精品欧美无人区乱码毛片,欧美人与动牲交久久,91久久久久久亚洲精品,日韩人妻中文一区二区三区,久久精品国产一区二区,欧美精品午夜理论片在线网址,久久久久久久麻豆,欧美永久免费精品,欧美在线播放一区二区欧美馆

佳學(xué)基因遺傳病基因檢測機(jī)構(gòu)排名,三甲醫(yī)院的選擇

基因檢測就找佳學(xué)基因!

熱門搜索
  • 癲癇
  • 精神分裂癥
  • 魚鱗病
  • 白癜風(fēng)
  • 唇腭裂
  • 多指并指
  • 特發(fā)性震顫
  • 白化病
  • 色素失禁癥
  • 狐臭
  • 斜視
  • 視網(wǎng)膜色素變性
  • 脊髓小腦萎縮
  • 軟骨發(fā)育不全
  • 血友病

客服電話

4001601189

在線咨詢

CONSULTATION

一鍵分享

CLICK SHARING

返回頂部

BACK TO TOP

分享基因科技,實(shí)現(xiàn)人人健康!
×
查病因,阻遺傳,哪里干?佳學(xué)基因準(zhǔn)確有效服務(wù)好! 靶向用藥怎么搞,佳學(xué)基因測基因,優(yōu)化療效 風(fēng)險(xiǎn)基因哪里測,佳學(xué)基因
當(dāng)前位置:????致電4001601189! > 檢測產(chǎn)品 > 生殖健康 > 男性生殖 >

【男性不孕癥】男性不孕癥的遺傳因素和非遺傳因素——基因檢測準(zhǔn)嗎

(1) 環(huán)境壓力是如何降低精子質(zhì)量和降低男性生育能力的;(2)哪些化學(xué)元素會導(dǎo)致男性生殖系統(tǒng)的氧化應(yīng)激和免疫遺傳學(xué)改變;(3) 多態(tài)性如何與生殖潛能和促抗氧化機(jī)制的變化相關(guān),作為男性生殖條件的病理生理障礙的標(biāo)志;(4)免疫遺傳性疾病的環(huán)境應(yīng)激因素如何伴隨男性不育和反應(yīng);環(huán)境和遺傳危險(xiǎn)因素的分布和流行程度如何。

男性不孕癥的遺傳因素和非遺傳因素

Abstract

We explain environmental and genetic factors determining male genetic conditions and infertility and evaluate the significance of environmental stressors in shaping defensive responses, which is used in the diagnosis and treatment of male infertility. This is done through the impact of external and internal stressors and their instability on sperm parameters and their contribution to immunogenetic disorders and hazardous DNA mutations. As chemical compounds and physical factors play an important role in the induction of immunogenetic disorders and affect the activity of enzymatic and non-enzymatic responses, causing oxidative stress, and leading to apoptosis, they downgrade semen quality. These factors are closely connected with male reproductive potential since genetic polymorphisms and mutations in chromosomes 7, X, and Y critically impact on spermatogenesis. Microdeletions in the Azoospermic Factor AZF region directly cause defective sperm production. Among mutations in chromosome 7, impairments in the cystic fibrosis transmembrane conductance regulator CFTR gene are destructive for fertility in cystic fibrosis, when spermatic ducts undergo complete obstruction. This problem was not previously analyzed in such a form. Alongside karyotype abnormalities AZF microdeletions are the reason of spermatogenic failure. Amongst AZF genes, the deleted in azoospermia DAZ gene family is reported as most frequently deleted AZF. Screening of AZF microdeletions is useful in explaining idiopathic cases of male infertility as well as in genetic consulting prior to assisted reproduction. Based on the current state of research we answer the following questions: (1) How do environmental stressors lessen the quality of sperm and reduce male fertility; (2) which chemical elements induce oxidative stress and immunogenetic changes in the male reproductive system; (3) how do polymorphisms correlate with changes in reproductive potential and pro-antioxidative mechanisms as markers of pathophysiological disturbances of the male reproductive condition; (4) how do environmental stressors of immunogenetic disorders accompany male infertility and responses; and (5) what is the distribution and prevalence of environmental and genetic risk factors.

1. Introduction

Nowadays a large pool of substances potentially harmful for human health is incessantly present in the natural environment. Toxic metals (Cd, Pb, Hg, As, Be, V, Ni), dioxins, anti-metabolites, dyes, herbicides, fungicides, or even house dust constitute a detrimental mixture that people are exposed to practically every day [1,2,3,4]. Therefore, essential systems of the human organism are continually subjected to potential damage. Among them, the reproductive system, especially spermatogenesis, appears to be affected, too [5]. Long-term exposure to destructive factors may lead to occupational diseases, irreversible changes in the reproductive system (worsening of sperm quality, disorders in spermatogenesis), or even to infertility [6]. In this respect, toxic heavy metals and certain chemical pollutants (dichloro-diphenyl-dichloro-ethane DDT or methoxychlor) are considered as oxidative stress inducers [7]. Oxidative stress is defined as a lack of balance between per-oxidation and anti-oxidation, directly connected with overproduction of reactive oxygen species ROS [8]. It is difficult to avoid certain factors that induce oxidative stress, especially in cities due to traffic and industrial activity (smog, traffic fumes), but other sources of ROS may remain under control. Cessation of smoking, introducing a low-fat diet, or regular physical activity can be simple strategies against oxidation [9]. One of the causes of oxidative stress is the decrease of antioxidant enzymes (superoxide dismutase SOD, catalase CAT or glutathione peroxidase GPx) which erodes the line of defense against reactive forms of oxygen [10]. Thus, introducing an anti-oxidative diet consisting, e.g., of fruits and vegetables rich in vitamins A, C, E, and B, is recommended and beneficial for strengthening the anti-oxidative potential of the body [11,12,13]. The male reproductive condition can be improved by supplementation of beneficial elements such as zinc or selenium that cause positive changes in sperm count and motility [14]. Melatonin, beta-carotene, or luteine also contribute to maintaining high semen quality [15,16].
Since oxidative stress contributes to serious impairments in genetic composition, such as damage of chromosomes or breakages in the deoxyribonucleic acid DNA [8], it is valuable to analyze genetic reasons for male infertility. On chromosome Y, microdeletions in the AZF-region (called the azoospermic factor) result in spermatogenic failure and a lack of sperm cells in semen [17,18]. The world frequency of AZF microdeletions is estimated in the range of 1–15% of cases of azoospermic infertile men [19,20]. Other common reason for male infertility is cystic fibrosis, i.e., a recessive disease with a frequency of occurrence of 1/2500 live births, is caused by mutations in the CFTR gene on chromosome 7 [21]. Overproduction of thick, sticky mucus in organs with mucous glands is a typical symptom of the disease. In addition to pathological changes in the alimentary or respiratory systems, cystic fibrosis also contributes to infertility through clogging spermatic ducts with mucus [22,23]. The condition often accompanying cystic fibrosis is a congenital bilateral absence of the vas deferens, manifested as aplasia of spermatic ducts and an obstruction of sperm outflow into the urethra. Similarly to cystic fibrosis, congenital bilateral absence of the vas deferens is caused by mutations in the CFTR gene [24,25]. Finally, impairments on the X chromosome play an essential role in pathogenesis of Klinefelter syndrome KS (the presence of an extra X chromosome in the male karyotype) and Kallmann KAL syndrome (mutations in the KAL1 gene on the X chromosome; KAL1 is a human gene which is located on the X chromosome at Xp22.3 and is affected in some male individuals with Kallmann syndrome). The former is manifested by small testicles, degenerative changes in spermatic ducts, azoospermia, and decay of potency [26,27,28,29,30], while the latter is manifested in a deficiency in the sense of smell, delayed maturation, small testicles, and underdevelopment of the penis [31,32,33,34].
We reviewed the recent data in an effort (1) to estimate the diversification of potentially harmful factors accumulated in the modern environment (from heavy metals to domestic dust) and their influence on human fertility; (2) to establish the relationship between various pollutants and oxidative stress intensification; (3) to find effective strategies in overcoming oxidative stress in everyday human life, thereby improving reproductive conditions; (4) to analyze common genetic factors underlying male infertility associated with chromosome Y (AZF region); and (5) to analyze the most common factors underlying male infertility associated with chromosome 7 and the X chromosome.
This review of existing research will broaden our knowledge of the impact of environmental stressors on antioxidant reactions, and changes of lipoperoxidation and immunogenetic disorders in patients with symptoms of infertility. The results can be used in the prophylaxis of male infertility among patients inhabiting degraded areas. It will also answer some questions about the causes of infertility in men in whom it was previously unknown. Linking the biochemical and morphological parameters of semen with immunogenetic disorders will bring clarification to the role of environmental factors in shaping responses to various stressors. Analysis of the activity of enzymatic antioxidative mechanisms, lipoperoxidation intensity, and the levels of stress proteins and non-enzymatic mechanisms jointly can give a more complete picture of conditions shaping the response of an organism to environmentally diversified stress. Simultaneous analysis of the degree of the accumulation of different physiological elements in the semen of men from polluted areas, as well as lipoperoxidation processes and reactions from oxidative enzymatic and non-enzymatic systems, will map the causal connections with the reproductive condition of particular patients.
Insufficient knowledge about the causes of impaired reproductive potential results in an inability to implement specific treatments, which is associated with a lack of positive outcomes [35]. This review allows an understanding of the role of environmental factors in shaping the body’s defense capabilities in the area of reproductive condition. In stress conditions physiological responses of the reproductive system can be estimated based on the changes in the activity of antioxidant enzymes, biochemical and structural modifications of proteins caused by oxidative stress involving products of advanced oxidation protein, assessment of oxidative stress by changing the quantity of products of advanced oxidation protein, or changes in the lipoperoxidation and pro-antioxidant mechanisms inactivation of ROS [8,11,12,14,15]. The lack of knowledge of the causes of impaired reproductive potential results in an inability to implement specific treatment, which is associated with the lack of positive outcomes (pregnancy). This review will make relevant environmental comparisons. It will allow an understanding of the importance of environmental factors in shaping the body’s defenses and capabilities in the field of reproductive condition. The results can be used in enhancing diagnosis and deciding on appropriate infertility treatment. Physiological responses in the semen and blood of patients (specified above) are indicative of changes in the reaction to stress conditions.
A further purpose of this review is to analyze the immunological mechanisms that determine male reproductive potential and the impact of environmental stress on semen quality parameters. This is of major significance since bioaccumulation of toxic metals causes oxidative stress, which negatively impacts the condition of the semen. These events lead to alterations in the activity of caspase proteins leading to apoptosis in the germ cells [8]. Most of the negative changes mentioned above result from degradation of the natural environment with toxic metals, pesticides, or chemicals used in the industry [4,6,7]. Since oxidative stress may contribute to DNA damage, the connected causes of human infertility appear at the genetic level. Mutations responsible for pathophysiological changes in the human reproductive system occur in Down syndrome (trisomy of autosome 21), Edwards syndrome (trisomy of autosome 18), Patau syndrome (trisomy of autosome 13), Klinefelter syndrome, Turner syndrome (complete or partial absence of one of the X chromosomes in all cells of the body or a portion thereof), or cystic fibrosis (mucoviscidosis) [23,36]. These mutations may create a serious, usually irreversible threat to male fertility with diverse prevalence. Simultaneous analysis of the degree of accumulation of different physiological elements in the semen of men from polluted sites will trace the causal connections listed above in parallel with the reactions of the biochemical systems and the level of elements, lipoperoxidation, and oxidative enzymatic and non-enzymatic systems. Here it is important to take account of links between environmental elements and conventional pathologies associated with male infertility in correlation with selected biochemistry (total protein, albumin, cholesterol, glucose, fructose, bilirubin, alanino-aminotransferase ALAT, aspartat-aminotransferase ASPAT, urea, enzymes (akrosine, alkaline, and acid phosphatase), and thioneins. Complementing this evaluation is the analysis of the extracellular matrix, the components of which also mediate intercellular communication through (1) binding of cytokines or concentrate them in certain locations; (2) presentation of cells; and (3) direct binding of the individual components with specific cell receptors, which causes specific changes in the cell metabolism.
This review analyzes the immunological mechanisms that determine male reproductive potential and the impact of environmental stress on semen quality parameters. The influence of chemical elements with different physiological groups on the morphometry of semen of people living in areas with varying degrees of contamination and degradation changes (acidification, salinity, increased levels of Ca, Fe, Mg, and trace elements) is discussed. Bioaccumulation of many elements causes oxidative stress, which leads to apoptosis and determines the condition of the semen. These events lead to alterations in the activity of caspases and induction of apoptosis in the germ cells. We examine the activity of antioxidant enzymes, which may differ significantly to the control group. Chemical elements, not yet analyzed in the study of infertility (Al, Ni, Cr, Mn, As, Se, Si), play an important role in the induction of immunogenetic changes and affect the activity of antioxidant enzymes. The changes may result from degradation of the environment with heavy metals, pesticides, and chemicals used in industry. These genetic mutations are responsible for the genetic pathophysiological changes (as above). Simultaneously, one of the causes of male infertility is immunogenetical change. Therefore, we should consider the cumulative impact of xenobiotics in the semen on the occurrence of mutations responsible for these diseases and disorders of spermatogenesis, in the form of the expression and deletion of genes. Previous studies give conflicting results about the effects of chemical elements on sperm. Much of the work relates to their direct impact or has been carried out on the seed derived from persons occupationally exposed [37]. This knowledge is incomplete and needs to be reviewed, but the condition of human sperm deteriorates significantly. Further research should broaden the understanding of the impact of elements on immunogenetic disorders in male infertility, both in lipoperoxidation and antioxidant activity, as well as reactions with reductases and stress proteins. This will determine the distribution of the prevalence of these changes in regions where such research has not been conducted. This will enable the mapping of the distribution of immunogenetic changes, the dangerous mutation of DNA, semen biochemical parameters, and concentrations of chemical elements in it. The results can be used in the prevention of infertility in women living in degraded areas. They will also shed light on the causes of infertility in those men who were previously fertile. Linking biochemical analysis of semen and immunogenetic changes elucidates the mechanisms and clarifies the role of heredity factors in shaping the response to environmental stress by oxidative enzyme systems. The results can be used in the diagnosis of male infertility undergoing environmental weakening. In addition, the levels of oxidative enzyme activity circuits and an analysis of the lipoperoxidation intensity and protein levels of stress can give an index of sperm health conditions in humans.

