幕不卡无码| 蜜臀精品国产高清在线观看| 一区二区三区欧美| 日本+视频+亚洲| 亚洲精品www久久久久久软件| 99久久国产综合一区二区| 成人+国产+欧美| 亚洲一区日韩在线| 中文字幕av一区二区三区| yy777777丰满少妇影院| 一边吃奶一边添p好爽故事| 中文字幕+中文字幕在线| 国产99久9在线视频传媒| 91在线精品亚洲一区二区免費資訊 | 无码人妻aⅴ一区二区三区玉蒲团| 女同亚洲一区二区无线码| 精品国产中文一区二区三区| 久草香蕉在线视频国产乱码精品一区二区三上 | 国产成人av亚洲一区二区| 亚洲欧洲中文日韩久久av乱码| 久热re这里精品视频在线6| 国产一区二区三区在线乱码| yy777777丰满少妇影院| 日韩欧美一级视频在线观看| 国产在线观看mv免费全集电视剧大全| 亚洲色成人网站www永久四虎| 亚洲人成精品久久久久桥| 免费人成在线观看网站免费观看| 大香蕉精品手机在线观看 | 橘梨纱连续高潮在线观看| 亚瑟女厕盗摄视频大全| 91丨九色丨蝌蚪丰满| 国产色A∨在线看精品| 粗壮挺进人妻水蜜桃成熟漫画| 在线观看免费高清视频大全追剧| 国产无人区码一码二码三mba | 四虎永久在线精品免费下载| 1024亚洲男人的天堂久久| 久久久国产精华液999999| 欧美日韩中文字幕久久久不卡| 夜夜高潮次次欢爽av女| 99精品国产综合久久久久| 国产亚洲人成网站观看| 成品片a免费入口麻豆| 中文字幕欧美亚洲视频免费| 欧美日一区二区三区| 国产无遮挡又黄又爽在线视频| 亚洲熟女av天堂| 日韩av免费在线看| 中文日产码2023天美| 欧美精品一区二区三区蜜桃臀| 少妇特黄A一区二区三区| 精品久久久久久久久久久久包黑料| 在线观看视频亚洲免费视频| 色综合久久久天天综合网| 亚洲综合五月天婷婷丁香| 中文字幕成人在线视频精品| 最近中文字幕在线视频8| 久久精品av一区二区三| 国产又黄又大视频| 亚洲欧美日产综合在线网| 18成人福利网站在线观看| 免费一区二区视频在线观看不卡 | 夜夜国自一区+1080P| 无码+磁力链接+下载| 午夜精品一区二区三区在线播放| 亚洲国产欧美一区二区三区丁香婷 | 国产精品成年片在线观看| 国产黄色片网站大全| 实拍国产永久免精品视频| 国产孕妇乱子伦精品免费观看| 欧美乱码精品一区二区| 久久人妻无码aⅴ毛片a片动图| 精品无人区麻豆乱码1区2区| 歪歪爽蜜臀av久久精品人人| 好看的生活大片在线观看| 好吊妞国产欧美日韩免费观看| 日本免费一级特黄⊙大片欧美| 亚洲欧美成人aⅴ在线| 国产视频一区二区在线免费观看 | 国产精品青草久久福利不卡 | 一区二区三区视频在线| 三级高清日本久久| 亚洲l码和欧洲m码的区别| 麻豆Chinese新婚XXX| 中文字幕永久免费| 中文字幕+乱码+无忧| 国产亚洲综合一区二区三区 | 亚洲自偷自拍另类12p| 成人国产精品久久久春色| 熟妇激情内射com| 国产精品一区二区三区肉骚| 久久天天躁狠狠躁夜夜AV| 好男人在线影院官网www| 国产精品1000夫妇激情啪| 黄色av网站免费观看| 亚洲ww44444在线观看| 国产精品熟女高潮精品| 久久婷婷五月综合成人d啪| 懂色av蜜臀av粉嫩av分享吧| 亚洲精品7777777 | 成人黄色免费观看| 【乱子伦】国产精品.| 6080午夜福利视频在线观看免费| 国产91精品久久久久久精华液| 久久久久久久国产精品免费| 国产农村一国产农村无码毛片 | 中文字幕a片视频一区二区| 亚洲国产福利成人一区| 丁香婷婷综合激情五月色| 亚洲AV高清无码| 久久国产福利播放| 中文日韩v日本国产| 天天在线精品视频一区二区| 成人做爰高潮片免费视频| 欧美最猛黑人xxxxx猛交| 91天堂一区二区三区四区中文 | 一区二区三区四区亚洲不卡| 99久久亚洲综合精品成人网| 亚洲乱码中文字幕| 亚洲视频在线免费观看一区二区 | 久久99国产精品久久99果冻传媒 | 国产精品久久久久一区二区国产| 久久亚洲色一区二区三区| 精品国产色综合久久| 久久99精品久久久久久HB无码| 成人做爰黄A片免费看三区蜜臀| 偷玩邻居醉酒人妻| 免费+高清+国产| 四虎影视永久无码精品| 先锋影音av最新资源| 黄色一级在线视频| 麻豆国产成人av高清在线观看| 99久久精品无免国产免费| 久久国产亚洲精品超碰热| 香蕉在线精品视频在线观看| 欧美在线观看一区二区三区| 日韩欧美国产另类久久久精品 | 北条麻妃99精品久久朝桐光| 少妇人妻综合久久中文字幕| 在线视频免费观看一区国产| 白嫩少妇各种bbwbbw| 亚洲中文字幕无码永久免弗| 国产黄片av一区二区三区四区| 亚洲综合区图片小说区| 国产美女www爽爽爽免费视频| 日韩欧美中文字幕在线视频| 日韩永久在线观看免费视频| 国产一区二区欧美在线观看| 亚洲熟妇AV一区二区三区| a毛片终身免费观看网站| 让少妇高潮无乱码高清在线观看| 日韩人妻无码一区二区三区综合| 日韩国产在线观看不卡免费| 日本在线a一区视频| 免费+精品+国产| 日韩精品一区二区三区中文| 99精品国产一区二区三区麻豆| 亚洲欧美制服另类国产二区 | 精品成人一区二区三区四区| 亚洲精品乱码久久久久久按摩| 51妺妺嘿嘿午夜成人A片| 丰满的熟妇岳中文字幕| 偷自拍亚洲综合在线| 国精产品乱码一区一区三区四区 | 女人床上高潮淫语HD| 国产免费人成视频在线观看| 18+真人视频网站| 国产又粗又长又爽又猛视频| 成人免费精品网站在线观看影片| 国产成人免费高清在线观看| 国产微拍精品一区| juliaann一区二区三区| 国产九色在线播放九色| 国产96精品久久久久久妇| 惠民福利国产卡二区三卡乱码 | 国产乡下三级全黄三级bd| 亚洲国产精品尤物yw在线观看| 8888888888免费观看在线nba| 国精产品乱码视频一区二区| 久久精品国产亚洲av码| 亚洲欧美激情另类图片小说| 精品久久亚洲中文不卡| 久久精品亚洲天堂| 午夜永久精品视频在线看| 久本草在线中文字幕亚洲欧美| 黄瓜视频在线观看| 97久久久精品综合88久久| 国语做受对白xxxxx在线| 亚洲av无码专区首页第一页| 国产日本欧美一区二区在线观看| 色悠久久久久综合网+香蕉| 午夜精品第一区第二区第三区 | 日韩亚洲国产中文字幕欧美| 中文字幕在线视频免费视频| 欧美乱子伦一区二区三区| 亚洲中文无码mv| 亚洲AV色欲色欲WWW| 好爽…又高潮了毛片| 天堂а√中文最新版地址在线| 色五月丁香五月综合五月4438| 亚洲国产人成一区二区精品区| 一亚洲区二区三区精品无码| 免费毛片在线看片免费丝瓜视频| 精品久久亚洲中文字幕| 北条麻妃精品99青青久久水牛影视| 国产乱子精品免费视观看| 国产精品青草综合久久久久99| 天天摸天天摸色综合舒服网| 国产精品点击进入在线影院高清| 亚洲人妻内射一区二区三区| 毛片黄色美女视频观看| 人妻ⅰapanfreehd人妻| 91传媒在线播放| 国产精品白丝美女免费在线观看 | 亚洲综合激情国产一区| 2021年国产精品午夜福利在线观看 | 国产激情з∠视频一区二区| 久久九九久精品国产| 久久精品国产首页国产欧美| 欧美精品久久久久久久久久久| 成人精品一区二区三区A片用毒蛇| 麻豆美女丝袜人妻中文| 手机av中文字幕| 国产一区高清视频在线观看| 亚洲+先锋影音+图片| 天堂视频在线观看一二三区| 狠狠躁天天躁综合网| 人妻中文字幕一区二区三区视频 | 久久久久青草线蕉综合超碰| 欧美日韩免费不卡激情在线视频 | www夜夜操com| 真实新婚偷拍Chinese| 黄色成人在线视频| 精品久久久久久中文字幕大豆网 | 欧美精品三级黄片| 嫩草嫩草嫩草嫩草嫩草| 欧美国产日韩第一页| 亚洲国产精品久久久久久久| 手机免费看片AV永久看片国产日韩| 熟妇人妻系列AV无码一区二区| 国产69精品久久久久9999不卡免费| 国产+日产+欧美在线观看| 午夜爽爽爽男女免费观看一区二区| 久久国产乱子精品免费女| 18+韩国美女主播| 亚洲国产综合av| 日韩Aⅴ黄日韩a影片| 国产成人+综合亚洲+天堂| 一本久久a久久精品综合夜| 亚洲国产精品不卡av在线| 国产成人精品一二三区| 亚洲国产中文字幕| 在线观看一区二区国产欧美| 欧美一区二区三区在线视频观看| 少妇毛片一区二区三区| 亚洲精品无码播放| 久久久精品国产精品国产网站| 九一麻花传剧mv在线看免费| 一区二区三区欧美| 4399午夜理伦免费播放大全| 在线播放极品尤物魔鬼身材| 视频一区视频二区制服丝袜| 一道本av免费不卡播放| 亚洲成熟女人一区二区三区| 亚洲国产成人在线视频| 原创婹农村熟女v88Av| 男人天堂视频在线观看| 欧美日韩二区三区| 97在线播放免费观看全集电视剧| 一级国产特黄bbbbb| www超碰97com| 国产av制服二区三区av系列| 日韩免费无码视频一区二区三区 | 日韩中文字幕免费| 四虎+网站+影院+网站| 国产+亚洲+制服| 亚洲熟妇av一区二区三区痴汉| 白嫩无码人妻丰满熟妇啪啪区百度| 亚洲综合一区和综合二区| 国产又色又爽无遮挡免费动态图| 欧美精品亚洲日韩aⅴ| 日韩+欧美+导航| 无码一区二区波多野播放搜索| 巨大乳の揉んで乳榨り男女男| 国产黑丝在线视频| 欧美精品久久久久久久久久 | 国内女人喷潮完整视频| 欧美成人a免费在线观看| 中文字字幕在线中文乱| 久久精品国产九九久久6| 国产成人精品自产拍在线观看| 亚洲欧美他妈的射| 中文字幕网视频一区在线观看 | 污污内射在线观看一区二区少妇| 免费+网站+国产| 99精品国产一区| 2021最新国产精品网站| 中文字幕丰满乱孑伦无码专区| 日韩三级一区二区三区| 重庆美女揉BBBB搡BBBB| 懂色av蜜臀av粉嫩av分享吧最新章节| 免费日韩av在线| 国产在线jyzzjyzz免费护士| 黄色网页在线观看| 337P粉嫩大胆噜噜噜55569| 在线aⅴ亚洲中文字幕| 51成人免费影院| 亚洲精品av中文字幕在线在线| 日韩区一区二区三区视频| 探花风韵犹存少妇88AV| 久成人免费精品xxx| 国产+高潮+免费视频| 亚洲精品国产精品国自产小说| 精工厂777免费观看电视剧| 国产一线天粉嫩馒头极品av| 337P粉嫩大胆噜噜噜55569| 欧美群交射精内射颜射潮喷| 热久久这里只有精品18| 久久中文字幕一區二區三區| 国产三级在线观看视频| 成年美女黄网色视频免费4399| 在线视频中文字幕一区二区三区 | 精品+国产+白浆| 欧美一级视频免费观看| 在线成人+欧美+一区二区三区 | 国产淫伦久久久久久久kkk| 国产哺乳奶水91在线播放| 