2. The Current State of Knowledge

2.1. Molecules Affecting Male Infertility

Currently, 30% of men suffer from idiopathic infertility [38]. The standard semen analysis is still the most important clinical assessment of male reproductive potential. The results of this analysis determine ejaculate capacity, sperm count, motility, and morphology. Among the basic components of the sperm plasma ions Na, K, Mg, Ca, Fe, Cu, Zn, and Se are the most significant [39]. The potassium concentration in the sperm plasma should be 27 ± 5 µmol (1.1 mg × mL−1). When the ratio of Na/K exceeds 1:2.5, it affects sperm motility and an increased concentration of potassium cations increases the electrical charge of the sperm cell membrane decreasing the motility of cell [40]. Each element plays a different role in the body, thus destabilizating their level has serious consequences. Ca, Mg, and other electrolytes maintain osmotic equilibrium and are involved in the transport of nutrients. Zn and Fe are involved in redox processes. Zn and Mg are stabilizers of cellular membranes and coenzymes of SOD, which prevents the harmful effects of free radicals on sperm [13,15]. Zinc, as one of the most important factors influencing male sexuality, is involved in processes of reproduction, in both hormone metabolism and sperm formation, as well as in the regulation of sperm viability and motility [14]. Zn deficiency results in decreased levels of testosterone and decreased sperm count, potency disorders, reduced sperm viability and even infertility [41]. Zinc, as an antioxidant plays an important role in the protection of spermatozoa from the attack of free radicals. High levels of Zn in the semen decrease the activity of oxygen radicals, maintaining sperm in a relatively quiet and less motile state, resulting in a lower consumption of oxygen which allows the storage of energy needed during the passage through the genital tract. Zn also has a protective effect against too high a concentration of Pb (contributing to reduction of fertility) [15]. Even with a high Pb accumulation, elevated Zn concentration has a protective effect, reducing the harmful effects of this element [42,43]. Chia et al. (2001) [44] have demonstrated a correlation between the concentration of Zn in the blood and semen plasma, and the quality of sperm from fertile and infertile men. The results showed lower Zn levels (accompanying lower morphologic parameters) in patients with impaired fertility (183.6 mg·L−1). In fertile patients Zn level was much higher (274.6 mg × L−1). Thus, Zn has a positive impact on fertility and potency through participation in spermatogenesis [44]. An important role of Zn was also described by Giller (1994) [45], indicating that semen volume decreases by 30% at a low Zn concentration. Similarly, Mohan et al. (1997) [46] have shown that men with low daily Zn intake (only 1.4 mg) displayed a significant decline in semen capacity and concentration of testosterone in serum. A relationship was also shown between the level of Zn in serum and semen in oligozoospermic infertile men, with significantly lower levels of Zn in serum and semen of men with fertility problems [46].
The second element of fundamental importance for semen quality is selenium, which occurs in high concentrations in semen and plays an important role in maintaining reproductive condition [13,14]. Selenium is an essential microelement at low levels of intake and produces toxic symptoms when ingested at level only 3–5 times higher than those required for adequate intake. Se-counteract the toxicity of heavy metals such as Cd, inorganic mercury, methylmercury, thallium and to a limited Ag extent. Although not as effective as Se, vitamin E significantly alters methylmercury toxicity and is more effective than Se against silver toxicity. Selenium can particularly counteract Hg toxicity, and is the key to understanding Hg exposure risks. Selenium compound selenide binds mercury by forming mercury selenide, which neutralizes the harmful effect of Hg. However, once that bond is made, Se is no longer available to react with selenoproteins that depend on it. Human studies have demonstrated that selenium may reduce As accumulation in the organism and protect against As-related skin lesions. Se was found to antagonize the prooxidant and genotoxic effects of As. From epidemiological point of view Se interaction with heavy metals raises a large interest. Although antagonistic influence of Se on the bioaccumulation of Hg, Cd, and As is well known, interaction mechanism between those elements in humans remain unexplained [47]. Selenium takes part in the constitution of the mitochondrial shield in sperm cells and influences the condition and function of sperm, and is effective in the treatment of impaired fertility [47]. Simultaneously, selenium as part of selenoproteins, playing a key role in defending the body against oxidative stress [48]. Phospholipid hydroperoxide glutathione peroxidase PHGPx changes the physical properties and biological activity during the maturation of sperm. In spermatids it displays enzymatic activity and is soluble, while in mature sperm it is present as an inactive and insoluble protein. Inside the mature sperm PHGPx protein constitutes at least 50% of the material of the shield [49]. However, toxic heavy metals (Cd, Pb, Hg, Ni, Cr, B, V) impair testicular function and the mechanisms of their toxic activity in the nucleus include damage of the vascular endothelium of the Leydig’ and Sertoli’ cells but these heavy metals not only damage the vascular endothelium but as stated for example, in [50,51], Cd and Pb cause an alteration in the functionality of the Sertoli cell even at subtoxic doses. Oxidative stress occurs as a result of their accumulation due to impairment of antioxidative defensive mechanisms and intensification of the inflammatory reaction leading to changes in the morphology and function of the testes [1,2,6,7,10,52,53]. The effect of these changes can be necrosis of the seminiferous tubules, which inhibits the synthesis of testosterone and impairs spermatogenesis. Short-term exposure to these metals increases the activity of SOD, CAT, GPx, and glutathione reductase GR, which is indicative of the activation of defense mechanisms and the adaptive response of cells [9,54].
In order to fully analyze the problem, we should distinguish precisely the functions of individual forms of GPx and their importance for the male reproductive system. Glutathione peroxidases are composed of eight forms that are distributed in different tissues with differences among species [55]. They catalyze the reaction needed to remove hydrogen peroxide H2O2 and other hydroperoxides using reduced glutathione GSH. In order to keep removing hydroperoxides, the oxidized glutathione disulfide GSSG must be reduced back to GSH by the GR enzyme using NADPH as reducing agent. There are selenium-dependent and selenium-independent GPx forms. The first group is represented by GPx1–4 and the second group by GPx5–8. GPx forms can also reduce peroxynitrites ONOO, a very reactive ROS capable of harming cells promoting tyrosine nitration in proteins involved in motility and sperm capacitation [55]. Of great importance for spermatozoa is the presence of the selenoprotein phospholipid hydroperoxide GPx4 (PHGPx), a structural protein which is essential for normal formation of the mitochondrial sheath and constitutes about 50% of the sperm midpiece protein content localized in the mitochondrial helix. The need for mitochondrial PHGPx (mGPx4) to assure normal sperm function has been demonstrated in humans since infertile men have shown low sperm motility with abnormal morphology [55]. It is important to highlight that what is relevant for fertility is the ability of mGPx4 to interact with hydroperoxides to form the mitochondrial sheath during spermiogenesis and not its antioxidant activity which is less than 3% of the total PHGPx protein content in ejaculated spermatozoa. Selenium is essential to assure normal GPx4 function during spermiogenesis as it was confirmed by the presence of abnormal spermatozoa with poor motility [55].
The sperm chromatin formation during spermiogenesis is accomplished in part by the nuclear isoform of GPx4 (snGPx4); this enzyme mediates the oxidation of S–H groups of protamines by hydroperoxides. It is possible then that other proteins are involved in the sperm chromatin re-modelling and potential candidates are peroxiredoxins. The contribution of GPx to the protection against ROS is limited in human spermatozoa since human spermatozoa, testes, or seminal plasma lacks GPx2, GPx3, and GPx5 and GPx4 are insoluble and enzymatically inactive in mature ejaculated spermatozoa [55]. It seems that the role of GPx1 as important antioxidant enzyme is questionable because Gpx1−/− males are fertile and they are not susceptible to oxidative stress and lipid peroxidation does not increase in human spermatozoa incubated with H2O2 in the presence of carmustine (GR inhibitor) or diethyl maleate (binds to GSH making it non-accessible for GPx/GR system) that affects the GPx/GR system activity [55].
In turn, Gladyshev et al. (2016) [56] indicates that the human genome contains genes coding for selenocysteine-containing proteins (selenoproteins). These proteins are involved in a variety of functions, most notably redox homeostasis. Selenoprotein enzymes with known functions are designated according to these ones. Selenoproteins with no known function appear to be important but require further research.
A particularly dangerous heavy metal for semen quality is lead. It is increasingly recognized that impaired fertility in men can be associated with environmental and occupational exposure to lead [10,57]. The mechanism of action of lead on male gonads is complex and includes effects on spermatogenesis, steroidogenesis, the redox system, and damage of the vascular endothelium of the gonads by free radicals, resulting in morphological changes (weight changes of the testes and seminal vesicles, their fibrosis, a reduction in the diameter of the seminiferous tubules, and a reduction in the population of reproductive cells by apoptosis) and functional changes (decreased testosterone synthesis). Lead may affect the function of Leydig’ cells impairing steroidogenesis, decreasing the levels of testosterone and worsening the quality of sperm” but this observation is valid not only for Leydig cells but also for Sertoli cells that are the sentinel of spermatogenesis [1,7,51,54]. The phenomenon of oxidative stress in animals poisoned with lead confirms an increase in lipid peroxides and decomposition of thiobarbituric acid reactive substances TBARS [58].

2.2. Antioxidant Mechanisms

A significant role in the pathogenesis of infertility involves redox reactions because the germ cells are capable of producing ROS. A certain physiological amount of reactive metabolites of oxygen, rising in the respiratory chain, is necessary to maintain normal sperm functionality. However, due to overproduction of ROS or the exhaustion of the compensating possibilities of antioxidative mechanisms in sperm, oxidative stress begins to increase [7,9]. Subsequently, it leads to changes in peroxidation of lipid membranes of sperm, impairing the structure of membrane receptors, enzymes, transport proteins, and leads to an increase in the level of DNA fragmentation of sperm [59,60,61]. The balance between ROS formation and the protective actions of antioxidative system is necessary to sustain normal functions of an organism [8]. The important area of influence of essential elements are metabolic mechanisms, i.e., reactions involving compounds quenching excited molecules, non-enzymatic mechanisms (ceruloplasmin, transferrin, polyamides, transitional metals, sequestration of metals, thioneins), antioxidant enzymatic mechanisms (SOD, CAT, GPx, GR, glutathione S-transferase GST, secretory phospholipase A2 sPLA2, reactions involving heat shock protein HSP, chaperones, and proteases [59,60,61]. Due to the particular sensitivity of male reproductive cells to the oxidative action of ROS, mammalian semen is equipped with a variety of enzymatic and non-enzymatic compounds, which neutralize the excess of ROS, localized in the seminal plasma and inside sperm cells [59,60,61]. A direct relationship between the SOD activity and sperm damage and sperm motility was confirmed by numerous researchers [9]. The addition of exogenous SOD to a suspension of sperm cells protected their vitality and significantly affected motility by inhibiting the destruction of biological membranes. However, some researchers could not confirm the effect of SOD on semen quality and sperm fertilizing potential [62,63].
The most effective antioxidative enzyme in sperm apart from SOD is CAT [12,13]. It was found inside sperm cells and seminal plasma, with activity significantly reduced in infertile men [64]. Another important enzyme that protects cells from the toxic effects of H2O2 is GPx. The sperm GPx is located in the mitochondrial matrix. Its activity is largely related to the level of Se in semen [13,14,15]. The important protective role of GPx in counteracting the loss of sperm motility as a result of spontaneous lipoperoxidation has been widely confirmed. Many researchers have proved the relationship between peroxidative damage of sperm and male infertility [62], because lipoperoxidation is one of the most important processes related to the action of ROS. The accumulation of damaged lipid molecules lowers the fluidity of biological membranes and the structural damage of membranes has a direct impact on their receptor and transport functions [9].