爆乳喷奶水无码正在播放| 最新av偷拍av偷窥av网站| 乱色熟女一区二区| 夜夜摸日日躁欧美视频| 中文字幕国内自拍| 无码中字视频网址大全| 怡红院av一区二区三区| 无码+羽田桃子+番号| 亚洲乱码卡一卡二卡新区豆| 久久久噜噜噜久久熟女aa片| 国产欧美亚洲首页| 破了女学生小嫩苞A片| 91九色porny首页最多播放| 午夜免费无码福利视频麻豆| 四虎永久在线精品免费网站| 欧美精品欧美极品欧美激情| 亚洲情a成黄在线观看动| 蜜乳AV一区二区三区| 中文字幕+媚药+日韩精品| 国产亚洲在线观看| jzzijzzij日本成熟丰满| 18+免费+日韩毛片| 少妇一区二区三区在线视频| 欧美狠狠入鲁的视频| 欧美午夜精品久久久久久白云 | 美脚恋足癖一区二区三区| 日本人妻丰满熟妇久久久久久| 嗯啊嗯啊在线观看| 拍拍拍无挡免费视频| 色偷偷噜噜噜亚洲男人| 国产一区二区三区在线看麻豆| 人人澡人人爽夜欢视频| 国产精品美女乱子伦高| 亚洲欧美日韩在线观看一区二区三区 | av人人爽日日碰| 99久久久99久久91熟女| 免费在线观看视频a| 中文字幕在线永久视频2018| 9久久国产精品免费视频| 美足+丝袜+影音先锋| 欧美成人aaaa免费全部观看| 456视频在线观看| 国产亚洲午夜精品一区二区久久| 97色婷婷综合缴情在线播放| 中文字幕+乱码+中| 亚洲视频手机在线观看| 熟妇诱惑一区二区三区四区| 美女又爽又黄又免费网站| 狠狠噜天天噜日日噜无码| 99国产超薄肉色丝袜交足的后果| 日本三级中文字幕在线观看| 嫩草影院ncyy| 在办公室被c到高潮动态图| 日本精品一卡二卡三卡四卡视| 欧美日韩国产无线码一区| 午夜三级a三级三点在线观看| 国产成人av网站网址| 182在线观看视频| 国内精品视频一区二区三区| 日韩欧美中文字幕在线视频| 成全高清免费完整观看| 国产精品久久久久久久久潘金莲 | 亚洲国产综合av| 神马视频在线观看亚洲福利| 国产日韩欧美在线播放一区二区 | 91视频国产一区| 天堂av一区二区| 波多野结衣中文字幕一区二区三区| 无翼乌18禁全肉肉无遮挡彩色| 精品欧美激情精品一区| 国产主播一区二区不卡在线观看| 在线永久免费观看的毛片| 91亚洲乱码卡一卡二卡新区豆| 精品国产一区二区三区免费| 国产后入激情视频在线观看 | 天堂8中文在线最新版在线| 亚洲+自拍+高潮| 国产成人精品a视频一区| 蜜桃精品久久久久久久免费影院| 影音先锋+欧美+爆乳| 欧美成人福利视频| 伊人久久大香线蕉午夜av| 午夜理论片yy6080私人影院| 亚洲人av在线影院| 日本+超碰+专区| 国产视频xxxx| 亚洲欧美日韩视频一区二区| 婷婷色九月综合激情丁香| 虫虫漫画免费漫画弹窗入口| 午夜国产av新品一区二区| 日本卡2卡3卡4卡5卡精品视频| 玩两个丰满老熟女久久网| 国产人妖在线视频| 亚洲高清在线视频| 先锋影音+中文字幕| 国产直播一区视频免费观看 | 亚洲一区二区美女在线观看| 亚洲ⅴa欧美ⅴa人人爽久| 国产+激情+综合| 国产精品久久久人人看人人| 国产一三四2021不卡| 精品1区2区3区4区产品| 国产精品久久久久久不卡盗摄| 已婚少妇露脸日出白浆| 十八禁在线观看视频播放免费| 国产一区二区黑人欧美xxxx| 毛片视频在线免费观看| 天堂资源wwwav啪啪| 亚洲精品一二三区| 四虎影院在线观看免费| 在线观看免费高清视频大全追剧 | 18禁黄网站男男禁片免费观看| 日本丰满老熟妇乱子伦| 精品久久久久久国产免费| 亚洲永久网址在线观看 | 伊人久久大香线蕉综合色狠狠| AV不卡在线永久免费观看| 久久国产精品——国产精品| 好男人资源在线www免费| 一区视频在线播放| 国产在线精品一区二区三区不卡| 国产亚洲成人av| 亚洲欧美另类激情| 国产亚洲精品福利视频在线观看| 欧美日韩福利视频一区二区| 国产+高潮+白浆| 精品欧美亚洲一区国产高潮| 日韩欧美中文字幕在线播放| 亚洲偷自拍另类图片二区| 女人做爰高潮全黄| 婷久久狠狠一区二区三区 | 亚洲男同视频网站| 男人的天堂免费视频| 最好看的2019中文大全在线观看| 国产真实乱偷精品视频| 国产在线国偷精品产拍| 无码+磁力+日本| 婷婷丁香俺来也久久一区二区| 欧美黄色免费视频| 91这里都是精品久久久久| 国产+刺激+高潮| 999久久久久久久久6666| 久久久久久久岛国免费网站| 公共场合高潮(h)公交车| 国产精品毛片一区二区| 久久精品+中文字幕+有码| 蜜臀国产精品久久久久久| www久久久久久久久| 朋友的妻子+先锋影音| 影音先锋熟女少妇av资源| 国产+高潮+免费| 国产成人午夜福利在线观看| 国产孕妇乱子伦精品免费观看| 天堂在线网www在线网| 五月激情婷婷综合| 成人国产精品福利| 成人精品一区二区三区网站| 国产精品不卡av在线播放| 婷婷激情偷拍在线| 欧美成人精品三级网站视频| 国产精品久久久免费| 99精产国品一二三产品香蕉| 91精品久久久久亚洲国产| 337p日本欧洲噜噜噜噜| 日韩成人大屁股内射喷水| 国产老头和老太xxxx视频| 伊人久久大香线蕉av超碰演员 | 一本无码人妻在中文字幕| 中文字幕制服丝袜第57页| 久久精品国产99精品国产2021| 黑人重囗味sM群虐| 国产精品二区一区二区aⅴ污介绍| 麻豆日产精品卡2卡3卡4卡5卡 | 自慰系列无码专区| 日韩欧美精品v片免费看| 欧美日韩中文字幕久久久不卡| 中文字幕日韩精品有码视频| 欧美激情伦理一区二区三区| 亚洲精品a片99久久久久| 精品久久亚洲中文不卡| 国产欧美拍视频免费在线观看| 波多野结衣无码一区二区| 国产99视频精品免视看芒果| 色婷婷国产精品高潮呻吟av | 亚洲a∨大乳天堂在线| 欧美三级在线观看视频| www.免费视频| 国产综合在线视频| 久热这里只有精品99在线观看| 色88欧美日韩国产无线码| 日本中文字幕中出在线| 国产sm重味一区二区三区| 大胆欧美高清videosedexohd| 国内精品久久久久影视| 亚洲欧美精品中文一区二区三| 国产精品扒开腿做爽爽| 日韩精品成人亚洲欧美在线观看| 高潮+国产+白浆| 久久av中文字幕| 在线天堂中文www视软件| 亚洲一卡二卡三卡四卡免费视频 | 国产sm重味一区二区三区| 欧美亚洲国产另类第一页| 日韩av在线播放+免费| 天堂中文官网在线| 深夜福利网站在线| 精品熟女少妇av免久久| 国产av综合第1页| 日本无码人妻波多野结衣| 破鞋熟女AV导航| 蜜桃传媒av免费观看麻豆| japanese熟女熟妇乱milf| 少女国产免费观看高清电视剧大全| 欧美日本国产韩国在线不卡| 怡春院熟女精品少妇aⅴ久久| 儿子的妻子6免费观看电视剧| 青青草原亚洲视频| 亚洲乱码中文字幕综合234| 亚洲中文字幕无码爆乳AV| 久久露脸国语精品国产91| 九九热久久久99国产盗摄蜜臀| 久人人爽人人爽人人片av| 欧美精品久久久久久久久久| 视频网站菠萝视频| 明星被黑人无套内谢| 美女视频一区二区| 亚洲精品国产高清一线久久| 久久精品国产亚洲av高清色| 国产区又黄又硬高潮的视频| 吃瓜爆料+每日大赛| 国产亚洲精品久久久久久小舞 | 成人免费视频538国产网站| 极品老熟妇av一区二区| 国产区一区视频在线观看不卡| 久久综合亚洲欧美成人| 国产精品免费视频网站| 伊人热热久久原色播放www| 欧美日一区二区三区| 久久国产V一级毛多内射| 成人一区二区三区久久精品嫩草 | 午夜乱码爽中文一区二区| 在线观看视频免费入口| 69pao强力打造免费高速| 中文字幕国产专区欧美激情 | 久久久久久久久久99精品| 精品国产一区二区三区四区色| 18+深夜福利+日韩毛片| 曰韩a∨无码一区二区三区| 欧美黑人做爰爽爽爽| 欧美孕妇孕交黑巨大网站| 国产精品剧情在线中文字幕| 99精品国产96久久久久久| 日本乱妇乱子视频| 婷婷亚洲久悠悠色悠在线播放| 精品乱人码一区二区二区| 中日韩无砖码一线二线| 亚洲综合另类小说色区一| 国产精品久久久久久久密月| 亚洲欧洲成人精品av97| 亚洲精品女人久久久久| 中文字幕在线不卡黄色a| 绿巨人黄瓜香蕉草莓秋葵丝瓜绿巨人污破解 | 亚洲欧美日韩国产综合一区小说 | 国产成久久免费精品av片| 99re6热在线精品视频播放| 久久久久国产精品免费免费搜索| 国产一级免费视频在线| 久久亚洲色一区二区三区| 97精品无人区乱码在线观看| 国产成人精品一区二区| 隔着超薄丝袜进入上司| 奶大丰满一伦一视一视| 精品国产又粗又猛又爽又黄| 日本精品videosse×少妇 | 国产97在线观看| 成人做爰A片免费播放乱码| 欧美一级特黄AAAAA片大水 | 沈清秋屁股扒开臀缝调教| 好吊妞国产欧美日韩免费观看| 亚洲成亚洲乱码一二三四区软件| 中文字幕一区二区三区夫目前犯| 日韩一区中文字幕在线观看| 奇米第四声中文字幕| 青青国产香蕉视频在线观看| 国产Av一区二区三区| 亚洲永久精品国产xxxx| 亚洲成品网站源码中国有限公司 | 女人被狂躁到高潮喷水| 人妻丰满熟妇岳AV无码区HD| 羞羞视频在线免费| 无码人妻一区二区三区AV | 国产精品视频一区二区三区不看| 国产成人尤物在线视频| 男人天堂亚洲国产都在搜| 中文字幕一卡二卡三卡| 色88久久久久高潮综合影院| 尤物精品国产第一福利网站| 欧美成人在线免费观看| 亚洲色图日韩伦理国产精品| 大象一区一品精区搬运机器| 日韩一区二区天堂在线观看| av片子在线观看| 一本色道HEZYO无码专区| 伊人久久精品亚洲午夜| 欧美亚洲天堂视频在线观看| 天堂网www中文在线| 欧美亚洲国产精品久久高清浪潮| 玩弄美艳馊子高潮无码| 亚洲精品久久久久午夜福禁果tⅴ 国产精品青草综合久久久久99 | 国产极品美女到高潮| 91精品国产色综合久久不卡98| √资源天堂中文在线| 贵州小少妇BBAABBAA视频| 午夜福利+无码+自拍| 一区二区免费欧美| 一本色道HEZYO无码专区| 亚洲精品无码成人网站| 亚洲+少妇+专区| 四虎国产在线观看| 国产成人综合久久免费| 国产91精品久久久久91黄色 | 熟女内射视频18| 精品精品国产自在97香蕉| 日本欧美久久久久免费播放网| 国产精品久久久久久久av福利| 精品人妻少妇一区二区三区不卡| 国产精品一国产精品一k频道| 国产熟妇高潮呻吟喷水| 成人国产免费观看| 欧美污视频免费在线观看 | 国产亚洲人成站在线播放国产99| 真人一级毛片全部播放| 九色综合狠狠综合久久| 中文字幕av网站| 日韩毛片+白丝+玉足| 国产偷国产偷亚洲高清人乐享 | 国产一级av一区二区在线| 