2.3. Genetic Effects

The accumulation of heavy metals in an organism and the impact of free radicals can cause immunogenetic disorders, chromosomal aberrations and consequently lead to serious genetic defects, causing infertility include numerical and structural aberrations that may affect autosomes or sex chromosomes [65,66,67,68]. Chromosomal aberrations appear in 7% of infertile men, that is 30 times more frequently than in the general population [69,70]. The most common chromosomal cause of male infertility is Klinefelter syndrome (>4%) [71]. In this disease, similarly to Turner syndrome, partial fertility is maintained only in mosaicism [66,72]. In Klinefelter syndrome changes in nuclear structure leading to infertility may be a result of the presence of two alleles of many genes associated with the X chromosome, which typically operate on the principle of disomy and do not undergo inactivation during lyonization of extra chromosome. In 15% of males with azoospermia and 5% with oligozoospermia display an abnormal karyotype [71,73]. Another cause of male infertility is microdeletions of the Y chromosome or aberrations and mutations of genes responsible for male sexual development, e.g., located in the short arms of the Y chromosome in the region Yp11.2 (the Yp11.2 region containing the amelogenin gene on the Y chromosome AMELY locus). The amelogenin gene on the Y chromosome, AMELY, is a homolog of the X chromosome amelogenin gene AMELX, and the marker is employed for sexing in forensic casework, SRY gene (a sex-determining gene on the Y chromosome). SRY gene, as a sex-determining gene on the Y chromosome in mammals that determines maleness and is essential for development of the testes; testis-determining factor TDF, known as sex-determining region Y SRY protein, is a DNA-binding protein (known as gene-regulatory protein/transcription factor) encoded by the SRY gene that is responsible for the initiation of male sex determination in humans). Another reason for male infertility is the partially symptomatical form of cystic fibrosis, responsible for 60% of the so-called obstructive azoospermy [23,36]. The true symptomatic form of cystic fibrosis is the result of mutations in the CFTR gene and in 95% cases of men leads to infertility [74,75].
The current state of knowledge about male fertility conditions does not give clear and unambiguous answers to the cause of the growing problem of infertility. We cannot determine unambiguously which environmental factors have the greatest impact on human fertility. It is, therefore, necessary to continue research in the field of concentration of elements, oxidative enzyme activity, and the incidence of immunogenetic disorders in the seed. These analyses are a benchmark in project design, making it possible to verify the views on the impact of environmental stressors on male fertility. The results of these studies can be applied in the prevention of infertility and contribute to the development of new diagnostics.

3. Potentially Harmful Factors in the Natural Environment: From Heavy Metals to Domestic Dust

Toxic heavy metals are one of the main sources of causative male infertility. From the beginning of their activities at the cellular level, they generate a series of reactions that destabilize normal processes within the cell organelles. Such a permanent and deepening interaction causes a gradual shift of the metabolic pathways and biochemical processes of the cell, including a change in normal transcription and translation in the nucleus. This ultimately generates genetic polymorphisms, responsible for the formation of changes in the male reproductive condition [1,2,52]. Among other destructive factors generally present in the environment we can enumerate combustion products, traffic fumes, dioxins, polychlorinated biphenyls, pesticides, food additives, and persistent pollutants, such as DDT [4,5,6,53]. A separate group includes potentially harmful factors that remain under human control, such as smoking, obesity, and a sedentary lifestyle. All of these can play the role in lowering reproductive condition resulting in decreased sperm counts, even among very young men [6]. Certain metals that we are exposed to almost every day, e.g., Cu, Pb, Cd, or Mo influence reproductive hormone levels (such as testosterone). Simultaneously, Meeker et al. (2010) [2] proved that certain interactions between metals in humans can modify serum testosterone level. Based on analysis of 219 relatively young men, researchers observed a 37% reduction in testosterone levels in the case of men with high Mo and low Zn concentrations in blood. Additionally, they observed higher Cu and Cd levels accompanying low Zn concentration among smokers. However, Buck et al. (2012) [53] broadened their investigation to both men and women reproductive conditions with environmental Cd and Pb exposure. This study sampled over 500 couples willing to have a child. The researchers measured the time to pregnancy in each case, and included daily questionnaires, filled by couples, about their lifestyles. The investigation encompassed two regions, selected to ensure a range of environmental exposures to heavy metals. Their results confirmed that environmentally relevant concentrations of blood Pb and Cd make time to pregnancy longer. Thus, couple fecundity decreased with more frequent exposures to toxic metals.
Generally, toxic metals are considered as strong oxidative stress inducers and endocrine disruptors in humans, and are particularly harmful to the testis. Similarly to Pb, Hg, and estrogenic compounds, Cd can seriously disrupt the functionality of the testis and, as a consequence, reduce sperm count and quality. Siu et al. (2009) [52] enquired how exactly Cd damaged the testicles and stated that the disruption of the blood-testis barrier applied to complex pathways of signal transduction and signaling molecules like kinase p38 (human mitogen-activated protein kinase 14/p38 alpha (active enzyme recombinant, human protein kinase p38; stress-activated protein kinase). Cadmium exposure appears to be a potential risk factor for testis injury via oxidative stress stimulation, endocrine destabilization, and certain interactions with protective elements, such as Zn [52]. Moreover, in the study conducted by [1], researchers expanded the pool of analyzed metals and testified to the environmental toxicity of Cd, Cr, Pb, Hg, As, and especially Mo. The authors linked semen quality with estimated blood concentrations of the enumerated elements. That investigative group involved over 200 men (patients from infertility clinics). The most surprising finding concerned molybdenum. Researchers observed a dose-dependent relationship between Mo and a decrease in sperm concentration and motility. Based on this result we could add molybdenum to the list of potential threats to male fertility. However, the toxicity of Cd, As, Pb, and Hg and their influence on a decline in semen quality was more obvious [1]. Simultaneously, Vaiserman (2014) [4] mentions that endocrine-disrupting chemicals are invariably present in the environment of industrialized societies. The list includes dioxin, dioxin-like compounds, phthalates, polychlorinated biphenyls, pharmaceuticals, agricultural pesticides, and industrial solvents. Their destructive role in chronic endocrine pathologies is doubtless and leads to negative estrogenic and anti-estrogenic activity. However, the damage is particularly detrimental at a genetic level, causing a threat to the normal development of the organism, which has been widely analyzed in animal models, e.g., exposure to dioxins disrupts the expression of genes involved in extra-cellular matrix remodeling in the cells of the cardiac muscle. Methoxychlor alters the methylation pattern of paternally and maternally imprinted genes in the sperm of mice offspring. Bisphenol A causes hypermethylation of the estrogen receptor promoter region in the adult testis of rats in addition to modifying hepatic DNA methylation [4]. Despite the fact that in Vaiserman’s [4] study the negative effects mentioned were verified mostly on rats and mice, the author suggested that a similar impact on people was of high probability. He highlighted that in the last number of decades the endocrine condition of humans has decrease seriously, subsequently worsening reproductive condition. In both problems the most serious changes occur due to toxic exposure in the prenatal period or early childhood, resulting in defective development of the organism in later years. These statements agree with [5], who also considered long term exposure to herbicides, formamide, antimetabolites, fungicidal preparations, dyes, and obviously toxic metals (Cd, Pb, Cr, Ni) as harmful factors that considerably worsen the quality of sperm.
If the realization that heavy metals and certain chemicals decrease human reproductive condition still does not bother us, then there is an example of a further disruptor from our close surroundings. Meeker and Stapleton (2010) [3] proved that even house dust can modify levels of reproductive hormones and diminish sperm quality. Researchers analyzed organophosphate compounds, commonly used as additive flame retardants and plasticizers in popular domestic materials. Semen parameters and reproductive hormone levels were measured in 50 men from infertility clinic who had frequent contact with these materials. They concluded that organophosphate compounds from typical domestic equipment (contained in house dust) may not only alter certain hormone levels (such as prolactine or thyroxine), but also decrease sperm concentration by as much as 19% [3].

3.1. Environmental Pollutants and Oxidative Stress

Oxidative stress is a damaging process that happen when there is an excess of free radicals in the body cells. The body produces free radicals during normal metabolic processes. Intense oxidation can damage cells, proteins, and DNA, which can contribute to aging. Disturbances in the normal redox state of cells can cause toxic effects through the production of peroxides and free radicals that damage all components, including proteins, lipids, and DNA. Oxidative stress from oxidative metabolism causes base damage, as well as strand breaks in DNA. ROS and free radicals are generally known to be detrimental to human health. A large number of studies demonstrate that, in fact, free radicals contribute to initiation and progression of the changes in genetic material, i.e., genetic polymorphisms [8]. Oxidative stress happens when the balance between peroxidation and anti-oxidation is disturbed, i.e., when the production of ROS exceed cellular concentrations of small molecular antioxidants or activity of antioxidative enzymes [8]. Researchers widely consider ROS as a source of dangerous reactions, uncontrolled and harmful to structures at a molecular level [11,12,13]. As a proof Bartosz (2009) [8] enumerates several negative effects of ROS activity (degradation of collagen, depolymerization of hyaluronic acid, oxygenation of hemoglobin, inactivation of enzymes and transport proteins, lipid peroxidation in cellular membranes, damage to chromosomes, and breakages in DNA). In the face of so many threats, it is valuable to know precisely how ROS comes about. Bartosz (2009) [8] identified several factors that stimulate the formation of ROS (ionic radiation, sonication, UV radiation, oxygenation of reduced forms of molecular components of cells, oxygenation of xenobiotics, photoreduction, and oxygenation of respiratory proteins).

3.2. Intensification of Oxidative Stress due to Pollution—Influence on Human Fertility

The close relationship between environmental pollution and oxidative stress is central to understand why human fertility has decreased in past decades, because the most environmental toxicants induce ROS, causing oxidative stress [7]. In the human reproductive system, the testes are especially susceptible to destructive changes due to this phenomenon. The after-effects are often irreversible and include a decline in testosterone levels, disorders in spermatogenesis, and eventually infertility. Certain physiological levels of ROS are even necessary for the proper course of spermatogenesis. However, an excess of reactive oxygen radicals, formed due to environmental pollutants, destroy testicular functionality and manifest as a diminished sperm count and quality. Among toxicants inducing apoptosis in germ cells, Mathur and D’Cruz (2011) [7] have singled out methoxychlor which decreases the levels of anti-oxidative enzymes in testicles, especially in the mitochondrial and the microsomal fractions of testis. Dichloro-diphenylo-trichloro-ethane DDT metabolites, on longer exposure, cause incremental changes in lipoperoxidation and a decrease in enzymatic antioxidants such as SOD or GPx in the testis. Exposure to certain fungicides have been found to contribute to reduced prostate mass and decreased sperm count, as well as induced impairments in expression of apoptosis-related proteins such as p51. Other enumerated chemicals such as pesticides, bisphenol A and certain herbicides also damage testicles and interrupt spermatogenesis through oxidative stress stimulation [7]. Therefore, many substances that humans associate with in everyday life are, in truth, very dangerous pro-oxidants and stimulants of uncontrolled ROS formation in several body systems. Data by Agarwal et al. (2014) [9] found similar conclusions; they assert that about 15% of couples trying to conceive are struggling with infertility. Male factors can be the reason for nearly half of such cases. Oxidative stress and overproduction of ROS damage DNA, proteins, and lipids, change the functionality of enzymes and, finally, cause cell death. Like Mathur and D’Cruz (2011) [7], Agarwal et al. (2014) [9] also affirm that certain levels of ROS are necessary for correct fertilization. In normal conditions and controlled concentrations, ROS regulate sperm maturation, stimulate signaling processes and more. However, in uncontrolled ROS overloading, there is a risk of infertility. They suggest that impairments in sperm cells arise via induction of per-oxidative damages of sperm plasma membranes (per-oxidation of lipids), as well as DNA breakages. The best way to minimize the negative effects of ROS excess is to eliminate as many factors as possible. Cessation of smoking, discontinuation of alcohol abuse, a reduced-fat diet, physical activity, and antioxidant intake (supplementation of diet with carotenoids or vitamins C, E) constitute simple tactics against oxidative stress, which patients can initiate even on their own. Thus the problems of oxidative stress and ROS overproduction may be significantly reduced by reasonable changes in lifestyle. On the other hand, routine estimations of semen ROS levels should become a standard procedure in the diagnosis of male fertility [9].
Elucidation of the destructive impact of oxidative stress and factors that stimulate the phenomenon are well presented in the studies conducted by Al-Attar (2011) [10]. He provided mice drinking water with a mixture of Pb, Hg, Cd, and Cu. After seven weeks, he assessed renal function by measuring the concentrations of creatinine, urea, and uric acid. Furthermore, he measured levels of antioxidants, including glutathione GSH and SOD in kidney and testicles. Compared to the control group (mice drinking water without heavy metals) the experimental group had considerably increased creatinine (by 152%), urea (by 83%), and uric acid (by 65%). Decreases of anti-oxidative enzymes, both in kidney and testis were significant (glutathione: 28% in kidney, 24% in testicles; SOD: 40% in kidneys, 27% in testis). Moreover, in histological examination of the testis of mice exposed to heavy metals, Al-Attar (2011) [10] noted degenerative changes in the seminiferous tubules leading to disruption of spermatogenesis. In a separate experimental group the diet was supplemented with vitamin E [10], noting insignificant changes in renal parameters and a considerably smaller downgrade in testicular anti-oxidative enzymes due to the heavy metals. Thus, research demonstrated not only a negative effect of oxidative stress, but also the positive anti-oxidative potential of vitamin E in a daily diet.