丁香花在线高清视频完整版观看| 亚洲va久久久噜噜噜狠狠久久| 裸体+光屁屁+露胸| 少妇激情偷人三级| 久久国国产免费999| 熟妇激情内射com| 亚洲精品少妇影院| 欧美v欧美v视频在线观看视频| a天堂视频在线观看| 日韩美女/一区二区三区 | 大地资源二中文第二页在线| 久久婷婷狠狠综合激情| 加勒比色综合久久久久久久久 | 最好看的2019中文大全在线观看| 在线观看精品视频| 国产精品vr虚拟专区| 亚洲欧美日韩国产91在线| 国产成人精品成人a在线观看| 免费国产黄网站在线观看| 人人妻人人澡人人爽欧美一区| 久久六热视频精品女人66| 国产一区高清资源在线观看| 日韩精品视频主播在线播放| 色狠狠一区二区三区熟女p| 女人床上高潮淫语HD| 欧美成人精品区在线观看| 成人做爰A片免费看黄冈白狐影院| 无码人妻丰满熟妇区网站| 刺激熟女探花88AV| 欧一美一婬一伦一区二区三区麻婆 | 高清有码国产一区二区| 亚洲欧美韩国日本在线一区二区| 成人精品视频中文字幕版| 美国午夜福利视频一二区| 国产精品视频色尤物yw| 日韩欧美国产一区二区在线播放 | 欧美日本国产调教一区二区| 91九色porny首页最多播放| 2021国产精品午夜久久| 区一区二在线观看| 2020中文字字幕在线不卡| 一区二区免费欧美| 国产女主播精品大秀系列| 中文字幕+下载+人妻| 亚洲国产av导航第一福利网| 丁香六月婷婷激情免费视频| 中文字幕少妇欧美高潮迭起| 日韩国产欧美激情在线视频| 又黄又爽又色成人免费体验| 国产又色又爽无遮挡免费动态图 | 日韩精品中文在线一区二区| 国语自产拍无码精品视频| 国产视频在线一区二区| 一个人看的视频www中文字幕 | 美女视频黄免费国产91| 久久精品欧美亚洲一区二区三区| 13一16女处被毛片视频| 国产欧美日韩高清在线不卡| 偷拍做爰吃奶视频免费看| 日本精品免费在线观看| 探花风韵犹存少妇88AV| 免费欧美视频一区二区三区| av天堂亚洲av午夜一区| 国产一二三区精品亚洲美女| 久久婷婷五月综合色精品| 怡红院av一区二区三区| 色婷婷婷在线网站| 99久久超碰中文字幕伊人| 91在线精品亚洲一区二区免費資訊 | 最新中文字幕免费在线观看| 哈尔滨熟女白浆91九色| 中文字幕丝袜人妻乱一区三区| 国产免码va在线观看免费| 久久久青草婷婷精品综合日韩| 国产精品18久久久首页| 国产不卡在线播放| 国产精品伊人久久久久久| 日韩av不卡在线观看| 少妇人妻偷人精品视蜜桃| 在线观看一区二区三区四区 | 亚洲精品一区二区在线观看丁字裤| 国产亚洲日韩欧美另类第八页| 欧美日韩激情在线观看免费| 色婷婷一区二区三区四区| 福利片+国产+合集| 在线观看日本午夜高清美女 | 久久久久久久一区| 亚洲av色香蕉一区二区| 免费观看又色又爽又黄的崩锅| 91精品情国产情侣高潮对白文档| 成人免费在线网站| 亚洲精品久久久久久婷婷| 久久av无码aⅴ高潮av喷吹| 天堂网www在线资源网| 人妻无码av一区二区三区精品| 亚洲欧美自拍另类| 影音先锋+拘束+高潮| 免费黄色片一区二区三区| 久久婷婷五月综合色99啪ak| 岛国精品123区无码| 网站+激情+国产| 18禁真人抽搐一进一出免费| 成人黄色在线视频| 午夜在线不卡精品国产| www.日韩精品在线观看| 国产真人真事毛片| 欧洲av+成人+久久| 视频+成人+在线| av一区二区无人区在线观看| 91精品国产门事件美女写真集| 2019久久视频这里有精品15| 一区三区在线专区在线| 亚洲欧洲无码专区av| 欧美成人a免费在线观看| 国产精品白嫩极品美女视频| 天堂一区二区在线免费观看| 日韩在线一区视频| 无码综合天天久久综合网| 欧美综合区自拍亚洲综合绿色| 久久精品国产欧美日韩亚洲| 午夜福利1000欧美在线观看| 日韩欧美视频一区| 国语对白刺激在线视频国产网红| 97视频在线观看免费| 中文在线高清字幕电视剧第三季预告| 中文字幕精品久久久乱码乱码| 国产午夜精品一区理论片| 免费观看四虎国产精品午夜| 国产色A∨在线看精品| 已婚少妇露脸日出白浆| 国产高清精品福利私拍国产| 91丨九色丨尤物| 91日日躁夜夜躁欧美五月| 亚洲中文成人中文字幕| 三年片在线观看免费观看大全+下载 | 综合久久久一区二区三区| 国产+免费+综合| 国产又粗又爽又猛又大的动漫片| 国产激情一区二区三区小说| 最新精品国偷自产在线老年人| 色欲AⅤ亚洲情无码AV蜜桃| 丰满少妇凹凸BBBB是合法的吗| 国产明星精品一区二区刘亦菲| 国产又黄又粗无遮挡全黄色视频| 漫画免费观看漫画大全| 国产精品69毛片高清亚洲| 国产一区二区三区在线观看网站| 67194在线观看高清电视剧| 日本极品丰满ⅹxxxhd| 午夜精品a片一区二区三区老狼| 尹人久久久香蕉精品| 国产欧美日韩精品一区二区三区| 亚洲+成人+国产| 乱码人妻一区二区三区| 精品国产亚洲av麻豆gif| 午夜成午夜成年片在线观看| 特级淫片裸体免费看视频| 99国产精品国产精品精品| 国产69精品麻豆| 老子影院在线观看理论片| 久久99热这里只有精品23| 色偷偷尼玛图亚洲综合| 一个人在线观看国产精品www| 免费观看美女裸体网站| 日韩黄色一级网站| 美女视频黄免费国产91| 亚洲免费观看在线视频| 日本精品巨爆乳无码大乳巨| 国产婷婷vvvv激情久| 国产欧美一区二区三区免| 亚洲+综合久久+成人av| 一本色道av久久精品+网站| 亚洲欧洲免费黄色视频| 欧美日韩免费观看一区=区三区| 国产丝袜在线观看视频| 久久久久国产精品视频| 7777久久久国产精品消防器材 | 中文字幕不卡视频| 无码人妻一区二区三区免费看| 3p人妻少妇对白精彩视频| 国产精品视频免费看人鲁| 精品午夜福利在线观看| 久久国产自偷自偷免费一区调 | 一本色道88久久加勒比精品| 日日摸夜夜添夜夜添无码免费视频| 亚洲综合小说另类图片五月天| 免费精品中文字幕在线观看| 国产精品女同一区二区三区 | av久一区二区国产在线观看| 好吊色国产欧美日韩免费观看| 午夜福利理论片高清在线| 国产明星精品一区二区刘亦菲| 爽爽爽a男女免费观看一区二区| 一区二区午夜福利在线看| 国产不卡中文字幕在线观看| 亚洲国产精品一区二区制服换脸 | 久久精品无码一区二区软件| 91亚洲国产一区二区三区欧美| 中文字幕欧美日韩va免费视频| 亚洲综合色噜噜狠狠网站超清| 少妇精品久久久久www| 国产精品美女乱子伦高| 精品国产三级大全在线观看| 美女又爽又黄又免费网站| 国产一级特黄毛片| 欧美日韩免费不卡激情在线视频| 亚洲中文字幕av一区二区三区| 精品久久久噜噜噜久久| 天堂在线网www在线网| 好看的中文字幕av| 精品+国产+高潮| 亚洲成av人片在线观看天堂无| 久草热久草热线频97精品| 777777农村二级毛片| 国产模特嫩模私拍视频在线| 免费+岛国+h动漫| 国产精品久久久夜夜高潮夜夜爽| 又黄又粗又爽的免费视频| 美女黄网站免费福利视频| 一区二区免费视频| 国产高清在线a免费视频观看| 亚洲精品aaaaa| 欧美国产激情一区二区三区| 无码人妻一区二区三区免费手机| 亚洲中文字幕人成影院| 国产精品亚洲欧美日韩在线观看| 怡红院怡春院视频免费看| 网友自拍+偷窥+国产| 国产精品最新乱视频二区| 久久精品亚洲天堂| 少妇爽到呻吟的视频| 99久只有精品免费视频播放| 精品无码久久久久久尤物| 91tv国产成人福利| 久久国产精品免费久久久| 在线免费观看黄网| 亚洲视频欧美视频中文字幕| 伊在人亚洲香蕉精品区| 在线永久免费观看的毛片| 在线观看jizz| 日本高清免费视频www色| 又黄又爽全无遮挡的免费视频| 欧美日韩成人免费| 国产欧美成人xxx视频| 日本一卡二卡视频| 东京热加勒比久久| 人妻黑人一区二区三区| 粗壮挺进人妻水蜜桃成熟漫画| 影音先锋+出轨的妻子| 亚洲天天做日日做| 亚洲国产精品尤物yw在线观看| 6090新视觉理论电视剧4410yy| 一级婬片A片AAAA片老牛| 五月天丁香在线观看| 国产l精品国产亚洲区在线观看| 羞羞影院午夜男女爽爽免费| 久草在线免费福利| …伊人久久婷婷国产综合| 国产精品丝袜一区二区| 91久久精品视频| 亚洲无人区码suv| 人人躁日日躁狠狠躁av麻豆男| av色欲无码人妻中文字幕| 曰韩无线无卡tⅴ一二三区| 亚洲成人久久一区二区三区| 色偷偷偷久久伊人大杳蕉| 亚洲品质自拍视频网站| 亚洲欧洲美色一区二区三区| 国产日韩欧美91| 民工粗大的茎弄得我好爽视频| 午夜乱码爽中文一区二区| 久久天天躁狠狠夜夜躁2020| 国产在线不卡精品网站| 国产精品一级AA毛片不收费| 国产精品一二三在线| 成年人91日韩视频在线观看| 日本护士vivoes极品另类| 中文日韩欧免费视频| 少妇人妻偷人精品视蜜桃| 欧美污视频在线播放网址| 精品国产综合久久久久| 亚洲天堂一区二区免费在线观看 | 麻豆专媒体一区二区| 人妻互换一二三区免费| 太骚了全程淫语!| 欧美日韩国产精品| 国产无套白浆视频在线观看| 猫咪免费人成网站在线观看| 午夜福利黄色小视频| 什么网站可以看毛片| 婷婷丁香俺来也久久一区二区 | 嫩草影院在线视频| 亚洲人成网站在线观看免费| 九九精品在线观看| 一本色道久久综合亚州精品蜜桃| 国内精品在线观看看| 日本护士被弄高潮视频| 洋妞+国产+在线播放| 亚洲精品成人a8198a| 99国产综合精品| 欧美精品乱人伦久久久久久| 久久久精品小视频| 极品少妇被猛的白浆直喷白浆| 亚洲综合无码一区二区三区不卡 | 高清午色夜国产精品| 久久久99精品成人片中文字幕| av久一区二区国产在线观看| 熟女内射视频18| 日本不卡在线视频二区三区| 国产人免费人成免费视频| 亚洲精品成人无码中文毛片不卡| 妺妺窝WWW仙踪林粗大野| 四虎影视在线永久免费观看| 国产手机av片在线观看| 丰满人妻被黑人中出849| 免费在线观看av| 国产成人亚洲精品自产在线| 国产又粗又猛又爽的视频a片| 久久亚洲日韩看片无码| 国产精品久久久久久久久免费| WWW亚洲色大成网络.COM| 【快穿】淫交任务(高h| 国产精品女同一区二区三区| 国产无套白浆视频在线观看| 18禁美女黄网站色大片免费看| 无码av大香线蕉伊人久久| aaa少妇高潮大片免费看| 最新国产av最新国产在钱| 久久精品国产乱子伦| 人妻中文在线一区二区三区| 亚洲综合国产精品一区| 天堂av无码av一区二区三区| 亚洲乱码精品一区二区三区国产| 欧美一区二区激情| 国产精品成人免费视频网站| 白嫩少妇各种bbwbbw| 免费看的av网站| 亚洲乱码国产乱码精品精软件| 菠萝蜜影院免费播放电视剧软件| 欧美日韩一区二区三区妖精| 亚洲AV永久无码精品成人| www.99精品| 国产黄色一区二区| 国产精品久久久久婷婷| 国产精品久久久久蜜芽| 天堂在线www天堂在线| 日韩中文字幕视频手机在线秒播| 91看片在线播放| 99精品全国免费观看视频| 国产精品精品久久久| 99热热久久这里只有精品| 18禁黄久久久aaa片| 在线视频免费观看一区| 人人爽久久涩噜噜噜av| 中文字幕日产乱码一区| 中文字幕久久精品无码| 亚洲免费视频一区二区| 成年人黄页网站免费观看| 国产亚洲人成网站在线观看| 欧美久久国产精品| 最新版天堂中文在线| 中文字幕综合在线分类| 99久久免费精品| 7777久久久国产精品消防器材| 国产欧美色一区二区三区| 国产欧美色一区二区三区| 成人无码一区二区三区网站| 国产欧美日韩丝袜在线视频| 在线观看麻豆国产成人av在线播放| 日韩国产在线观看不卡免费| 日本二区三区黄色视频网站| 国产成人在线公开免费视频| 人妻丰满熟妇av无码区不卡| 亚洲成AV人片一区二区密柚| 日韩精品免费一区二区三区四区 | 日本国产亚洲一区在线观看视频 | 玩弄美艳馊子高潮无码| 国产精品视频播放| 太骚了全程淫语!