3.3. Tactics against Oxidative Stress—Antioxidative Diet

The reduction in oxidative stress markers found by [10] explored only one of several tactics which can be deployed in the fight against uncontrolled ROS. Ruder et al. (2008) [11] explored the after-effects of oxidative stress in female infertility. Researchers suggest that lifestyle and diet, rich in antioxidants, during pregnancy also play a critical role in reproductive success. They found that high oxidation levels increase the risk of disorders during successive stages in pregnancy. On the contrary, antioxidants intake, even in the simplest form, by eating fruits or vitamin supplementations, minimizes the threat of pregnancy loss. In the case of male fertility, it is valuable to know which metals bring positive effects to the reproductive condition. One of the most important chemical elements with anti-oxidative properties is zinc. It protects sperm cells against ROS, contributes to the formation of semen and stabilizes the levels of reproductive hormones (such as testosterone) and, in general, lengthens the vitality of sperm cells [14]. Therefore, zinc is widely considered as an effective antioxidant. Oteiza (2012) [76] highlighted the beneficial Zn properties of in reducing oxidative stress. It maintains the cell redox balance, regulates oxidants production, contributes to the repair of cell damage, and regulates the metabolism of glutathione and conditions of redox signaling. Furthermore, Zn mediates in the induction of Zn-binding protein metallothionein, preventing overproduction of ROS [76]. An important beneficial element is selenium, which favors the functional efficiency of sperm cells and, as a consequence, increases semen quality [14,77]. Indeed, both elements (Zn, Se) are the molecular components of important anti-oxidative enzymes. Zn is present in SOD type 1 and 3 (as well as Cu) and Se is a component of GPx. These facts clearly demonstrate their antioxidative significance [8]. Additionally, Atig et al. (2012) [14] compared Zn and Se levels in semen samples from fertile and infertile patients. Compatible with expectations, fertile men’s sperm showed higher levels of these elements compared to infertile patients. Zinc exhibits positive and significant correlations with sperm motility and sperm count. Selenium is also significantly correlated with semen motility. Selected parameters of anti-oxidative response, such as the concentration of glutathione enzymes and the quantity of malondialdehyde MDA, a lipoperoxidation end product, were also analyzed. Glutathione enzymes were considerably decreased in infertile semen and there was a greater amount of MDA in sperm from infertile patients. On the contrary, fertile semen show high levels of glutathione enzymes and only small amounts of lipoperoxidation products. Even more, researchers confirmed a positive correlation between glutathione enzymes and sperm motility. On the contrary, MDA was negatively associated with sperm motility and concentration, as well as positively correlated with the percentage of abnormal sperm. On this basis, the authors concluded that a serious decrease in seminal antioxidants (such as Zn, Se, as well as glutathione enzymes) favors the risk of impairments in sperm quality. Additionally, increased MDA reflects a diminished sperm quality and reproductive condition [14].
Zini et al. (2009) [12] stated that the sperm of infertile men contains considerably more DNA damage than in the case of fertile patients. Therefore, the authors analyzed the potential of antioxidant therapy. They found that dietary antioxidants can efficiently reduce sperm DNA damage, especially in high levels of DNA fragmentation. In their opinion, the risk of ROS overproduction is connected with unsaturated fatty acids in sperm plasma membranes. These acids are necessary for membrane fluidity, but also predispose it to free radical attacks. On the other hand, semen contains certain levels of anti-oxidative enzymes (SOD, CAT, GPx), as well as non-enzymic antioxidants (vitamin C, E, lycopene, or l-carnitine). Accordingly, researchers proved that dietary supplementation of antioxidants (e.g., vitamin C oral intake) may cause positive effects in the improvement of sperm integrity and lowering oxidation levels. However, Walczak-J?drzejowska et al. (2013) [13] described the destructive effects of oxidative stress on sperm cells including a decrease in activity of anti-oxidative mechanisms, damage to DNA and accelerated apoptosis. As a consequence they found a diminished number of sperm cells and their reduced motility. They highlighted that the large endogenous sources of reactive forms of oxygen in semen are white blood cells and immature sperm cells. This study emphasizes the physiological role of ROS in sperm maturation, but for the same reason any infection or inflammation process in the body could be considered as a moderator of oxidative radicals. However, unfavorable environmental factors may also initiate the analogous problem. Walczak-J?drzejowska et al. (2013) [13] further widened the list of potentially beneficial antioxidants, adding vitamins A and B, coenzyme Q10, carotenoids, and carnitine to the known list including glutathione, Zn, Cu, Se and SOD, CAT, and GPx. Explaining the role of vitamins E and C in the defense against oxidative stress, it can be concluded that vitamin E reduces lipoperoxidation and mainly protects sperm cell membranes, while vitamin C, preventing sperm DNA damage, is a very abundant seminal antioxidant, since it is present in concentrations about 10 times higher in seminal plasma than in blood serum. They strongly recommend the initiation of antioxidant therapy in cases of men with fertility problems. Additionally, Mier-Cabrera et al. (2009) [78] compared the levels of oxidative stress markers and concentrations of anti-oxidative enzymes among women with a high antioxidant diet and a normal diet. After four months of observation, in the group on the anti-oxidative diet, the researchers noted an increase of vitamin levels (A, C, E), as well as considerable growth in activity of SOD and GPx. Furthermore, the levels of MDA and lipid hydro-peroxides (oxidative stress markers) were relatively low in this group. Conversely, in the case of women on a normal diet there was no improvement in anti-oxidative parameters or decrease in oxidative stress markers. Thus, supplementation of the daily diet with certain antioxidants (vitamins A, C, E, or Zn) may be a simple way to overcome oxidative stress on our own. Rink et al. (2013) [79] decided to check in practice how the recommended intake of fruits and vegetables (five times a day) influenced oxidative and anti-oxidative parameters. They selected 258 pre-menopausal women, observed their diet and measured pro- and anti-oxidative parameters over a period of about two menstrual cycles. Particularly important parameters were the erythrocyte activity of SOD and GPx. They noted that eating fruits and vegetables five times a day, over a longer period, considerably diminished oxidative stress (levels of lipoperoxidation markers) and improved antioxidant status (high levels of antioxidative enzymes, as well as non-enzymatic antioxidants).
Summarizing, Aitken and Roman (2008) [15] considered oxidative stress as a major factor in the etiology of male infertility. Similarly to the previously quoted research, lipoperoxidation and DNA fragmentation were considered as the most serious damage, caused by ROS in sperm cells. Furthermore, in the testicles, oxidative stress may destabilize the process of differentiation of spermatozoa. They identified and characterized the basic anti-oxidative defense line, e.g., they noted that all three types of SOD are found in the testicles. Type I (cytoplasmic) containing Zn and Cu ions, type II (mitochondrial) with Mn and, finally, type III (extra-cellular) containing Cu and Zn. There are also various isoforms of GPx located in mitochondria and the nucleus, particularly in differentiating semen. Researchers emphasize the relationship between the activity of glutathione enzymes and the presence of selenium (lower concentration of Se is connected with a decrease in activity of GPx). Among non-enzymatic antioxidants researchers listed the essentials Zn (interrupting lipid peroxidation by displacing from catalytic sites such metals as Fe and Cu and attenuating damage in sperm DNA caused by Pb or Cd), vitamin C or E (supporting the maintenance of spermatogenesis and testosterone production), as well as melatonin and cytochrome C. Melatonin is an especially valuable protector from oxidative stress due to readily crossing the blood-testis barrier, while cytochrome C assists in the elimination of damaged germ cells [15]. On the other hand, Zareba et al. (2013) [16] analyzed the influence of regular carotenoid intake in the improvement of sperm quality in 189 young, healthy men. Researchers measured such parameters as semen volume, total sperm count, motility, and morphology. After a period on a high-antioxidant diet, they found that beta-carotene and lutein intake increased sperm motility. Lycopene improved semen morphology and a longer application caused a greater amount of morphologically normal sperm. Additionally, a healthy lifestyle (regular physical activity, non-smoking) favors assimilation of antioxidants (such as vitamins C, E, A, and carotenoids). On the contrary, the intake of alcohol or caffeine was negatively associated with antioxidants assimilation, e.g., caffeine decreased the assimilation of vitamin C [16].

4. Genetic Reasons for Spermatogenesis Disturbances: Impairments on Chromosomes Y and 7

We are currently conducting experimental studies of male infertility determinants and we found (demonstrated) that external environmental factors and so-called internal (according to World Health Organization WHO criteria) are closely related to each other. At the same time, these detailed factors generate specific changes in genetic material (i.e., genetic polymorphisms), which are just the direct cause of male infertility. Simultaneously, the review presented above clearly explained that certain factors (environmental, artificial, or just connected with individual lifestyle) may considerably depress the human reproductive condition. Most of these factors, especially heavy metal ions, chemical compounds, and active organic residues, act by stimulating overproduction of ROS. Additionally, oxidative stress is the main reason for spermatogenesis disturbances. Many authors assert that long-lasting oxidative stress seriously damages human DNA [12,13,15]. Furthermore, genetic factors are considered responsible in at least 10–15% of cases of male infertility [80]. Therefore, it is necessary to analyze external and internal environmental genetic reasons for male infertility, as aside from the most common phenotypes.
Azoospermia is defined as a condition where a man has no measurable level of sperm cells in the semen [81]. There are various reasons for this condition, including underdevelopment of the testicles, obstruction of the spermatic ducts or, a typical genetic cause, deletions in the AZF region of chromosome Y [36]. Additionally, cystic fibrosis is an autosomal recessive disease, common in Caucasian races (with frequency of occurrence of 1/2500 live births). The genetic reasons for cystic fibrosis are mutations in the CFTR gene on chromosome 7. The most common mutation is the deletion of three nucleotides resulting in the loss of phenylalanine in position 508 of the protein (F508del). Approximately 70% of cases are determined by this mutation [21,22]. The manifestation of cystic fibrosis results in the production of a thick, sticky mucus in all organs containing mucous glands, coupled with pathological changes in the respiratory system (recurring pneumonia, bacterial infections) and the alimentary system (cholelithiasis, clogging of salivary glands). In the reproductive system cystic fibrosis causes an accumulation of mucus in the spermatic ducts and, as a consequence, their total obstruction [23].

4.1. Microdeletions in the Azoospermic Factor AZF Region

The first reported association between Y chromosome deletions and abnormal spermatogenesis was reported in 1976 by Tiepolo and Zufardi [82]. The AZF region (called azoospermia factor) was described as located in the long arm of the human Y chromosome (Yq11) and consists of the three genetic domains azoospermic factor of region “a” AZFa (proximal), azoospermic factor of region “b” AZFb (intermediate), and azoospermic factor of region “c” AZFc (distal). AZFc is one of the most genetically dynamic regions (c) in the human genome, possibly serving as counter against the genetic degeneracy associated with the lack of a partner chromosome during meiosis. Since the AZF region contains genes essential for proper spermatogenesis, microdeletions in the range of particular domains were implicated in spermatogenic impairments [17,18,83,84]. Many authors consider not three but four AZF domains as associated with spermatogenesis disturbances. This classification is based on structural observation which found that AZFb and c partially overlapped. This region of overlap is now called azoospermic factor of region “d” AZFd and is located between AZFb and AZFc [84,85]. Depending on the location of the AZF microdeletion, the phenotypes vary from mild (<15 × 106 spermatozoa × mL−1) or severe (<5 × 106 spermatozoa × L−1) oligozoospermia to azoospermia (complete lack of sperm cells in ejaculation) [19,81]. The complete deletion of AZFa leads to azoospermia and Sertoli Cell Only Syndrome SCOS while microdeletions in AZFb are connected with azoospermia due to the failure of sperm maturation usually at the spermatocyte/spermatid stage (subsequently there is practically no sperm in the testis of such patients). The AZFc deletion is connected with various possible seminal damages, but usually in patients a small amount of semen is present in the ejaculate (up to 60% of cases). Such patients are classified as azoospermic or oligozoospermic [18,83]. Microdeletions in AZFd lead to a mild form of oligozoospermia and abnormal sperm morphology [35,84]. Among infertile men the prevalence of AZF microdeletions is estimated at 7–8%, with a wide variation across populations [81,86]. Massart et al. (2012) [86] estimated the world frequency of Yq microdeletions among infertile men at 7.4%, based on over 90 articles, including over 13,000 patients suffering from infertility in different populations. Some researchers stated that the prevalence of Yq microdeletions is higher in azoospermic men (9.7%) than in oligozoospermic (6.0%). Moreover, they estimated the average frequency of microdeletions in particular domains. Complete deletion of AZFa is rare, responsible for a maximum 7% of all AZF incidents, while microdeletions in AZFb are twice as frequent, i.e., accounting for 14% of cases. AZFc impairments are considered the most common accounting for 69% of all AZF microdeletions. The rest of the pool (10% of AZF cases) is made up of a mixture of microdeletions in several domains, such as AZFa+b, AZFb+c, or AZFa+b+c [86]. Amongst the various AZF genes, the DAZ gene family (essential for regulation of spermatogenesis) is reported as the most frequently deleted AZF candidate [35]. DAZ genes are located within the AZFc domain, which undergoes deletion most commonly [36]. However, the exact frequency of AZF microdeletions among infertile men is difficult to determine. The differentiation in prevalence among patients from various populations ranges from 1% to as much as 35%. It has been estimated as 15% in Spain and Italy, 1–4% in Germany and France, 10% in China and the USA, 8% in India and Netherlands, and 12% in Tunisia and Mexico [20,80,83]. Furthermore, ethnic mutability in modern populations tends to increase the incidence making the matter more complex [81,86]. As a result, research teams usually concentrate on respective regions of the world and individual populations.
Wang et al. (2010) [19] generally regarded chromosome Y as structurally variable and susceptible to duplications, inversions and deletions. As it was mentioned, microdeletions in the AZF region are quite frequent among infertile male patients leading to spermatogenesis disruption (for instance as a consequence of sperm arrest). Therefore, Wang et al. (2010) [19] investigated the frequency of AZF microdeletions in infertile men from Northeastern China. In the experimental group, which consisted of 305 patients, researchers diagnosed 28 cases of AZF microdeletions. Their frequency was in following order; AZFc+d, AZFc, AZFb+c+d, with AZFa being least common. These authors also stated that the observed frequency of AZF microdeletions in the region they investigated, paralleled the levels in neighboring regions of the world. Additionally, Balkan et al. (2008) [35] conducted a similar analysis with 80 infertile men from Southeast Turkey. Most of them were azoospermic (54) and oligozoospermic (25). The researchers found chromosomal abnormalities in nine cases. Among them, Klinefelter syndrome was diagnosed in seven patients. Two patients had balanced autosomal rearrangements. In addition, AZF microdeletions were localized in one patient (with apparently normal karyotype and azoospermia) both in the AZFc and the AZFd regions [35]. These authors did not observe any cases of impairments in the AZFa or AZFb domains. Simultaneously, [80] examined the frequency of AZF microdeletions in a central Indian population: 156 patients (95 with oligozoospermia and 61 with azoospermia). Thirteen showed deletions in the AZF region (eight from the azoospermic subgroup and five from the oligozoospermic subgroup). They reported the most frequent deletions in the AZFc, followed by the AZFb and AZFa regions. Küçükaslan et al. (2013) [84] focused their study on a similar population which included 3650 infertile Indian men (combining patients from their own experimental group with other described cases of Yq deletions in India). They reported 215 cases with Yq microdeletions. Impairments in the AZFc domain predominated both in oligozoospermic and azoospermic patients. However, the frequency of AZF microdeletions differed significantly between regions in India.
Hellani et al. (2006) [87] claimed that among the genetic reasons for spermatogenesis disruption microdeletions in chromosome Y represent one of the most common causes. They conducted an analysis of the frequency of AZF microdeletions in the Kingdom of Saudi Arabia. Among 257 male patients with various forms of spermatogenesis disturbances (from oligozoospermia to azoospermia), 10 had chromosomal rearrangements, while in the remaining 247, eight men had microdeletions in AZF. Six of them in AZFc, one in AZFb, and one in AZFa+c. Moreover, Khabour et al. (2014) [20] identified several reasons for male infertility, such as hormonal abnormalities, the presence of antispermic antibodies, erectile disfunction, testicular cancer, and exposure to radiation and chemical agents. Thus, infertility is usually connected with complex etiology. They mentioned that nearly 40% of cases of male infertility are idiopathic. Amongst genetic causes, they still place chromosomal abnormalities as the number one reason for infertility (e.g., aneuploidy in sex chromosomes), however, AZF microdeletions are, in their opinion, the second most common reason. Therefore, similar to previously quoted studies, Khabour et al. (2014) [20] analyzed the frequency of AZF microdeletions, this time in the Jordanian population. His analysis included infertile men with azoospermia and oligozoospermia. They found partial AZF deletions in three patients from the azoospermic subgroup, two with microdeletions in the AZFc domain and one in AZFb+a+c domains.
The majority of authors agree that deletions in chromosome Y, particularly in the AZF region are one of the most important factors causing spermatogenesis disturbances and male infertility. The majority of analyses confirmed that microdeletions in AZFc are the most frequent and mostly connected with spermatogenic failure. Alongside karyotype abnormalities (affecting about 15% of azoospermic and 6% of oligozoospermic patients), AZF microdeletions are widely considered as the second most common genetic reason for male infertility [17,18,20]. It is more and more accepted to use AZF microdeletions as a specific marker of male infertility. Immense advantage results from the fact that small Yq deletions cannot be visualized in standard karyotype analysis. Therefore, their detection may explain the reason of infertility among men with apparently normal karyotypes [17,18,87]. The detection of AZF microdeletions is also recommended prior to assisted reproduction procedures such as intra-cytoplasmic sperm injection ICSI or testicular sperm extraction TESE. It is critically important in the case of patients with AZFc microdeletions, which are able to produce a certain amount of normal sperm during ejaculation and may achieve reproductive success using these techniques. Since AZF microdeletions transmit to male offspring, such patients should be advised of the possible consequences of assisted reproduction [35,83,84]. Therefore, screening for AZF microdeletions is becoming one of the first steps in diagnostics of potential causes of male reproductive problems. Typical AZF analysis includes DNA extraction (usually from peripheral blood) analyzed by polymerase chain reaction PCR-multiplex procedure with special markers for AZF microdeletions, i.e., sequence-tagged sites STS [80,85]. Ultimately, the detection of AZF microdeletions can be useful both in explaining idiopathic cases of male infertility as well as in genetic consulting prior to assisted reproduction [87]. In the case of idiopathic infertility (30–40% cases of male infertility) a genetic cause is a usually suspected [35]. Therefore, the analysis of the AZF region of the Y chromosome is necessary for accurate diagnosis.

4.2. Cystic Fibrosis and Congenital Bilateral Absence of the Vas Deferens

As mentioned previously, cystic fibrosis may also play a critical role in infertility (due to complete obstruction of spermatic ducts). As well as the congenital bilateral absence of the vas deferens CBAVD, Klinefelter and Kallmann syndromes are all connected with spermatogenesis disruptions [36]. CBAVD is manifested as aplasia of the spermatic ducts. Similarly to cystic fibrosis, CBAVD is caused by mutations in the CFTR gene. As a consequence it has been considered as an expression of cystic fibrosis or as a separate disease [21,23,24], estimated that CBAVD appeared in 99% of adult men with cystic fibrosis. However, in their analysis they concentrated on congenital bilateral absence of the vas deferens among young boys with cystic fibrosis aged 2–12. In the examined group which consisted of boys there were two subgroups identified. The first one contained children with pancreatic insufficiency and the second contained pancreatic sufficient boys. In five boys with congenital bilateral absence of vas deferens CBAVD seminal vesicles were observed. Furthermore, testicular micro-lithiasis was diagnosed in the subgroup with pancreatic insufficiency. They concluded that genital impairments in cystic fibrosis may appear at a very early age. Such manifestations were less common in young patients than in adults and appeared more frequently among youngsters with pancreatic insufficiency [24]. Moreover, Xu et al. (2014) [25] consider CBAVD as an abnormality in the male reproductive system, directly connected with the obstruction of sperm outflow into the urethra. On the basis of data review, the authors concluded that this impairment is responsible for 2% of cases of male infertility. They assert that in about 97% of male patients with cystic fibrosis, CBAVD is also diagnosed (comparable to that estimated by [24]). This fact is explained by the common genetic background, both for cystic fibrosis and CBAVD, namely mutation in the CFTR gene on chromosome 7. Abnormalities in the expression of CFTR also contribute to reduced functionality of the respiratory system, sweat glands, and reproductive system (a classical set of anomalies in cystic fibrosis patients). Thus, Xu et al. (2014) [25] confirmed the relationship between the most common variations of CFTR and CBAVD. Their results also suggest that certain CFTR variations are responsible for the more frequent occurrence of CBAVD in some populations, e.g., variation 5T creates a threat of CBAVD among French, Spanish, Japanese, Chinese, Iranian, Indian, Mexican and Egyptian populations, whilst variation of deltaF508 creates a risk for Slovenians, Canadians, Iranians, and Egyptians.
Simultaneously, Du et al. (2014) [88] considered CBAVD as a reason of nearly 6% of cases of obstructive azoospermia. Furthermore about 75% of CBAVD cases were direct manifestations of CFTR mutations F508del, 5T, and R117H (types of mutations in CBAVD). Accordingly, the observation that mutations of the CFTR gene (F508del, as well as 5T allele of the intron 8 of CFTR) are connected with CBAVD parallels with the results of [25]. Additionally, variations of the TG-repeats (TG13T5 or TG12T5; type of mutations in CBAVD), in their opinion, also play a part in the manifestation of CBAVD [88]. However, Massart et al. (2012) [86] noticed that about 88% of patients with two CFTR mutations carry severe mutation transformed to a mild mutation (respectively no CFTR function or residual CFTR function), whilst only 12% carry two mild mutations. Bareil et al. (2007) [89] investigated the connections between CBAVD and cystic fibrosis, while checking the participation of polymorphisms of transforming growth factor TGFB1 and endothelin receptor type A EDNRA in CBAVD manifestation. They suggest that both factors contribute to the lung manifestation of cystic fibrosis. This confirmation of the contribution of TGFB1 or EDNRA to CBAVD could point to another common link between cystic fibrosis and CBAVD. Du et al. (2014) [88] analyzed DNA samples from 80 patients with CBAVD (experimental group) and 51 healthy men as a control group. They indicated that polymorphism of the EDNRA may be connected with the manifestation CBAVD. Additionally, Havasi et al. (2010) [90] stated that nearly 98% of men with cystic fibrosis also suffered from CBAVD and infertility, while in 80–97% of CBAVD cases the disease were caused by at least one defective CFTR allele and in 50–93% of cases they detected two abnormal CFTR variants. These data support the statements of Bareil et al. (2007) [89].
Moreover, Noone and Knowles (2001) [22] characterized cystic fibrosis as a recessive genetic disease caused by mutations on both CFTR alleles. They described a standard set of symptoms including sino-pulmonary disease, male infertility, pancreatic exocrine insufficiency, and abnormal sweat electrolytes adding that the classic form of cystic fibrosis can be easily diagnosed in early life by conducting a sweat test (detection of abnormal chlorine and sodium levels) or by CFTR mutation analysis. They found that two-thirds of patients in the USA carry at least one copy of the deltaF508 mutation (one of the most common mutations in cystic fibrosis). However, they explain that the spectrum of possible impairments in the CFTR is extremely variable and, therefore, many phenotypes are described depending on the severity of the mutations involved (severe, mild, or atypical sets of symptoms). Therefore, about 7% of cystic fibrosis patients are still not diagnosed by the age of 10 or 15 years [22]. These researchers more recently ascribed the CFTR gene to the production of a trans-membrane protein securing epithelial cell functionality, especially in ion and water transport. Thus, the formation of thick, sticky mucus in the respiratory, alimentary, and reproductive systems is directly connected with inappropriate water distribution and chloride deficiency (major contributors to mucus consistency). In normal conditions the excess mucus is easily eliminated, while in cystic fibrosis the sticky mucus are clogs the pathways making it difficult to remove the mucous (due to its abnormal consistency). Furthermore, a wide range of bacteria, fungi, and acari can stick to the mucus and cannot be eliminated. This results in reoccurring pneumonia and other bacterial infections, typically found in cystic fibrosis [21,23,36]. Additionally, Almeida et al. (2013) [91] analyzed the testicular tissue after biopsies from patients displaying abnormal spermatogenesis to describe the role of apoptosis in azoospermia. They conducted testicular treatment biopsies from 27 male patients. Five were cases with previously diagnosed oligozoospermia, nine with obstructive azoospermia (among them four patients with CBAVD), and in 13 cases non-obstructive azoospermia (5 men with hypo-spermatogenesis, there cases with sperm maturation arrest and five with Sertoli cell syndrome). These data focused on the activity of certain caspases: 8 and 9 which inaugurate the apoptotic pathways, as well as caspase 3, which determines the point of no return in apoptosis of cells. They found an increased activity of caspase 3 in Sertoli cell syndrome and germ cells with higher activity of caspases in hypo-spermatogenesis. In secondary obstructive disorders they noted diversified caspase activity, while in oligozoospermia significantly higher activity of caspase 9 in comparison to caspase 8 in spermatogonia was noticed. Finally, in primary obstructive disorders and hypo-spermatogenesis, caspases 3 and 9 showed significantly increased activity. That is why the importance of caspase-signalling pathways in human spermatogenesis is significant [91]. These authors point out that germ cells apoptosis is even necessary for normal spermatogenesis. The problems arise when the rate of sperm apoptosis is too high. The concentration of sperm decreases and abnormal seminal motility appears. Thus, these studies confirm a direct relationship between the apoptosis of germ cells and the failure of spermatogenesis.