| 亚洲无AV在线中文字幕| 国产精品+亚洲+欧美| 国产偷国产偷av亚洲清高| 影音先锋+成人资源| 国产成人成爽一区二区| 清纯唯美亚洲专区国产精品| 护士洗澡被狂躁A片在线观看| 美女视频图片久久黄网站| 91绿帽黑人系列一区| 99热在线精品免费全部my| 亚洲乱码在线观看| 精品多人p群无码| 欧美+日韩+中文| 97在线观看免费观看高清| 精品久久香蕉国产线看观看亚洲| 张柏芝亚洲一区二区三区| 免费精品成人在线永久观看 | 日本任你躁免费精品视频2| 一区三区在线专区在线| 国产中文字幕免费在线观看| 婷久久狠狠一区二区三区| 久久婷婷五月综合色丁香花 | 手机在线视频国产第二页| 91亚洲欧美中文精品按摩| 国产精品老女人精品视频| 亚洲高清无码视频| 亚洲婷婷综合色高清在线 | 国产欧亚州美日韩综合区| 99久久精品国产综合一区| 成年偏黄全免费网站| 妺妺窝人体色www聚色窝| 久久偷看各类wc女厕嘘嘘 | 午夜影院亚洲大码免费| 色88久久久久高潮综合影院| 粉嫩BBBBBBBBB精品| 亚洲综合无码一区二区三区不卡| 精品多人p群无码| 9.1在线观看免费网站nba| 国产一区二区三区在线看麻豆| 亚洲综合色区另类小说| 国产偷国产偷亚洲清高app| 久久99国产精品久久99果冻传媒新版本 | 欧美日韩不卡视频合集| 护士洗澡被狂躁A片在线观看| 亚洲国产欧美日韩精品久久久| 中文字幕在线视频一区二区三区| 人妻NP〈慎入〉H在线视频| 最近中文字幕2019在线一区| 乱子伦息子一区二区| 午夜乱码爽中文一区二区| 欧美在线视频在线观看一区| 奇米第四色777| 影音先锋+剧情+女仆| 成人动漫在线观看免费| 日韩一级黄色录像| 久久精品国产亚洲Av久| 亚洲s码欧洲m吗国产精品| 精品国产亚洲av制服丝袜高跟| 免费乱理伦片奇优影院| 最新中文字幕免费在线观看| 亚洲精品国产剧情久久9191| 中文字幕视频在线欧美一区| 国产av丝袜一区二区三区| 国产麻传媒精品国产AV| 日韩少妇激情一区二区| 国产精品久久免费成年大片| 欧美成人一区二免费视频小说| 日本成人美女在线视频网站| 在线黄色av网站| 亚洲欧美日韩视频一区二区三区| 日韩精品+久久久+免费观看| 国产精品久久久久久久天堂| 亚洲综合图色40p| 视频+成人+在线| 91精品视频在线观看专区 | 国产农村一国产农村无码毛片| 精品深夜av无码一区二区老年| 成人+动漫+日韩毛片| 91n免费处女在线| 久久久久亚洲av无码专| 亚洲av片一区二区三区久久| 国产精品揄拍一区二区久久国内亚洲精| 免费视频www在线观看网站| 欧美黄色激情视频| 亚洲精品女人久久久久| 人妻无码一区二区不卡无码av| 无遮挡做爰激吻国产999| 在线观看国产视频| 成人做爰黄A片色情泳衣| 7788在线观看免费高清电视剧| 在线免费观看尤物色视频网站 | 亚洲欧美另类麻豆综合网| 亚洲伊人网精品在线观看| 美女黄网站免费福利视频| 一卡二卡亚洲视频在线观看| 99re6热视频这里只精品首页| 国产免费不卡av在线播放| 国产精品视频一区二区在线观看| 国产女人高潮毛片| 国产乱淫av片杨贵妃| 亚洲无人区码suv| 久久久久久久麻豆| 免费的污污的网站在线观看| 日韩av手机在线| 黄色av网站在线看| 久久99国产66精品久久| 亚洲最大av无码网站最新| 日本www在线播放| 强伦少妇A片视频| 亚洲欧美精品中文字幕一区二区 | 91久久国产婷婷一区二区 | 免费成人午夜福利在线观看| 天堂8中文在线最新版在线| 91天堂一区二区在线播放| 中文字幕在线免费观看一区二区| 中文字幕丰满孑伦无码专区| 成人+高潮+国产| 丰满+迅雷+中文字幕| 黄页+国产+在线观看| 国产传媒中文字幕在线观看| 美女黄网站色视频免费观看| 野花成人免费视频| 午夜国产av新品一区二区| 国产精品一区二区三区精品视频 | 强行18分钟处破痛哭MJ| 中文文字幕中文字幕在线中文乱码| 狠狠色狠狠人格综合| 国产高清在线不卡| 九九热在线精品视频| 一区视频在线播放| 精品国产av一区二区三区√| 色婷婷亚洲婷婷7月| 少妇含泪肉体偿还| 国产sm鞭打调教女m视频| 日韩欧美一区二区在线| 经典三级欧美人妻在线视频| 国产+日韩精品一区+欧美 | 91毛片在线观看| 国产精品人妻系列21p| 在线观看+成人免费视频+不卡 | 最新国产成人av网站网址麻豆| 国产1024成人精品视频| 极品少妇被猛的白浆直喷白浆 | 手机免费av在线| 国产又粗又猛又黄又爽的视频| 91美女诱惑国产精品视频| 美女极度色诱图片www视频| 亚洲熟妇AV日韩熟妇在线| 黄色一级大片在线免费看产| 伊人69久久久久久综合国产 | 黄色片在线观看免费| 亚洲日韩欧美视频| 国语对白做受xxxxx在线| 白丝在线看片av| 安徽少妇BBB凸凸凸BBB| 米奇影视盒77777777777| 国内精品国语自产拍在线观看 | 人人妻天天爽夜夜爽精品视频 | 日本三级欧美三级人妇视频黑白配| 白浆+高潮+蜜桃| 久久99久久99精品免观看粉嫩| 成人午夜片在线免费观看| 欧美成人午夜免费视在线看片| 精品久久久久久中文墓无码| 欧美视频免费观看午夜在线| 亚洲一区二区三区四区在线播放| 国产精品白嫩极品美女| 欧洲日韩亚洲无线在码 | 欧美一区二区影院| 亚洲无吗在线视频| 日本+高潮+免费| 国产999视频在线观看| 久久久久久国产精品免费看 | 国产真实自在自线免费精品 | 日韩人妻无码一区二区三区| 熟妇人妻无码xxx视频| 97中文字幕在线观看| 浪货趴ktv桌~H揉多p| 欧美成人午夜一卡二卡在线视频| 曰韩a∨无码一区二区三区| 91精品情国产情侣高潮对白文档| 亚洲精品av网站在线观看| 8888888888免费观看在线nba| 国产乱码一区二区三区观看| 丰满少妇人妻久久久久久 | 亚洲无AV在线中文字幕| 国产suv精品一区二区四区三区| 国产免费不卡av在线播放| 9.1入口nba在线观看免费| 日韩在线中文字幕| 欧美精品中文字幕在线视| 亚洲啪啪aⅤ一区二区三区9色| 娇妻被黑人伦轩1~14| 亚洲欧美中文字幕手机在线观看| 2014av天堂无码一区| 国产91在线观看丝袜| 美女网站免费在线观看日韩| 亚洲精品无amm毛片| 日本高清毛片中文视频| 亚洲精品中文字幕无码AV| 忘忧草www中文在线资源| 正在播放+日韩+无码| 欧美一区二区激情| 黄色一级大片在线免费看产| 国产原创在线观看福利精品| 午夜免费无码福利视频麻豆| 亚洲免费av网站| 在线观看日本午夜高清美女 | 岛国精品123区无码| 国产热a欧美热a视频在线观看| 国产成人在线视频网站| 人人爽人人奭人人片AV| 在线播放av网站| 日韩在线亚洲综合| 五月综合激情婷婷六月色窝| 国产精品自拍合集| 日韩+欧美+毛片| awww在线天堂bd资源在线| 2018年亚洲欧美在线视频| 国产精品入口免费软件| 天海翼torrent+下载| 中文字幕免费播放| 中文欧美日韩久久| 久久精品国产亚洲av热一区| 中文字幕av在线播放| 欧美日韩国产一区精品一区| 在线视频欧美亚洲| 开心+婷婷+五月天| 国内自拍视频在线播放| 国产97在线观看| 国产稚嫩高中生呻吟激情在线视频| gogogo日本免费观看电视剧第17集| 欧美在线视频在线观看一区| 亚洲热线99精品视频| 久久免费看少妇高潮毛片| 亚洲一区二区无码影院| 国产亲妺妺xXXX888869| 中日韩无砖码一线二线| 高清无码视频18| jzzijzzij日本成熟丰满| 妇女bbbb插插插视频| 国产精品v欧美精品v日韩精品v| 综合影视中文高清| 日韩精品欧美一区二区三区| 91九色porny首页最多播放| 中文字幕亚洲一区视频在线观看| 亚洲欧美韩国综合色| 九九热久久久99国产盗摄蜜臀| 久久精人人槡人妻人人玩| 好吊妞国产欧美日韩免费观看 | 少妇愉情理伦片丰满丰满午夜| 无码人妻精品一区二区三区免费| 无码专区aaaaaa免费视频| 黄金网站app大全免费| 波多野结衣中文字幕一区二区三区| 亚洲日韩av综合无码一区| 国内精品九九久久久精品| 亚洲国产欧美人成| 国产午夜福利精品久久2021| 欧美日韩精品亚洲色图视频免费| 欧美日韩中文字幕在线xxx| 国产福利专区视频在线播放| 少妇一区二区三区无码视频| 中文字幕日本精品一区二区三区| 夜夜摸日日躁欧美视频| 国产精品一级片久久久久| 天天天欲色欲色www免费| 午夜福利+麻豆+国产| 亚洲精品女同激情在线观看 | 制服丝袜手机在线| 香蕉国产线观看免费永久图片| 18+韩国女主播青草| 青青狠狠噜天天噜日日噜| 国产三级aⅴ在在线观看| 红莲两瓣夹玉柱最经典四句话| 国产激情久久久久99视频| 欧美日韩国产在线观看| 国产亚洲精品香蕉网九色 | 视频一区二区三区在线观看| 久久久久亚洲十八禁精品国产| 免费观看真人视频直播7777| 久久国产精品久久w女人spa| 久久精品免费网站| 久久久激情一区二区三区| 国产+喷水+高潮| 中文字幕欧美一区在线视频观看| 新无码毛片一区二区有码| 日韩成人在线视频| 探花视频免费观看高清视频| 琪琪在线影院电视剧免费| 久久久99无码一区| 少妇做爰全过内谢| 久久婷婷五月综合色和啪| 国产一区二区自拍视频| 苍井空一级婬片A片AAA片动漫| 2022色婷婷综合久久久| 日本高清不卡a免费观看| 久久免费视频精品在线| 成都私人高清影院的市场前景| 欧美激情一区二区三级高清视频| 巨茎人妖videos另类| 亚洲日韩在线观看免费视频| 4虎影院永久地址WWW| 亚洲精品美女久久久久9999| 波多野结衣黑人149分钟| 国产黄片av一区二区三区四区| 91久久久久久国内免费视频| 欧美大片免费播放器| 人人射欧美一区二区三区| 国产精品亚洲精品一区二区| 亚洲超清欧美不卡免费在线视频| 国产va免费精品高清在线| 日韩精品在线视频观看| 91久久久精品国产一区二区蜜臀| 国产麻豆剧传媒精品国产av| 久久99精品久久久久久hb| 亚洲欧美中文字幕在线观看| 丰满的熟妇岳中文字幕| 色欲综合久久中文字幕网| 日韩人妻无码一区二区三区| 国色天香成人一区二区| 亚洲伊人网精品在线观看| 亚洲精品无码不卡| 国产精品美女WWW爽爽爽视频| 中文字幕在线观看网站| 亚洲精品久久久久久蜜桃| 亚洲视频日韩视频| 小视频免费在线观看| 一区二区三区+视频| 国产91勾搭技师精品| 亚洲一区二区精彩视频在线观看| 可以在线看的av网站| 国产成人精品免费视频大全五级| 亚洲日韩精品看片无码| 国产一区二区三区成人欧美日韩在线观看 | 91黄视频在线观看| 久久香蕉综合网精品视频| 亚洲日韩色欲色欲com| 国产精品白丝久久Av网站| 亚洲丝袜一区二区| 欧美日韩一区在线播放| 91精品久久久蜜桃网站| 亚洲综合激情五月色一区| 久久精品亚洲精品国产色婷| 亚洲伊人久久大香线蕉综合图片 | 出轨人妻毛片一级| 久久老熟妇精品免费观看| 亚洲精品自产拍在线观看动漫| 91麻豆精品国产自产在线91| 久久中文字幕人妻熟av| 辜莞允+无码+视频下载| 韩国中文字幕在线观看| 天堂网www在线最新版资源| 无码+会员+动漫| 亚洲精品国男人在线视频| 欧美+超清+无码| 无码人妻少妇久久中文字幕蜜桃| 亚洲欧美日韩中文字幕一区二区| 国产91精品久久久久91痣美人| 国产午夜在线播放| 国产偷抇久久精品a片69| 亚洲+视频+免费| 黄色av网址在线| 婷婷俺也去俺也去官网| 一区二区三区四区亚洲不卡| 欧美做爰全过程免费观看| 手机无码人妻一区二区三区免费 | 12裸体自慰免费观看网站| 西西4444www无码国模吧| 91丨九色丨尤物| 嗯啊嗯啊在线观看| 四虎影视无码永久免费| 一区一区三区产品乱码亚洲| 欧美成人手机视频| 久久黄色免费视频| 国产精品婷婷色综合www在线| 精品一区二区三区四区| 黄金网站app大全免费| 精品无码久久久久久久久久| 国产在线高清精品一区免费| 日韩在线观看免费全集电视剧网站| 慈禧一级淫片免费放特级| 午夜理论片yy6080私人影院| 久久亚洲AV午夜福利精品一区| 中文精品一卡2卡3卡4卡| 国产欧美日韩美女精品一区| 巨乳童颜+影音先锋| 午夜精品久久久久久久99婷婷| 亚洲手机在线人成网站| 永久免费未满蜜桃| 亚洲最新中文字幕成人| 日韩精品在线第一页| 亚洲婷婷综合色高清在线| 高潮+刺激+爽av| 国产麻豆91精品三级站| 欧美丰满熟妇xxxxx| 国产亚洲精品福利视频 | 国产在线一区二区三区四区五区| 国产精品理论片在线播放| 国产+欧美+日产| 久久一区二区三区四区| 久久精品国产成人av| 日韩裸体人体欣赏pics | 丁香开心五月婷婷精品伊人| 中文字幕国产精品日韩精品动漫| 日韩精品+久久久+免费观看| 黄页免费观看一区二区三区| 国产在线精品一区二区不卡| brazzers精品成人一区| 无码日韩精品一区二区免费96| 天堂资源wwwav啪啪| 日韩一区免费视频| 久久久久高潮毛片免费全部播放| 337p粉嫩大胆色噜噜噜噜| 国产精品美女久久久久久av爽| 国产精品乱子伦XXXX| 樱花在线视频免费观看电视剧| 囯产综合久亚州中文字幕欧| 中文字幕人妻少妇引诱隔壁| 亚洲视频精品久久久| 无码精品人妻系列| 成人午夜高潮a∨猛片| 91精品国产色综合久久不8| 欧美一级淫片007| 青青草国产午夜精品| 丰满的三级少妇欧美久久| 洗澡被公强奷30分钟视频| 大波美女一级a久久午夜| 在线观看一区二区三区少妇 | 国产一区日本二区在线观看 | Ts人妖紫苑口爆丝袜| 成人一区二区三区视频xxx| 亚洲自偷自偷在线成人网址| 40岁成熟女人牲交片| 高潮毛片无遮挡高清免费视频网站| 三年在线观看中文免费观看| 最新av偷拍av偷窥av网站| 国产免费av一区二区在线观看 | 日本在线观看www| 国产极品美女到高潮| 无码人妻精品一区二区三区9厂| 一级A片60分钟免费看| 日韩精品+久久久+免费观看| 日韩欧美AⅤ综合网站发布| 最新国产成人av网站| 日韩人妻无码一区二区三区综合| 久久中文字幕一区二区三区| 人妻互换一二三区免费| TokyoKoT大交乱| 黄网站色视频免费观看美女| 99精品国产96久久久久久| 神宫寺奈中文无码字幕| 亚洲午夜国产片免费观看| 久久精品免费全国观看国产| 久艹在线观看视频| 麻豆精品一区综合av在线| 亚洲男女羞羞无遮挡久久丫 | 亚洲av无码专区首页第一页| 97人妻系列高清一区二区 | 大桥未久+无码+bt| 最新av网站免费在线观看| 欧美亚洲国产手机在线观看| 少妇人妻偷人精品无码视频| 永久黄网站色视频免费观看| 无码人妻少妇久久中文字幕蜜桃| 成人欧美一区二区三区在线| 国产精品无套呻吟在线| 西西人体大胆ww4444图片| 国产精品+女人呻吟+在线观看| 99久久亚洲精品日本无码| 亚洲国产综合久久一区二区| 国产乱妇交换做爰XXXⅩ麻豆| 国产偷人妻精品一区| 黄色一区二区三区在线观看 | 午夜伦4480yy私人影院久久| 网站+激情+国产| 亚洲国产精品乱码在线观看97| 日韩欧美亚洲精品高清国产| 久久久亚洲精品成人| 国产日产成人免费视频在线观看 | 中文字幕免费播放| 警花av一区二区三区| а√天堂资源中文最新版地址| 青草av.久久免费一区| 中文区中文字幕免费看| 中国老熟妇在线视频| 97久久精品国产一区二区三区| 网站+激情+国产| 亚洲AV无码片一区二区三区| 国产精品视频麻豆| 天堂网www在线资源最新版| 国产suv精品一区二区69| 国产黄色一区二区| 日韩国产精品一区二区三区 | 久久亚洲春色中文字幕久久久| 国产女生高潮视频免费网站| 久久婷婷色综合老司机| 久久综合亚洲精品一区二区| 涩涩涩蜜桃日韩一区二区| 91tv国产成人福利| 国产日本久久久久久久久婷婷 | 国产粉嫩呻吟一区二区三区| 亚洲免费av网站| 免费播放高清毛片A片色情天雨水多| www.4虎影院| 国产精品久久久久久久福利| 国产无遮挡又黄又大又不要vip| 亚洲va在线va天堂xx| 黄页网站免费视频大全9| 国产+自慰+先锋影音| 美足+丝袜+影音先锋| 亚洲免费视频一区二区| 精品国产一区二区三区四区色| 国产+麻豆+免费观看| 国产乱公伦媳在线播放| 高清视频在线观看+免费| 999国产精品午夜福利| 欧美日韩一区二区三区妖精 | 亚洲欧洲成人在线| 国产在线视频一区二区三区| 日韩av大片在线观看| 麻豆果冻传媒精品+视频| 国产+亚洲+欧洲| 国产熟睡乱子伦午夜视频麻豆| 国产精品一区二区av影视| 国产精品自在77777国产| 成人国产精品免费视频国| 黑人一区二区三区| 操美女视频国产免费观看| 欧美黑人欧美精品刺激| 久久99亚洲5精品片片| 五十路の完熟豊満| 欧洲中文字幕日韩精品成人| 婷婷五月开心亚洲中文字幕| 日本欧美成人片AAAA| 中文字幕三级在线视频一区二区| 超碰香蕉人人网99精品| 丰满+迅雷+中文字幕| 免费+精品+在线观看| 国产91精品一区二区麻豆观看| 久久精品免费成人| 鲁大师日韩MV在线观看| 欧美成人精品三级网站视频| 99久久免费精品国产72精品| 免费在线观看AV| 97在线观看免费观看高清| 天美麻花果冻视频大全英文版| 可以免费看日本黄色的网站| 欧美国产高清在线一区二区| av在线免费观看资源网站| 青青草草青青草久久草| 伊人久久大香线蕉亚洲五月天| 最新国产精品好看的精品| 中文字幕国产在线| 成人亚洲a片v一区二区三区蜜月 | 中文字幕一区二区三区夫目前犯| 蜜桃视频+波多野| 2021少妇久久久久久久久久| 国产一区高清资源在线观看| 国产91麻豆一区二区在线| 公共场合高潮(h)公交车| 665566综合中文字幕在线| 成人一区二区三区国产精品| 久久久麻豆一区二区三区四区 | 国产精品理论在线观看| 国产精品人妖ts系列视频| 实拍国产永久免精品视频| 重庆美女揉BBBB搡BBBB| 妺妺窝人体色777777粗玫瑰园| 国产日产欧产精品精品ai| 藏精阁成人免费观看在线视频| 暴雨入室侵犯进出肉体免费观看| 亚洲国内精品自在线影院牛牛 | 免费看片亚洲一区二区三区| 日韩在线亚洲综合| 国产欧美日韩欧美一区二区| 亚洲乱码国产乱码精品精软件| 精选一区二区三区免费在线观看| 磁力bt天堂在线www搜索| 国产精品自产拍在线观看花钱看| 国产精品1000夫妇激情啪| 日韩精品无码免费专区午夜不卡 | 国产精品视频色尤物yw| 婷婷综合久久一区二区三区武松| 国产乱人伦精品一区二区在线观看| 亚洲天堂2014| 337p日本大胆欧久久| 久久人妻无码中文字幕第一| 一个色综合国产色综合| 真人做爰视频成人观看| 欧美日本二区三区四区人气| 亚洲熟妇av一区二区三区痴汉| 婷婷五月在线视频| 久久99精品久久久久久hb| 人人超碰91尤物精品国产| 在线观看麻豆国产成人av在线播放| 日韩福利片在线观看| 出差+协和+中文字幕| 国产+高潮+少妇| 国产丰满麻豆vⅰde0sex| 夜夜嗨av一区二区三区| 欧美日韩国产精品成人| 国产在线观看欧美二区三区| 麻豆精品国产专区在线观看 | 天堂av国产夫妇精品自在线 | 中出素人久久久久久国产精品| 亚洲男女羞羞无遮挡久久丫| 午夜福利理论片高清在线| 丰满人妻熟妇乱又仑精品| 麻花传媒mv一二三区别在哪里看 | 国产大片免费观看网站| 日韩欧美视频一区| 久久精品成年人免费看国产片| 91精品国产综合久久福利软件| 国产午夜福利片在线观看| 免费激情视频网站| 九九九久久久精品| 国产精品线在线精品| 国产大片黄在线观看| 精品久久久久久中文无码| 中文字幕+在线观看+永久 | 欧美亚洲国产精品久久高清浪潮 | 91国產乱高潮白浆| 精品久久久久久久免费人妻| 日韩国产一区二区三区| 啊灬啊灬轻点第一次和外国人| 亚洲视频在线免费观看一区二区| 久久精品国产精品亚洲艾草网| 看黄a大片爽爽影院免费无码| 国产精品午夜自在在线精品| 