4.3. Other Genetic Diseases Connected with Infertility: Klinefelter Syndrome and Kallmann Syndrome

Klinefelter syndrome and Kallmann syndrome are also considered common reasons for male infertility. Both diseases are connected with impairments of the X chromosome. The presence of an extra X chromosome in men, karyotype (XXY), is responsible for Klinefelter syndrome (47-XXY or XXY, i.e., the set of symptoms that occurs in two or more X chromosomes in males). The condition was first described in 1942. The symptoms include fibrosis of spermatic ducts, small testicles, azoospermia, and a decay of potency. In biochemical analysis Klinefelter syndrome patients display high levels of gonadotrophins and low levels of testosterone [28,36,92]. In Kallmann syndrome there are several possible mutated genes involved in pathogenesis. Mutations of the KAL1 gene located on the X chromosome are most important. KAL1 gene is located on the X chromosome at Xp22.3 and is affected in males with Kallmann syndrome. This gene codes for a protein of the extra-cellular matrix, anosmin-1, which is involved in the migration of nerve cell precursors (neuro-endocrine GnRH-cells). Deletion or mutation of this gene results in loss of the functional protein and affects the proper development of the olfactory nerves and olfactory bulbs. Neural cells that produce GnRH fail to migrate to the hypothalamus. However, other mutated genes are important, mainly fibroblast growth factor receptor 1 FGFR1, known as basic fibroblast growth factor receptor 1, fms-related tyrosine kinase-2/Pfeiffer syndrome, and CD331, as a receptor of tyrosine kinase, whose ligands are specific members of the fibroblast growth factor family. FGFR1 has been shown to be associated with Pfeiffer syndrome. Moreover, the fibroblast growth factor 8 FGF8 is a protein that is encoded by the FGF8 gene, and protein coding gene PROKR2 (prokineticin receptor 2) encodes a protein expressed in the supra-chiasmatic nucleus SCN circadian clock that may function as the output component of the circadian clock, and also WDR11 (WD repeat domain 11), known as bromodomain and WD repeat-containing protein 2 (BRWD2), a protein that is encoded by the WDR11 gene. WDR11 is a protein coding gene and PROKR2; a G protein-coupled receptor encoded by the PROKR2 gene. Prokineticins are secreted proteins that can promote angiogenesis and induce smooth muscle contraction. These proteins encoded by PROKR2 gene are membrane protein, which G protein-coupled receptor for prokineticins may contribute to manifestation of the condition. The symptoms of Kallmann syndrome include disorders of reproductive system (hypogonadism) with anosmia [32,34]. Thus while PROK2 is type of gene mutation (protein coding gene; this gene encodes a protein expressed in the SCN circadian clock that may function as the output component of the circadian clock), PROKR2 is a type of gene mutation (prokineticin receptor 2; a G protein-coupled receptor encoded by the PROKR2 gene in humans). The protein encoded by this gene is an integral membrane protein and G protein-coupled receptor for prokineticins.)

4.3.1. Klinefelter Syndrome

Høst et al. (2014) [30] defined Klinefelter syndrome as the most abundant sex-chromosome disorder, connected with hypogonadism and infertility. They state that this disease affects one in 600 men, but because of its high diversification in clinical presentation only 25% of men with Klinefelter syndrome are diagnosed with the disease. Among the typical symptoms of the condition they noted azoospermia, as well as various psychiatric problems (manifesting for instance in learning difficulties). However, the long term manifestations may encompass degradation in muscle mass and bone mineral mass, increased risk of diabetes type 2 and the threat of metabolic syndrome. In Klinefelter syndrome the loss of germ cells begins during the fetal period, continuing through infancy and intensifying in puberty. Fibrosis of the seminiferous tubules and a reduction in testis size are accompanied by long-lasting germ cell degradation [30]. Subsequently, the researchers described the appearance of adult patients with this syndrome as above average height, sparse body hair (due to androgen deficiency), narrow shoulders, broad hips, and small, firm testicles, while adding that deviations from that description are quite frequent. Nieschlag (2013) [29] remarked that the Klinefelter syndrome karyotype (47, XXY, aneuploidy of sex chromosomes) appears in up to 0.2% of male infants (one of the most frequent types of congenital chromosomal impairment). Among psychiatric aspects connected with the disease, they observed verbalization difficulties and problems with socialization among the youngsters. Furthermore, they described several pathological conditions accompanying Klinefelter syndrome including a lack of libido, erectile dysfunction, azoospermia, as well as gynecomastia, osteoporosis, thrombosis, and even epilepsy. Nieschlag (2013) [29] also mentioned that treatment of the disease is based on testosterone supplementation, instigated where low testosterone levels occur. He maintained that without proper treatment, as well as without treatment of the conditions accompanying Klinefelter syndrome (type 2 diabetes, varicose veins, embolism), the length of life of those patients may be up to 11 years shorter than the average age of male population. Simultaneously, Molnar et al. (2010) [26] stated that behavioral problems and learning delays in children often appear as the first step in this syndrome recognition. As proof the authors described the case of an 18 year old Somali boy with Klinefelter syndrome: recognition of the disease started with the observation of behavioral problems at school. During further investigation (determination of prolactine, testosterone, follicle-stimulating hormone, and luteinizing hormone levels, as well as the analysis of thyroid functionality and measurement of testis size) this syndrome was confirmed. Therefore, Molnar et al. (2010) [26] suggested that in cases of boys with learning problems, physicians should consider this syndrome as a possibility in their diagnosis. Some authors describe a range of treatment methods available for patients with Klinefelter syndrome who desire to have offspring. Certain amounts of testicular sperm can be retrieved surgically from the testis of adult men with this syndrome (testicular sperm extraction and intra-cytoplasmic sperm injection). There are also several techniques employed to increase testosterone levels, while classical testosterone supplementation supposedly even improves cognitive abilities in patients [26,30].
Gi Jo et al. (2013) [28] stated that Klinefelter syndrome is present in about 10% of azoospermic men. The frequency of morbidity amounts to 0.1–0.2% in general population whilst in 0.15–0.17% cases of the syndrome is recognized in prenatal diagnoses. The researchers tested over 18,000 pregnant women to detect Klinefelter syndrome in their offspring at the fetal stage. Twenty-two fetuses had Klinefelter syndrome, which was 0.12%, while after restriction of the group to only male features the proportional incidence was 0.23%. In the interpretation of their results Gi Jo et al. (2013) [28] note that fetal frequency of syndrome was higher than commonly observed. The researchers suspect that the possible reason for the occurrence of such a high syndrome level in features in their study was the advanced maternal age of mothers (over 35 years). They suggested that the risk of Klinefelter syndrome in offspring may increase with maternal age. Moreover, Turriff et al. (2011) [27] focused on psychiatric impairments accompanying this syndrome. They examined 310 participants of diverse age, from 14–75 years old. They analyzed the attitude of participants to such problems as perception of stigmatization, perceived negative consequences of karyotype XXY, and the matter of having children. Karyotype XXY is a Klinefelter syndrome known as 47, XXY or XXY, i.e., the set of symptoms that result from two or more X chromosomes in males. These authors established that nearly 70% of men with this syndrome displayed symptoms of depression and described several psychiatric manifestations associated with Klinefelter syndrome, including depression, anxiety, schizophrenia, psychoses, hallucinations, and paranoid delusions. They concluded that both adolescents and adults with this syndrome have an increased risk of psychiatric disorders. In their opinion, depression was the most important psychiatric symptom, appearing in syndrome, a condition which significantly decreases the quality of life of patients and may even lead to suicide [27]. Accardo et al. (2015) [92] considered the risk of testicular cancer in men with Klinefelter syndrome; adult patients with show testicular abnormalities such as fibrosis of the seminiferous tubules, hyperplasia of the interstitium, diffuse hyanilization, and cryptorchidism with a six times higher frequency than in the general male population. In addition to destructive changes in the testis, the authors describe several other diseases, possibly accompanying syndrome including venous disease, leg ulcers, and a higher morbidity due to certain malignant tumors, for instance malignancies in the lungs. These data analyzed the risk of testicular cancer in patients with Klinefelter syndrome. They measured several markers, such as serum levels of lactate dehydrogenase and alpha-fetoprotein. They conducted testicular ultrasound and in certain cases magnetic resonance imaging, and did not find increased signs of testicular cancer [92]. Accordingly, despite the risk of pathological conditions accompanying Klinefelter syndrome, the threat of testicular cancer appears to be low.
Additional disorders accompanying Klinefelter syndrome including abdominal obesity and metabolic syndrome were found by [93]. Eighty-nine adult patients had a higher risk of these conditions, but the researchers focused on younger patients, pre-pubertal boys, aged from 4–12.9 years old (measurements included height, weight, waist circumference, blood pressure, the concentrations of insulin, fasting glucose, and lipids). Compared to healthy controls, children with Klinefelter syndrome had wider waist circumference and engaged in less physical activity. Furthermore, in over one third of children, increased LDL cholesterol was noted, nearly one fourth had insulin resistance, and 7% fulfilled the criteria for metabolic syndrome diagnosis. Thus, Bardsley et al. (2011) [93] confirmed that certain disorders, which usually accompany this syndrome, may appear in youngsters. Additionally, Van Rijn et al. (2012) [94] examined the cognitive disorders which commonly appear in Klinefelter syndrome stating that the analysis of cognitive functionality of patients’ brains may deliver valuable information about neural mechanisms involved in social processing. In an experiment conducting a task based on judging facial expressions, men with this syndrome and healthy men were asked to assess faces as trustworthy or untrustworthy and asked to guess the age of the faces. During the first part of the task men obtained a lower valuation in several brain activities, including poorer screening of socio-emotional information (amygdala), poorer subjective emotional experience (insula), and poorer perceptual face processing (fusiform gyrus and superior temporal sulcus). During the second part of the task the perceptual face processing was also reduced in men with this syndrome. The studies elucidated direct relationships between abnormal social behaviors accompanying Klinefelter syndrome and a reduced functionality of the neural network [94,95,96].

4.3.2. Kallmann Syndrome

Klinefelter syndrome, because of its relatively high frequency of occurrence in the human population, is well characterized. On the other hand, another genetically-determined condition, resulting in infertility, is Kallmann syndrome. This disease is caused by mutations of the KAL1 gene, located on the X chromosome. The symptoms appearing in men include small testicles, underdevelopment of the penis, delayed maturation, and a lack of a sense of smell. However, the maintenance of fertility in patients is possible [36,97,98]. Additionally, Quaynor et al. (2011) [33] stated that Kallmann syndrome is often connected with hypogonadotropic hypogonadism and anosmia. The fundamental impairments arise from low levels of sex steroids and low concentration of gonadotropins. In their opinion gonadotropin-realizing hormone GnRH appeared to be the most important hormone involved. It influences the hypothalamic-pituitary-gonadal axis functionality, playing an essential role in processes at puberty. When the secretion or the activity of GnRH is disturbed, pubertal disorders and reproductive impairments result. Both Laitinen et al. (2011) and Quaynor et al. (2011) [32,33] explained the reason for atrophy in the sense of small in the Kallmann syndrome. It is caused by cessation of GnRH neuronal migration within the meninges (GnRH, as well as olfactory neurons not reaching the hypothalamus). Furthermore, they expanded the list of possible manifestations of Kallmann syndrome to idiopathic hypogonadotropic hypogonadism. They added several impairments which were not connected with fertility, such as dental agenesis, midline facial defects, and even hearing loss. Laitinen et al. (2011) [32] admitted that an exact estimation of the incidence of Kallmann syndrome in human populations is difficult because the syndrome is clinically and genetically diversified. Nevertheless it seems to be 3–5 times more frequent in men than women. These researchers examined the Finnish population collating the phenotypic and genotypic features among patients with this syndrome, as well as the incidence of the disease in Finland. The frequency of Kallmann syndrome was different among men and women, being one case in 30,000 men versus one case in 125,000 women. They assessed the phenotypic reproductive features accompanying syndrome in a group of 25 men and five women. The phenotypes found were heterogeneous, ranging from partial puberty to severe hypogonadotropic hypogonadism. In an genetic analysis the authors focused on genes possibly contributing to this syndrome manifestation, i.e., KAL1, FGFR1, FGF8, PROK2, PROKR2, CHD7 (chromodomain-helicase-DNA-binding protein 7, known as ATP-dependent helicase CHD7, is an enzyme that in humans is encoded by the CHD7 gene). CHD7 is an ATP-dependent chromatin remodeler homologous to the Drosophila trithorax-group protein Kismet and WDR11, a type of gene mutation (WD repeat-containing protein 11, known as bromo-domain and WD repeat-containing protein 2 (BRWD2) is a protein that in humans is encoded by the WDR11 gene). KAL1 mutation was detected in men, while FGFR1 mutation was noted in women and men. The results confirmed that it is difficult to give a clear diagnosis of Kallmann syndrome, because of the multitude of genetic factors contributing to the syndrome pathogenesis [32]. It goes far beyond these possible genes and is still waiting for further exploration.
On the other hand, Pedersen-White et al. (2008) [31] mentioned that the molecular basis for most cases of Kallmann syndrome and idiopathic hypogonadotropic hypogonadism is still unknown. Many mutations contributing to the disease remain undiagnosed. They suggested that the gonadotropin-releasing hormone receptor GNRHR gene (apart from KAL1 and FGFR1) could also be related to Kallmann syndrome, but in their opinion mutations in the GNRHR, KAL1, and FGFR1 genes account for only 15–20% of all possible reasons of idiopathic hypogonadotropic hypogonadism and Kallmann syndrome (GNRHR is a protein that is encoded by the GNRHR gene, which encodes the receptor for type 1 gonadotropin-releasing hormone). Pedersen-White et al. (2008) [31] conducted a screening study including 54 patients (men and women) with Kallmann syndrome and idiopathic hypogonadotropic hypogonadism. The results found that KAL1 deletions appeared in 4 cases. After the restriction of the experimental group to anosmic men only, the result was four out of 33 patients. Thus, these researchers suggest that KAL1 mutations are one of the most common reasons for Kallmann syndrome, but impairments in the other tested genes may also participate in the disease [31]. Similarly, Dodé and Rondard (2013) [34] remarked that the phenotype of Kallmann syndrome results from interruptions in the nerve fibers located in the nasal region, the olfactory, vomero-nasal, and terminal. The impact of these impairments is manifested as disturbances in the migration of gonadotropin-releasing hormone synthesizing cells between the nose and the brain. They discussed all genes connected with Kallmann syndrome that had been previously described, including KAL1, FGFR1, PROKR2, PROK2, FGF8, CHD7, WDR11, heparan sulfate 6-O-sulfotransferase 1 HS6ST1, and semaphorin-3A SEMA3A (a protein SEMA3A that in humans is encoded by the SEMA3A gene). HS6ST1 is the protein encoded by the gene HS6ST1 and is a member of the heparan sulfate biosynthetic enzyme family. Heparan sulfate biosynthetic enzymes are key components in generating a myriad of distinct heparan sulfate fine structures that carry out multiple biological activities. This enzyme is a type II integral membrane protein and is responsible for 6-O-sulfation of heparan sulfate. This enzyme does not share significant sequence similarity with other known sulfotransferases). Dodé and Rondard (2013) [34] described the essential roles of these genes and assessed the proportion of Kallmann syndrome cases connected with their mutations. They found that KAL1 contributes to an increase in the extra-cellular matrix glycoprotein anosmin-1, while FGF8 and FGFR1 encode fibroblast growth factor-8 and fibroblast growth factor receptor-1. PROKR2 and PROK2 are responsible for the generation of prokineticin receptor-2 and prokineticin-2. According to these authors’ assessment, mutations in KAL1 appear in about 8% of cases of Kallmann syndrome, FGF8 and FGFR1 both appear in about 10% of cases and mutations both in PROKR2 or PROK2 are responsible for about 9% of cases. In addition, mutations in the CHD7 gene lead to CHARGE syndrome (coloboma, heart defects, choanal atresia, retarded growth and development, genital abnormalities, and ear anomalies) in many patients accompanying Kallmann syndrome [34]. CHARGE syndrome, known as CHARGE association, is a rare syndrome caused by a genetic disorder. First described in 1979, the acronym CHARGE came into use for newborn children with the congenital features of coloboma of the eye, heart defects, atresia of the nasal choanae, retardation of growth and/or development, genital and/or urinary abnormalities, and ear abnormalities and deafness. These features are no longer used in making a diagnosis of CHARGE syndrome, but the name remains. About two thirds of cases are due to a CHD7 mutation. Ultimately, practically all researchers agreed that, despite the estimated prevalence of this syndrome of one in 8000 men and nearly five times lower than this in women, the real frequency of the disease may be higher since so many of the genes potentially involved in Kallmann syndrome remain unexplored [31,32,33,34].

5. Summary and Conclusions

The data quoted in this review would agree that the pool of factors harmful to human health which has accumulated in the environment, is very large. Most of these factors affect the human reproductive system and fertility adversely [5,6]. Pb, Cd, Hg, Mo, and other heavy metals appear to be detrimental to sperm concentration and quality [1,52]. The authors expound a list of sperm and spermatogenesis depressors, describing the negative effects of dioxins, pesticides, phthalates, industrial solvents, as well as traffic fumes and food additives [4]. Obviously even house dust can modify reproductive hormone levels [3]. Researchers noted close relationships between many of the harmful substances mentioned above and increased oxidative stress. The problem of overproduction of ROS is usually connected with decreasing activity of certain antioxidative enzymes, such as catalase, superoxide dismutase, and glutathione peroxidase [7,10]. Many of these authors noticed certain behaviors that people can easily initiate on their own, such as a cessation of smoking or introducing a low-fat diet, can considerably reduce oxidative stress and improve reproductive condition [9]. A large pool of research has described the role of an anti-oxidative diet as an effective tactic in reducing oxidative stress. Beta-carotene, vitamin A, C, E, B complex, and lycopene have all been considered as beneficial factors in the lowering of oxidative stress markers and the improvement of anti-oxidative defense [12,13,15,16,78]. Another strategy aiding sperm quality appears to be supplementation of Zn and Se, which both improve semen concentration and motility [14].
Reactive forms of oxygen may cause destructive changes on a genetic level, for instance through DNA breakages and genetic factors were estimated to contribute to at least 5–10% of cases of male infertility [8,80]. We analyzed common genetic factors in male infertility, focusing on impairments in chromosomes Y, X, and 7. With respect to the Y chromosome, authors richly described the AZF region and microdeletions in domains AZFa, AZFb, AZFc, and AZFd [17,18,84]. It appears that a relatively minor manifestation of such deletions causes a lowering in the amount of sperm cells in semen, while the most serious deletions cause azoospermia [19,20,80]. The phenotypes vary between populations but micro-deletion and AZFc deletions are definitely the most frequent [86]. Male infertility also occurs in cystic fibrosis and the congenital bilateral absence of the vas deferens, both caused by mutations in the CFTR gene, located on chromosome 7. Obstruction of spermatic ducts by sticky mucus is a feature of cystic fibrosis, while aplasia of spermatic ducts applies to CBAVD. Regarding the common genetic cause of these conditions, CBAVD has been described as a form of expression of cystic fibrosis [22,23,25,36,89]. Finally, with respect to disorders associated with the X chromosome, Klinefelter syndrome, as one of the most frequent genetic causes of male infertility (1 in 600 men), is well characterized. The authors described genetic pathogenesis, the presence of an extra chromosome X in the male karyotype, as well as phenotypic manifestations, including small testis, azoospermia, degeneration of spermatic ducts, as sometimes coupled with psychiatric impairments and learning delays [26,27,28,29,30,93,94]. A well-characterized genetic disorder is Kallmann syndrome, where the condition results from mutations in various genes, including KAL1, FGFR1, or FGF8. It manifests as a combination of reproductive impairments (small testicles and delayed maturation) and the lack of a sense of smell [31,32,33,36]. The prevalence of this syndrome among male patients is estimated at 1 in 8000 but many genes possibly implicated in this disease are still unknown [34].
This review demonstrates that male health and fertility are directly connected with environmental conditions. We are exposed to various, potentially harmful, factors which intensify oxidative stress and decrease the natural defenses of the body. Subsequently, ROS damages the reproductive system and other essential systems and even causes impairments on a genetic level [8,97]. Further research should be undertaken to broaden our understanding of these environmental sources of immunogenetic disorders accompanying male infertility, in decreasing both lipoperoxidation and antioxidative activity. This will help determine the distribution and prevalence of potential risk factors in different regions. The results of future analysis should definitely improve the prevention of male infertility, as well as widen the diagnostic possibilities.
Summarizing: (1) Genetic factors are implicated in at least 10% of cases of male infertility [80]; (2) Amongst infertile men the frequency of AZF microdeletions is estimated at 7–8%, with a wide variation across populations [81,87]; (3) Alongside karyotype abnormalities (15% of azoospermic, 6% oligozoospermic cases), AZF microdeletions are considered as the second most common genetic reason of spermatogenic failure [18,20,83]; (4) Amongst various AZF genes the DAZ gene family is reported as the most frequently deleted AZF candidate [35]; (5) Screening of AZF microdeletions can be useful in explaining idiopathic cases of male infertility as well as in genetic consulting prior to assisted reproduction [87]; (6) An exact evaluation of how seriously pollutants and the destabilization of the elemental balance of the human organism lessen the quality of sperm and reduce male fertility should be conducted; (7) Studies of the induced oxidative stress and negative immunogenetic changes in the human reproductive system caused by toxic chemicals are important; (8) An evaluation of the significance of polymorphisms correlated with changes in reproductive potential and pro-anti-oxidative mechanisms as markers of pathophysiological disturbances of the male reproductive condition needs to be performed; (9) The inference from the relationships between environmental degradation and the occurrence of genetic diseases, connected with infertility, needs to be established.

Author Contributions

All authors (P.K., J.B., I.J., B.P.K., E.N.-C., M.P., M.S., A.W., and W.K.) jointly participated in the experimental studies on the environmental conditions of male infertility (currently, original research is being submitted, and more is underway). They developed and participated in the development of the research problem and participated in the design of this review. All authors discussed the main theses of this review and improved the working version of the manuscript. They co-edited and improved the final version of the manuscript, conceived of each part of the review article, participated in its design and coordination, and helped to draft each part of the manuscript. P.K. covered editorial staff. All authors have read and agreed to the published version of the manuscript.