91在线视频免费看| 一区二区午夜福利在线看| 国产三级一区二区三区视频播放| 一本加勒比HEZYO熟女| 一本之道色综合网站| 亚洲欧洲一区二区在线观看 | 伊人久久大香线蕉av超碰演员 | 日韩成人大屁股内射喷水| 国产精品三级国产精品高| 亚洲欧美他妈的射| 久久天天躁狠狠躁夜夜2o2o| 日韩欧美中文字幕一区二区| 国产av深夜精品福利专区| 国产欧美日韩一区二区三区66| 5g影视+国产+日韩| 欧美国产成人免费观看| 亚洲一区二区中文| 一区视频在线播放| 欧美日韩国产中文| 成人亚洲欧美日韩在线观看| 一区二区三区欧美精选视频| 麻豆精品国产熟妇aⅴ一区| 国产成人精品免费视频大全最热| 亚洲精品国产A久久久久久| 八戒视频在线观看免费播放电视剧| 欧美人伦禁忌dvd放荡欲情| 国产日韩欧美不卡在线二区| 丰满少妇被猛烈进入中文字幕| 国产女人高潮毛片| 国产高清精品福利私拍国产| 成人午夜三级视频| av黄色免费观看| 北条麻妃99精品久久朝桐光| 在线观看成人小视频| 国产高清a视频在线观看| 国产高清av在线一区二区三区| 日本日本熟妇中文在线视频| 久久国产福利播放| 亚洲人成人7777在线播放| 国产又猛又粗又爽又黄91| 手机中文字幕在线免费视频| 亚洲国产精品久久久久久久秋霞| 亚洲精品在看在线观看高清| 少妇伦子伦精品无吗| 亚洲精品成人片在线观看精品字幕| 国产av麻豆一区麻豆二区| 欧美日韩国产专区一区二区| 国产欧美一区二区三区片| 国产成人专区无广告在线| 成片在线看一区二区草莓| 亚洲日韩av无码不卡一区二区三区| 日本一道一区二区视频| 欧美日韩国产精品久久乐播| 欧美一级在线a级在线视频| www.国产成人在线免费看| 成人免费无码大片a毛片小说| 一级一级特黄女人精品毛片| 亚洲精品av中文字幕在线在线| 韩日在线视频观看| 成人在线视频在线观看| 久久久橹橹橹久久久久| 自拍偷自拍亚洲精品10p| 国产美女www爽爽爽免费视频| 91啦丨露脸丨熟女| 巨茎与艳妇麻麻啪啪漫画| 国产精品国产成人国产三级| 99久久夜色精品国产网站| 欧美另类与牲交zozozo| √天堂8中文资源在线| 亚洲av产在线精品亚洲二区| 老a影视精品无码视频| 亚洲精品av中文字幕在线| 久久天天躁夜夜躁狠狠85| 亚洲午夜久久久影院| 黄色片网站在线观看| 国产成人久久精品亚洲小说| 妺妺窝人体色777777小馒头| 久久精品亚洲精品国产色婷| av免费在线观看不卡| 中文字幕精品亚洲无线码一区| 久久精品国产—精品国产| 色妞www精品视频一级| 偷青青国产精品青青在线观看| 欧洲视频免费网站在线播放 | 欧美日本日韩aⅴ在线视频| 在线播放极品尤物魔鬼身材| 99精品视频一区在线观看| 在线观看国产成人尤物av天堂| 波多野吉衣免费一区| 中文字字幕乱码视频高清| 亚洲精品一品区二品区三区| 青草av久久免费一区| 久一蜜臀av亚洲一区| 国产亚洲视频在线播放香蕉| 992成人做爰视频| 国产白嫩护士被弄高潮| 亚洲+精品+无码视频| 久久男人av资源网站无码软件| 精品一区二区三人妻视频| 国内精品美女a∨在线播放| 亚洲视频十八禁在线无遮挡| 99热在线精品免费全部my| 成人高清免费观看| 欧美另类又黄又爽的a片| 国产chinese中国xxxx| 出轨人妻毛片一级| 久久精品国产精品青草app| 亚洲最大av无码网站最新| 亚洲成色777777女色窝| 制服丝袜在线视频| 精品亚洲中文字幕东京热网站| 亚洲国产中文欧美日韩另类| 9.1入口在线观看免费| 18+免费视频下载| 亚洲成在人线av品善网好看| 日韩欧美一区二区三区四区| 国产一级免费视频在线| 手机+在线+精品| 亚洲AV无码久久精品色欲| 不卡+一区二区视频+日本| 国产极品美女高潮无套久久| gogogo日本免费观看电视剧第17集| 久久国语精品三级亚洲一二| 樱花私人影院的电视剧特点| 久久99精品视频免费观看| 国产传媒精品1区2区3区| 中文字幕欧美一区在线视频观看| 亚洲精品无码久久久久久久| 国产视频xxxx| 少妇人妻系列无码专区视频| 大家可以在这里国产一级淫片a视频免费观看 | 国产+欧美+欧洲| 成都私人高清影院的市场前景| 三年片在线观看高清完整版| 精品欧美在线观看视频二区| 无码人妻丰满熟妇啪啪网站| av网站的免费观看| 欧美+国产+韩国| 精品婷婷乱码久久久久久| 国产女同一区二区三区久久| 亚洲中文字幕人成影院| 丁香婷婷综合激情五月色| 亚洲免费视频网站| 亚洲精品无码播放。| 日本久久777777777| 日日摸夜夜摸狠狠摸中文字幕 | 神马影院手机在线观看| 国产精品一区二区三区va| 可以免费看日本黄色的网站 | 成人免费毛片AAAAAA片| 欧美一级特黄特色大片免费观看| 国产成人综合久久免费| 日韩激情+一区二区三区+中文字幕| 456视频在线观看| 国产+高潮+在线观看| 久久精品国产亚洲Av久| 国内精品伊人久久久久影院麻豆| 台湾+无码+先锋影音| 成人做爰A片免费看网站网豆传媒| 国产人妖在线视频| 亚洲亚洲人成网站77777| 亚洲色欲色欲www成人网| 亚洲+欧洲+国产一区| 亚洲国产成人精品女人久久| 又色又爽又黄又无遮挡的网站 | 99久久婷婷国产一区二区| 久久99久久精品播放免费| 国产精一品亚洲二区在线播放| 四虎国产精品成人免费影视| 日韩欧美一区二区三区四区| 国产成人亚洲欧美一区综合| 国产又色又爽又高潮免费| 97久久精品人人做人人爽| 18+sexvideos| 成人高清免费观看| 精品人妻中文字幕在线| 日韩美女免费毛片一区二区| 国产综合色在线精品| 69pao强力打造免费高速| 少妇嫩搡BBBB搡BBBB| 国产精品久久久久久影院| 亚洲欧洲国产成人综合在线观看| 国产精品欧美一区二区三区喷水| 又爽又色禁片1000视频免费看| 国产乱xxxxx97国语对白| www波多野结衣com| 无码专区视频精品老司机| 中文字幕+日韩在线视频| 日韩精品内射视频免费观看 | 影音先锋熟女少妇av资源| 国产小呦泬泬99精品| 喷水+高潮+白浆| 日韩中文字幕在线观看一区二区| 八戒八戒在线www视频中文 | 日本免费一区高清观看| 八戒青柠影院观看免费高清电视剧 | 国产乱人伦精品一二三区二区| 亚洲国产尤物在线观看视频| 久久精品国产久精最新章节| 精品亚洲永久免费aaaa| 国产精品国产三级在线...| 欧美老妇bbbwwbbbww| 丰满人妻无奈张开双腿av| 少妇人妻大乳在线视频| 国精品产品区三区| 中国一级一区二区三区黄色视频| 成人午夜片在线免费观看| 无码综合天天久久综合网| 国产91精品一区二区麻豆网站| 亚洲精品午夜无码成人| 欧美群伦AAAAA片| 老色鬼久久亚洲av综合1| 久久99国产66精品久久| 亚洲国产成人在线视频| 欧美日韩视频免费观看| 国产啊v在线观看| 久久精品免费国产大片| 18精品毛片久久久久| 国产精品午夜成人免费观看| 在火车千女人毛片看看| 岛国精品123区无码| 精品欧美一区二区免费久久久| 亚洲综合色区中文字幕| 日本无乱码高清在线观看| 日韩av在线一区二区三区 | 阿v天堂一区二区在线观看| www.国产一区二区三区av| 日韩+成人+自拍| 一级黄色大片免费观看| 欧美精品一区二区视频| 超碰免费在线观看| 日日噜噜夜夜狠狠久久丁香五月| 国产真实乱偷精品视频| sao货妓女的yin荡生活| 欧美国产一区二区三区小说| 8090+午夜福利视频+在线观看| 亚洲精品视频免费| 国产在线视频不卡一二| 精品一区二区三区自拍图片区| 深夜激情18禁亚洲蜜臀av| 日日噜噜夜夜狠狠视频免费bd| 亚洲伦无码中文字幕另类| 91黄视频在线观看| 国产精品久久久精品三级18| 大地资源中文第二页日本| 在线观看AV黄网站永久| 国产精品一区二区久久| 青青草国产在线视频综合| 97超级精品综合网| 久久人妻少妇嫩草av| 久久精品国产久精国产思思!| 无翼乌18禁全肉肉无遮挡彩色| 疯狂欧美大伦交乱| 狠狠噜天天噜日日噜色综合 | 精品久久久久久中文字幕大豆网 | 17c在线观看免费高清电视剧下载| 国产精品久久国产| 欧美成人aaaaaaaa免费| 国产+精品+在线观看| 九九精品视频在线观看| 久久久91色精品国产一区| 亚洲日韩久热中文字幕| 91亚洲一区二区三区视频| 一本加勒比HEZYO熟女| 精品人人妻人人澡人人爽牛牛| 狠狠色噜噜狠狠狠777米奇小说| 推油少妇久久99久久99久久 | 精品国产91久久久久久| 国产亚洲精品久久久久久大师| 特级西西WWW444人体聚色| 中文字幕一区二区三区久久网站| 欧美亚洲制服丝袜在线| 国产精品久久久久久免费免熟 | 亚洲成Av人在线观看网站| 中文字幕+乱码+高清| 亚洲欧美日韩国产精品网| 成人免费看黄网站在线观看| 国产免费一区二区三区在线观看 | 亚洲国产高清在线一区二区三区| 日本护士被弄高潮视频| 老熟女熟妇一区二区三区| 国产精品日产欧美一区二区三区| 4488CC.成人A片| 达达兔欧美午夜国产亚洲| 亚洲av无码一区二区三区网站| www久久久久久久久| 丰满少妇大力进入av亚洲葵司| 国产美女精品自在线拍免费下载出| 久久精品亚洲天堂| 国产麻豆一精品一av一免费| 夜色毛片永久免费| 亚洲区欧美日韩综合| 日韩免费无码视频一区二区三区| 国语少妇私密推油S卩A视频在线| 国产+亚洲+制服| 欧美熟妇交换做爰XXXⅩ网站| 国产老熟女伦老熟妇视频| 国产极品粉嫩在线观看的软件| 嫩草影视911香蕉| 一级做a爰片久久毛片潮喷妓 | 亚洲乱码精品一区二区三区国产| 试镜床戏(巨肉高h)| 亚洲+视频+免费| 久久激情久久久久久久熟女| 美女网站一区在线观看免费国产| 日本欧美国产一区二区在线观看| 日韩av不卡一区| 91视频中文字幕| 少妇人妻大乳在线视频| 国产内射xxxxx在线| 视频在线一区二区| 免费看又色又爽又黄的国产| 18+视频在线观看| 怡红院怡春院视频免费看| 亚洲老熟女av一区二区| 色欲色香天天天综合网站| 欧美天堂一区二区三区| 4488CC.成人A片| 麻花传媒人妻引诱水电工| 99久久久精品国产美女| 国产99久久久久久免费看| 久久免费一区二区三区国产| 欧美日韩免费高清| 日韩三区在线观看| 欧美日本韩国区一区二视频| 711公侵犯美丽人妻| 骚虎视频在线观看| 国产日韩欧美手机在线视频| 午夜yy一区二区三区视频| 日本一区二区在线视频网站| www.精品综合久久久久| 久久婷婷五月综合色精品| 午夜成人精品福利网站在线观看| 日本一级待黄大片| 久久成人人人人精品欧| 欧美精品v国产精品v日韩精品| 最新中文字幕免费在线观看| 日韩第一页视频在线观看| 26uuu久久噜噜噜噜| 国产一区二区三区在线免费| 日本三级视频在线| 无码人妻精品一二三区免费| 国产一级精品理论片在线| 深夜福利1区2区3区欧美| 大香蕉精品手机在线观看| 人妻精品国产一区二区| 亚洲中文字幕欧美日韩在线| 在线观看一区二区国产欧美| 日本xxxx色视频在线播放 | 亚洲人成精品久久久久桥| 亚洲日本乱码一区二区产线一∨| 欧美一区二区激情| 国产精品亚洲А∨天堂2020| 中国老熟妇在线视频| 亚洲国产高清aⅴ视频| 18+漫画在线看| 日韩欧美国产一区二区在线播放 | 欧洲免费无线码在线一区| 国产精品成人精品久久久| 欧美日韩一级片在线免费观看| 午夜小视频免费观看| 国产成人av大片在线观看| 无码人妻一区二区一牛影视| 成人+欧美+日本| 熟妇人妻系列AV无码一区二区| 少妇特黄一区二区三区| av亚洲产国偷v产偷v自拍| 99国产精品污污污网站免费看| 亚洲一区二区三区久久久| 亚洲欧洲免费黄色视频| 青草久久人人97超碰| 欧美+日本+国产在线观看| 人妻丰满熟妇岳AV无码区HD | 波多野结衣一区二区三区av高清 | 国产精品欧美久久久无广告| 近親伦一区二区三区| 国产精品伊人久久久久久| 一本一本久久a久久精品综合不卡 日本在线一区二区三区欧美 | 国产嫩苞又嫩又紧AV在线| 亚洲日韩在线观看免费视频| 久久无码人妻一区二区三区| 国产理论视频在线观看| 亚洲精品国产自在现线最新| 亚洲+无码+制服| 国产传媒麻豆剧精品av | 青椒国产97在线熟女| 懂色av色吟av夜夜嗨| 办公室制服丝祙在线播放| 欧美国产激情一区二区三区| 国产在线视欧美亚综合| 97这里有精品久久97| 精品人伦一区二区三区蜜桃网站| 亚洲AV综合在线| 26uuu亚洲国产欧美日韩| jizzjizz在线| 国产69精品久久久久9999不卡免费 | 96国产xxxx免费视频| 小俊┅┅快┅┅用力啊┅警花少 | 99热国产这里只有精品9| 一个人看的免费高清视频www | 国产成人久久精品区一区二区| 老牛嫩草一区二区三区消防| 欧美日韩精品人妻九区911| 日日噜噜夜夜狠狠久久无码区| 九九热在线精品视频| 日本haaeX孰妇乱子高潮| 在线a人片免费观看| 日本二区三区黄色视频网站| 日本少妇自慰免费完整版| 中文字幕久热精品视频在线| 天堂资源wwwav啪啪| 日本中文字幕一区二区高清在线| 天堂aⅴ无码一区二区三区| 国产av一区二区二区三区| 一区二区三区四区在线播放| 国产欧美日韩一区二区刘玥| 日本在线观看www| 在线播放五十路熟妇| 国产午夜福利精品久久不卡| 国产免费无遮挡吸乳视频app| 黑人外教人妻HD中字| 最爽的乱婬视频a毛片| 婷久久狠狠一区二区三区| 精品国产露脸久久av| 日韩三级大片91热国产| 在线亚洲精品国产二区图片欧美| 天堂网一区二区在线播放| 久久久久夜色精品国产老牛91| 国产成人亚洲欧美一区综合| x88AV~熟女人妻| 亚洲成av人片一区二区三区| 亚洲国产成人手机在线观看| 国产+欧美+精品| 麻豆产精品一二三产区区| 影音先锋+拘束+高潮| 欧美熟妇交换做爰XXXⅩ网站| 亚洲aⅴ综合色区无码一区| 苍老师在线观看免费播放电视剧中文| 亚洲+精品+手机| 国产精品自在线拍国产| 一区二区三区欧美| 久久婷婷国产剧情内射白浆| 国产在线观看免费全集电视剧网站| 亚洲精品成人片在线观看精品字幕| 亚洲人成综合网站7777香蕉| 国产精品女同一区二区久久夜| 久久精品国产清高在天天线| 一区二区三区欧美精选视频| 777久久久风间由美中出| 亚洲精品成人久久av| 国产清纯美女高潮出白浆+色| 五月天久久久久久九一站片| 国产亚洲又爽ⅴa在线天堂| 亚洲一区二区三区日韩在线视频| 久草香蕉在线视频国产乱码精品一区二区三上 | WWW亚洲色大成网络.COM| 国产在线观看免费高清电视剧大全 | 亚洲精品国产综合99久久夜夜嗨 | 成年偏黄全免费网站| 五月天激情久久久| 亚洲亚洲人成网站网址| 真人少妇高潮久久免费毛片| 精品国产乱码一区二区三区99| 亚洲自拍高清免费| 国产在线jyzzjyzz免费护士| 成人美女视频在线观看| 熟女人妻av完整一区二区三区| 国产稚嫩高中生呻吟激情在线视频| 日本老熟妇乱子伦精品| 在线亚洲精品国产二区图片欧美| 国产精品尤物乱码一区二区| 男女啪啪激情视频免费观看国产| 日本高清中文字幕一区二区三区 | 亚洲三级在线观看| 99精品视频免费版的特色功能| 日韩欧美成人精品一区二区三区 | 爆黑正能量料最新| 96国产xxxx免费视频| 高潮+喷水+白浆| 日本伦理中文字幕| 日本道二区免费v| 色综合欧美亚洲国产| 老熟女草bx×一区二区| 久久婷婷五月综合色和啪| 欧美成人aaaaa片| 美女久久久久久久久国产| 国产免费永久在线观看| 久久婷婷综合99啪69影院| 国产美女视频精品黄频免费观看 | 夜色www国产精品资源站| 伊人久久精品无码av一区| 日韩毛片+高清+下载| 伊人久久综合精品无码AV专区| 按摩+无码+磁力链接| 欧美三级+不卡+在线观看| 欧美+日韩+国产精品| 精品国产一区二区三区久| 高潮+白浆+国产| 一区二区国产日韩欧美综合 | 亚洲成人久久国产精品| 免费观看无遮挡www的视频午夜| 按摩+无码+中文| 一区二区三区在线观看视频| 国产欧美一区二区三区片| 国产一区二区三区四区| 欧美日韩国产一区二区三区| 国产精品二区一区二区aⅴ污介绍 欧美精品v欧洲高清视频在线观看 | 97中文字幕在线观看| 国产黄色片在线播放| 永久免费不卡在线观看黄网站| 国产又黄又爽又猛视频在线观看| 国产又爽又黄又无遮挡的视频| 日韩欧美国产一区呦呦91| 少妇高潮惨叫喷水正在播放| 成人av影视在线| 欧美成人免费在线观看| 免费人成视频x8x8日本| 真实新婚偷拍Chinese| 欧美视频在线观看一区| 国产欧美大片一区二区三区| 79年熟女大胆露脸啪啪对白p| 91精品国产门事件美女写真集| 国产偷国产偷av亚洲清高| 少妇被粗大的猛进出69影院| 蜜桃视频在线观看免费网址入口| 一区二区免费高清观看国产丝瓜 | 亚洲欧美另类自拍小说网| 日韩久久久久久久久久久| 欧美一区二区视频在线| 西西GoGoGo高清在线完整版| 亚洲天堂成视频在线观看| 亚洲精品国产一区二区在线观看| 亚洲情a成黄在线观看动| 国产+亚洲+欧洲| 高H荤爽肉欲文〈np〉宝玉| 7777影视大全免费追剧小别离| 日本一卡二卡视频| 国产传媒麻豆剧精品av国产| 亚洲欧美日韩中文久久| 美女成人亚欧色区视频网| 亚洲精品在线兔费观看视频| 真人一级毛片全部播放| 一区二区三区国产在在线播放| 国产亚洲999精品aa片在线爽| 久久国内精品自在自线图片| 亚洲欧美另类激情| 久久精品国产99久久久古代 | 亚洲不卡av一区二区三区 | 国产男女视频在线免费观看| 无码专区狠狠躁天天躁| 亚洲mv高清砖码区2022伊甸园 | 亚洲精品久久久久久久久久久 | 国产成人在线公开免费视频| 午夜福利国产精品久久| 亚洲黄色中文字幕免费在线观看 | av久久悠悠天堂影音网址| 在线观看免费国产中文字幕| 别揉我奶头~嗯~啊~一区二区三区| 国产剧情中文字幕一区二区| 色综合天天综合欧美综合| 嫩草影视911香蕉| 99精品久久久久久久婷婷| 视频一区国产第一页| 中文字幕国产精品日韩精品动漫 | 天天操天天舔天天干| 美女制服丝袜国产精品网站 | 87福利午夜福利视频少妇| 亚洲产大香伊人蕉在线播放| 天天干天天色综合网| 91亚洲国产成人精品久久久| 一本到综在合线伊人| 少妇做爰全过内谢| 成年人午夜免费视频| 久青草国产在线视频_久青草免| 999在线观看精品免费不卡网站| 18+sexporn| 精品福利一区二区| 成人做爰A片免费看网站草莓| 一个人在线观看免费视频www| 美女裸体色黄污视频网站| 欧美成人精品一级乱黄| www.免费视频| 少妇无码av无码去区钱| 久久99热只有精品首页| 少妇高潮喷水久久久影院| 国产精品黄色在线免费观看| 试镜床戏(巨肉高H)| 人妻在厨房被色诱| 中文字幕人妻丝袜成熟九色| 免费看的av网站| 欧美巨大xxxx做受中文字幕| 日韩Aⅴ黄日韩a影片| 乱码人妻一区二区三区| 一边吃奶一边舔p好爽视频观看| 韩国三级欧美三级国产三级| 91久久精品视频| 黑人好猛厉害爽受不了好大撑| 国产菊眼屁股交3| 免费人成视频网站在线下载| 亚洲成人视频在线观看| 韩国国内大量揄拍精品视频| 国产精一品亚洲二区在线播放| aⅴ网站在线观看| 国产亚洲精品福利视频在线观看| 亚洲AV综合A色AV中文| 国产精品一区在线观看www| 日韩精品在线第一页| 狠狠色丁香婷婷综合久久图片| 亚洲一区二区美女在线观看| 超薄肉色丝袜一二三四| 农村末发育av片一区二区| 偷拍一区二区三区| 无码+四十路+番号| 国产精品女主播阳台| 美丽的小蜜桃《美剧》| 亚洲午夜一区二区久久久久| 欧美精品亚洲国产| 久久国产精品久久w女人spa| 日本精品不卡免费在线播放| 西西大胆人体视频| 妺妺窝人体色www聚色窝| 国内精品久久久久久影院| 菲儿+激情+影音先锋| 中文在线高清字幕电视剧第三季预告 | 亚洲v无码一区二区三区四区观看| 粉嫩99精品99久久久久久桃色| 亚洲精品成人a8198a| 久久久久久久91| 国产精品欧美激情在线播放| 亚洲美女黄色一级啪啪视频| 破了女学生小嫩苞A片| 91av在线视频观看| 永久av免费在线观看| 99久久久国产精品一区| 大战熟女丰满人妻AV| 懂色AV粉嫩AV蜜乳AV| 欧美中文字幕在线| 国产精成a品人v最新网站| 国产裸体舞一区二区三区 | 亚洲国产高清av网站| 久久久久亚洲AV无码专不卡| 国产一区二区三区在线视頻| 午夜日本永久乱码免费播放片| 中文字幕一区二区在线免费观看| 中文字幕人妻丰满熟妇| 日本xxxx裸体xxxx裸体图| 亚洲最大成人综合一区二区| 亚洲精品久久久久久久久av无码| 国产乱人伦精品一区二区在线观看| 免费在线观看国产你懂的 | 日本一区二区三区黄色片v | 18+在线观看网站| 男人+高清无码+一区二区| 亚洲日本在线在线看片4k超清| 99久久婷婷国产综合精品| 国产高清一区二区三区四区 | 美女视频黄免费国产91| 欧美午夜精品久久久久久视| 东北夫妻露脸69口爆视频| A∨天堂精品视频| 亚洲成av人片天堂网站| 色婷婷五月综合亚洲小说| 亚洲乱码国产乱码精品精姦| 99精品视频九九精品视频| 国产熟女高潮精品视频区 | 国产亲子乱婬一级A片| 青柠影院在线观看高清电视剧荣耀| 国产白丝护士av在线网站| 福利片一区二区三区| 色婷婷一区二区三区四区| 亚洲天堂av一区二区三区| 成人精品av一区二区三区网站| 欧美成人精品在线播放免费| 久久精品国产—精品国产 | 国产精品igao视频网| 天美麻花星空高清mv播放音乐| 五月天激情久久久| 男人的ji8怼进骚妇B里| 农村熟妇高潮精品A片| 国产欧美日韩一区二区三区| 西西4444www无码国模吧| 美国午夜福利视频一二区| 日韩精品一区二区在线观看网址 | 蜜桃精品免费久久久久影院| 亚洲精品久久久久久无码色欲四季| av影片在线观看| 成人精品一区二区三区中文字幕| 风间由美+五十路| 无码人妻一区二区三区筱田优| 内射老太太b里面| 菲儿+激情+影音先锋| 亚洲人成人无码www| 蜜桃av噜噜一区二区三区麻豆| 国产精品1000夫妇激情啪| 日日噜噜夜夜狠狠久久无码区 | 亚洲h精品动漫在线观看| 青青草原亚洲视频| 成人做爰黄级a片免费看土方| 亚洲乱码国产乱码精品精乡村 | 国产日产高清欧美一区| 欧美日本二区三区四区人气| www黄色网址com| 大地资源_高清资源_中文| 国产福利一区二区手机观看 | 青娱乐精品视频在线观看| 日韩av手机在线| 免费在线观看av网站| 人妻少妇精品视频一区二区三区| 亚洲老熟女av一区二区| jizz亚洲女人| av网站的免费观看| 大地二资源网高清免费播放| 一级做a爰片久久毛片高清流畅 | 2020久久香蕉国产线看观看| 欧美一级日韩一级| 97人伦色伦成人免费视频| 亚洲av色香蕉一区二区| 国产精一品亚洲二区在线播放| 精品日韩在线播放| 日本+超碰+专区| 国产农村乱人伦精品视频| 国产精品国产精品国产专区蜜臀ah| 国产伦精品一区二区三区照片| 蜜桃91丨九色丨蝌蚪91桃色| 波多野结衣视频在线国产二区 | 亚洲午夜福利精品无码不卡 | 色久综合网精品一区二区| 久久久久久国产精品| 秘书奶咪子真大高H乳夹| 国产1024成人精品视频| 美女黄色免费网站| AV不卡在线永久免费观看| 精品亚洲成熟女人www| 91精品福利视频| 欧美成人看片一区二区尤物| 午夜福利人妻专区一区二区| 国产传媒麻豆剧精品av| 午夜免费理论片A无码| 白嫩少妇各种bbwbbw| 全国最大成人免费视频| 国产黄视频在线观看91| 免费毛片在线看片免费丝瓜视频| 中文欧美日韩久久| 精品无码综合一区二区三区| 欧美成人在线免费观看| 1024精品久久久久亚洲| 姝姝窝人体www聚色窝| 野花影院在线观看视频| 午夜在线不卡精品国产| 爆乳亚洲一区二区'| 美女视频黄免费的亚洲男人天堂| aaa少妇高潮大片免费看| 视频区另类中文字幕欧美日韩| 国产美女视频免费观看的网站| 一级一级特黄女人精品毛片| 国产亚洲网曝欧美台湾丝袜| 日日摸夜夜摸狠狠摸狠狠| 国产三级精品在线| 国产美女直播亚洲一区久久| 人妻少妇精品久久久久久| 久久+蜜臀+综合| 狠狠综合久久av一区二区蜜桃| 欧美视频一区二区| 国产成人午夜片在线观看高清观看| 美女被咬小头头的视频| 一级肉体全黄裸片| 精品国产一区二区三区久| 中文字幕日韩一区二区三区不卡| 午夜精品a片一区二区三区老狼| 国产精品一品二区三区四区18| 中文字幕无线码一区2020青青| 日韩欧美高清在线一区二区| 国产美女视频一区二区三区| 日本欧美在线视频免费一区二区| 国产+日产+欧美| 国产精品入口免费软件| 亚洲精品无码AⅤ中文字幕蜜桃 | 色偷偷尼玛图亚洲综合| 日韩一级片中文字幕| 中文+日韩+欧美| 亚洲国产色婷婷久久精品| 欧美激情videos| 国产精品综合久久久精品综合蜜臀| 欧美日韩激情在线观看免费| 8888888888免费观看在线nba | 精品久久久久久亚洲中文字幕| 国产精品美女久久久久av丝袜| 在线新版天堂资源中文www| 色噜噜狠狠狠狠色综合久不 | 日本老熟妇乱子伦精品| 精品多毛少妇人妻AV免费久久| 好看的生活大片在线观看| 久久久www成人免费毛片女| 肥熟妇搡BBBB搡BBBB| 天天+来吧综合+亚洲| 中文无码乱人伦中文视频播放| 伊人久久大香线蕉综合影院首页 | 日韩欧美在线精品| 国产午夜福利久久精品| 99久久精品无免国产免费75| 欧美精品一区二区在线观看播放| 又色又爽又黄又无遮挡的网站| 9.1+成人+看片| 亚洲欧美日韩高清一区| www.在线观看麻豆| 天堂影院在线观看一区二区亚洲| 亚洲自拍高清免费| 欧美+国产+中文| 亚洲综合小说另类图片五月天| 欧美亚洲国产日韩一区二区| 熟女露脸91Porn| 明星乱淫免费视频欧美| 又色又爽又黄的三级视频| 午夜精品久久久久久久99婷婷| 久久精品久久精品亚洲人| 日本二区三区黄色视频网站| 亚洲成人在线播放| 欧美美女免费国产一区二区| 亚洲第一视频在线播放| 亚洲欧美精品伊人久久| 国产精品自拍合集| 久久久麻豆精品一区二区| 一区二区午夜福利在线看| 在线观看成人国产三级网站视频 | 国产精品精品视频一区二区三区| 制服丝袜+国产精品+中文字幕| 激情视频免费在线观看| 超高清欧美videossexopor | 久久精品久久久久久| 中国少妇无码专区| 国产成人精品午夜福利在线观看| 日韩精品免费视频| 91资源新版在线天堂成人| 99久久国产自偷自偷免费一区| 北条麻妃大战黑人无码| 神马午夜精品95| 国产精品美女WWW爽爽爽视频 | 久久久久无码精品亚洲日韩| 在线日韩中文字幕| 97色伦综合在线欧美视频| 91看片淫黄大片一级在线观看| 亚洲成a人蜜臀av在线播放| 久艹在线观看视频| 国产亚洲精品久777777| 久久婷婷香蕉热狠狠综合| 色拍自拍亚洲综合图区| 亚洲熟妇av一区二区三区宅男| 黄色精品视频一区二区三区| 最近黄色国产mv在线观看| 国产日韩欧美综合精品一区二区| 一本大道大臿蕉视频无码| 思思re热免费精品视频66| 亚洲乱码国产乱码精品精的特点| 日本精品巨爆乳无码大乳巨| 日本高清免费毛片久久| 色综合久久久久综合99| 国产亚洲久久久久久久| 天堂视频中文在线| 人与动人物xxxx毛片人与狍| 国产成人精品自产拍在线观看| 亚洲图片欧美在线看| 老熟妇午夜毛片一区二区三区| 中文字幕制服丝袜第57页| 色综合色欲色综合色综合色综合r| 亚洲自偷自拍另类12p| 国产精品嫩草影院久久久| 久久亚洲春色中文字幕久久久| 中文日本字幕mv在现线观看| 亚洲五月丁香综合视频| 人妻+综合+激情| 国产+欧美+欧洲| 若妻~夫の肉欲中文字幕| 91久久精品一区二区婷婷| 一区二区精品视频大全在线播放| 午夜免费无码福利视频麻豆| 99国产一区二区| 亚洲综合图色40p| 农夫+导航+亚洲| 内射老太太b里面| av一区二区在线播放| 91精品情国产情侣高潮对白文档| 少妇激情av一区二区| 国产成人精品免费视频| 亚欧美日韩香蕉在线播放视频| 夜夜爽一区二区三区| 999在线观看免费高清电视剧| 人妻中文字幕一区三区5| 国产va免费精品高清在线| 亚洲理论中文字幕| 久久人人爽人人片av免费| 黄网站色视频免费观看美女| 久久久久久人妻中文字幕| 又粗又黄又猛又爽大片免费| 一区二区三区欧美视频| 亚洲综合成人av一区在线观看| 精品久久国产字幕高潮一| 午夜视频在线观看国产| 国产羞羞的视频在线免费观看 | 老太太老b乱子伦| 精品人妻中文字幕在线| 电击奶头の尿失禁调教视频| 狠狠色丁香婷婷综合久久图片| 好男人日本社区www| 亚洲AV无码乱码精品| 国产区日韩区欧美区| 亚洲爆乳成av人在线蜜芽| rmvb+下载+在线播放| 久久婷婷五月综合色丁香花| 亚洲天天摸日日摸天天欢| 久久91女精一区禁18看片| 精品国产国语对白av优播av| 十八禁污视频在线观看无遮挡| 亚洲人交乣女bbw| 亚洲国产97久久精品无色| 伊人久久大香线蕉av色| 伊人久久大香线蕉综合bd高清| 欧美3p在线观看| 日韩人妻无码一区二区三区 | 高潮+国产+在线观看| 一本到综在合线伊人| 久操视频免费在线| 精品国产av一区二区三区蜜臀| 国产成人精品三级在线影院 | japanese熟女熟妇乱milf| 92国产精品午夜福利免费| 天海翼+无码+磁力| 少妇人妻无码专区毛片 | 主播亚洲韩国一区二区黄片| 中文字幕一级二级三级| 黑茎大战欧美白妞高潮喷白欤 | 中文字幕人妻在线中字| 国产精品一区二区三久久不卡| 日本中文字幕一区二区高清在线| 99精品全国免费观看视频| 亚洲精品国产中文字幕在线| 区二区三区玖玖玖| 色八区人妻在线视频免费| 欧美激情精品久久| 欧美+群p+在线观看| 亚洲精品一区久久久久久| www.超碰在线观看| 久久99热这里只有精品23| 超碰夫妻91无码免费播放器 | 国产精品久久久久久影视不卡| 香蕉视频1024| 99久久精品费精品国产| 国产乱子伦视频一区二区三区| 大胆欧美高清videosedexohd | 国产亚洲精品福利视频在线观看| 鲁大师红楼影视在线观看| 狠狠躁夜夜躁人人爽天天不 | 国产丰满麻豆vⅰde0sex| 中文在线8资源库| 肥臀熟妇淫语对白| 337p日本欧洲亚洲大胆在线| 重囗味sM群虐一区二区| 精品免费国产一区二区三区四区介绍 | 欧美黄视频在线观看| 亚洲+在线+国产| 中文天堂在线www最新版官网| 国产成人三级一区二区在线观看一| 亚洲免费在线观看| 你懂的欧美一区二区三区| 少妇一区二区三区无码视频| 国产传媒在线播放| 波多野结衣《温泉人妻》| 亚洲欧洲精品专线| 国产欧美日韩精品一区二区三区| 国产淫语对白说脏话aV| 国产精品久久久久一区二区| 亚洲欧美日本在线观看视频| 日本精品少妇一区二区三区| 亚洲国产av午夜精品一区| caoporn+视频| 中国特级黄色毛片| 麻豆国产一区二区三区| 日韩在线视频+在线播放| 国产亚洲又爽ⅴa在线天堂| 日韩精品视频在线视频播放 | 国产无套粉嫩白浆在线| 按摩+无码+磁力链接| 加勒比色综合久久久久久久久 | 18+av在线观看| 中字幕久久久人妻熟女天美传媒| 台中文娱乐网22ww| 亚洲国产欧美另类| 免费精品视频在线观看| 国产丝袜在线精品丝袜不卡| 亚洲中文字幕乱码av波多ji| 在线视频国产网址你懂的| 国产精品免费观看久久| 免费大片一级a一级久久三| 久久人人爽人人爽人人片亞洲| 久久亚洲精品人成综合网| 日韩欧美在线观看污视频| 乱人伦中文视频在线观看| 又色又爽又黄的视频网站| 国产丝袜在线精品丝袜不卡| 国产又粗又长又爽又猛视频| 人人爽日日躁夜夜躁尤物| 中国一级一区二区三区黄色视频 |