Funding

This research received no external funding. The publication cost (Journal APC) was funded by the University of Zielona Góra, Licealna St. 9, PL 65-417 Zielona Góra, Poland.

Acknowledgments

We thank Joerg Boehner (Univ. Berlin, Germany) for his help with improving English.

Conflicts of Interest

The authors declare no conflict of interest.

References

  1. Meeker, J.D.; Rossano, M.G.; Protas, B.; Diamond, M.P.; Puscheck, E.; Daly, D.; Paneth, N.; Wirth, J.J. Cadmium, Lead, and Other Metals in Relation to Semen Quality: Human Evidence for Molybdenum as a Male Reproductive Toxicant. Environ. Health Perspect. 2008, 116, 1473–1479. [Google Scholar] [CrossRef] [PubMed]
  2. Meeker, J.D.; Rossano, M.G.; Protas, B.; Padmanabhan, V.; Diamond, M.P.; Puscheck, E.; Daly, D.; Paneth, N.; Wirth, J.J. Environmental exposure to metals and male reproductive hormones: Circulating testosterone is inversely associated with blood molybdenum. Fertil. Steril. 2010, 93, 130–140. [Google Scholar] [CrossRef] [PubMed]
  3. Meeker, J.D.; Stapleton, H.M. House Dust Concentrations of Organophosphate Flame Retardants in Relation to Hormone Levels and Semen Quality Parameters. Environ. Health Perspect. 2010, 118, 318–323. [Google Scholar] [CrossRef] [PubMed]
  4. Vaiserman, A. Early-life Exposure to Endocrine Disrupting Chemicals and Later-life Health Outcomes: An Epigenetic Bridge? Aging Dis. 2014, 5, 419–429. [Google Scholar]
  5. Manahan, S.E. Toksykologia ?rodowiska. Aspekty Chemiczne i Biochemiczne; PWN-Pol. Sci. Publ.; Wydawnictwo Naukowe PWN: Warsaw, Poland, 2006; 530p. [Google Scholar]
  6. Sharpe, R.M. Environmental/lifestyle effects on spermatogenesis. Philos. Trans. R. Soc. Lond. B Biol. Sci. 2010, 365, 1697–1712. [Google Scholar] [CrossRef]
  7. Mathur, P.P.; D’Cruz, S.C. The effect of environmental contaminants on testicular function. Asian J. Androl. 2011, 13, 585–591. [Google Scholar] [CrossRef]
  8. Bartosz, G. Druga Twarz Tlenu. Wolne Rodniki w Przyrodzie; PWN-Pol. Sci. Publ.; Wydawnictwo Naukowe PWN: Warsaw, Poland, 2009; 448p. [Google Scholar]
  9. Agarwal, A.; Virk, G.; Ong, C.; du Plessis, S.S. Effect of Oxidative Stress on Male Reproduction. World J. Men’s Health 2014, 32, 1–17. [Google Scholar] [CrossRef]
  10. Al-Attar, A.M. Antioxidant effect of vitamin E treatment on some heavy metals-induced renal and testicular injuries in male mice. Saudi J. Biol. Sci. 2011, 18, 63–72. [Google Scholar] [CrossRef]
  11. Ruder, E.H.; Hartman, T.J.; Blumberg, J.; Goldman, M.B. Oxidative stress and antioxidants: Exposure and impact on female fertility. Hum. Reprod. Update 2008, 14, 345–357. [Google Scholar] [CrossRef]
  12. Zini, A.; Gabriel, M.S.; Baazeem, A. Antioxidants and sperm DNA damage: A clinical perspective. J. Assist. Reprod. Genet. 2009, 26, 427–432. [Google Scholar] [CrossRef]
  13. Walczak-J?drzejowska, R.; Wolski, J.K.; S?owikowska-Hilczer, J. The role of oxidative stress and antioxidants in male fertility. Centr. Eur. J. Urol. 2013, 66, 60–67. [Google Scholar] [CrossRef] [PubMed]
  14. Atig, F.; Raffa, M.; Habib, B.A.; Kerkeni, A.; Saad, A.; Ajina, M. Impact of seminal trace element and glutathione levels on semen quality of Tunisian infertile men. BMC Urol. 2012, 12, 6. [Google Scholar] [CrossRef] [PubMed]
  15. Aitken, R.J.; Roman, S.D. Antioxidant systems and oxidative stress in the testes. Oxid. Med. Cell. Longev. 2008, 1, 15–24. [Google Scholar] [CrossRef] [PubMed]
  16. Zareba, P.; Colaci, D.S.; Afeiche, M.; Gaskins, A.J.; Jørgensen, N.; Mendiola, J.; Swan, S.H.; Chavarro, J.E. Semen Quality in Relation to Antioxidant Intake in a Healthy Male Population. Fertil. Steril. 2013, 100, 1572–1579. [Google Scholar] [CrossRef] [PubMed]
  17. Navarro-Costa, P.; Gonçalves, J.; Plancha, C.E. The AZFc region of the Y chromosome: At the crossroads between genetic diversity and male infertility. Hum. Reprod. Update 2010, 16, 525–542. [Google Scholar] [CrossRef]
  18. Navarro-Costa, P.; Plancha, C.E.; Gonçalves, J. Genetic Dissection of the AZF Regions of the Human Y Chromosome: Thriller or Filler for Male (In)fertility? J. Biomed. Biotechnol. 2010, 2010, 936–956. [Google Scholar] [CrossRef]
  19. Wang, R.X.; Fu, C.; Yang, Y.P.; Han, R.R.; Dong, Y.; Dai, R.L.; Liu, R.Z. Male infertility in China: Laboratory finding for AZF microdeletions and chromosomal abnormalities in infertile men from Northeastern China. J. Assist. Reprod. Genet. 2010, 27, 391–396. [Google Scholar] [CrossRef]
  20. Khabour, O.F.; Fararjeh, A.S.; Alfaouri, A.A. Genetic screening for AZF Y chromosome microdeletions in Jordanian azoospermic infertile men. Int. J. Mol. Epidemiol. Genet. 2014, 5, 47–50. [Google Scholar]
  21. Korf, B.R. Genetyka Cz?owieka—Rozwi?zywanie Problemów Medycznych; PWN-Pol. Sci. Publ.; Wydawnictwo Naukowe PWN: Warsaw, Poland, 2003; 365p. [Google Scholar]
  22. Noone, P.G.; Knowles, M.R. CFTR-opathies: Disease phenotypes associated with cystic fibrosis transmembrane regulator gene mutations. Respir. Res. 2001, 2, 328–332. [Google Scholar] [CrossRef]
  23. Bradley, J.R.; Johnson, D.R.; Pober, B.R. Genetyka Medyczna. Notatki z Wyk?adów; PZWL: Warsaw, Poland, 2009; 178p. [Google Scholar]
  24. Blau, H.; Freud, E.; Mussaffi, H.; Werner, M.; Konen, O.; Rathaus, V. Urogenital abnormalities in male children with cystic fibrosis. Arch. Dis. Child. 2002, 87, 135–138. [Google Scholar] [CrossRef]
  25. Xu, X.; Zheng, J.; Liao, Q.; Zhu, H.; Xie, H.; Shi, H.; Duan, S. Meta-analyses of 4 CFTR variants associated with the risk of the congenital bilateral absence of the vas deferens. J. Clin. Bioinform. 2014, 4, 11. [Google Scholar] [CrossRef] [PubMed]
  26. Molnar, A.M.; Terasaki, G.S.; Amory, J.K. Klinefelter syndrome presenting as behavioral problems in a young adult. Nat. Rev. Endocrinol. 2010, 6, 707–712. [Google Scholar] [CrossRef] [PubMed]
  27. Turriff, A.; Levy, H.P.; Biesecker, B. Prevalence and Psychosocial Correlates of Depressive Symptoms among Adolescents and Adults with Klinefelter Syndrome. Genet. Med. 2011, 13, 966–972. [Google Scholar] [CrossRef] [PubMed]
  28. Gi Jo, D.; Tae Seo, J.; Shik Lee, J.; Yeon Park, S.; Woo Kim, J. Klinefelter Syndrome Diagnosed by Prenatal Screening Tests in High-Risk Groups. Korean J. Urol. 2013, 54, 263–265. [Google Scholar]
  29. Nieschlag, E. Klinefelter Syndrome The Commonest Form of Hypogonadism, but Often Overlooked or Untreated. Dtsch. Arztebl. Int. 2013, 110, 347–353. [Google Scholar]
  30. Høst, C.; Skakkebæk, A.; Groth, K.A.; Bojesen, A. The role of hypogonadism in Klinefelter Syndrome. Asian J. Androl. 2014, 16, 185–191. [Google Scholar]
  31. Pedersen-White, J.R.; Chorich, L.P.; Bick, D.P.; Sherins, R.J.; Layman, L.C. The prevalence of intragenic deletions in patients with idiopathic hypogonadotropic hypogonadism and Kallmann syndrome. Mol. Hum. Reprod. 2008, 14, 367–370. [Google Scholar] [CrossRef]
  32. Laitinen, E.M.; Vaaralahti, K.; Tommiska, J.; Eklund, E.; Tervaniemi, M.; Valanne, L.; Raivio, T. Incidence, Phenotypic Features and Molecular Genetics of Kallmann Syndrome in Finland. Orphanet J. Rare Dis. 2011, 6, 41. [Google Scholar] [CrossRef]
  33. Quaynor, S.D.; Kim, H.G.; Cappello, E.M.; Williams, T.; Chorich, L.P.; Bick, D.P.; Sherins, R.J.; Layman, L.C. The prevalence of digenic mutations in patients with normosmic hypogonadotropic hypogonadism and Kallmann syndrome. Fertil. Steril. 2011, 96, 1424–1430. [Google Scholar] [CrossRef]
  34. Dodé, C.; Rondard, P. PROK2/PROKR2 Signaling and Kallmann Syndrome. Front. Endocrinol. 2013, 4, 19. [Google Scholar] [CrossRef]
  35. Balkan, M.; Tekes, S.; Gedik, A. Cytogenetic and Y chromosome microdeletion screening studies in infertile males with Oligozoospermia and Azoospermia in Southeast Turkey. J. Assist. Reprod. Genet. 2008, 25, 559–565. [Google Scholar] [CrossRef] [PubMed]
  36. Drewa, G.; Ferenc, T. (Eds.) Genetyka Medyczna. Podr?cznik dla Studentów; Elsevier, Urban & Partner: Wroc?aw, Poland, 2011; 962p. [Google Scholar]
  37. Wo?czyński, S.; Kuczyńki, W.; Styrna, J.; Szamatowicz, M. Molekularne Podstawy Rozrodczo?ci Cz?owieka i Innych Ssaków; Kurpisz, M., Ed.; TerMedia: Poznań, Poland, 2002; 384p. [Google Scholar]
  38. Sinclair, S. Male infertility: Nutritional and environmental considerations. Altern. Med. Rev. 2000, 5, 28–38. [Google Scholar] [PubMed]
  39. Aitken, R.J. The human spermatozoon—A cell in crisis? J. Reprod. Fertil. 1999, 115, 1–7. [Google Scholar] [CrossRef] [PubMed]
  40. Oosterhuis, G.J.E.; Mulder, A.B.; Kalsbeek-Batenburg, E.; Lambalk, C.B.; Schoemaker, J.; Vermes, I. Measuring apoptosis in human spermatozoa: A biological assay for semen quality? Fertil. Steril. 2000, 74, 245–250. [Google Scholar] [CrossRef]
  41. Zdrojewicz, Z.; Wi?niewska, A. Rola cynku w seksualno?ci m??czyzn. Adv. Clin. Exp. Med. 2005, 14, 1295–1300. [Google Scholar]
  42. Beroff, S. Male Fertility Correlates with Metal Levels; WB Saunders Co.: New York, NY, USA, 1996; Volume 3, pp. 15–17. [Google Scholar]
  43. Skoczyńska, A.; Stojek, E.; Górecka, H.; Wojakowska, A. Serum vasoactive agents in lead-treated rats. Med. Environ. Health 2003, 16, 169–177. [Google Scholar]
  44. Chia, S.E.; Ong, C.N.; Chua, L.H.; Ho, L.M.; Tay, S.K. Comparison of zinc concentrations in blood and seminal plasma and the various sperm parameters between fertile and infertile men. J. Androl. 2001, 21, 53–57. [Google Scholar]
  45. Giller, R.M.; Matthews, K. Natural Prescription; Dr. Giller’s Natural Treatments and Vitamin Therapies for Over 100 Common Ailments; Carol Southern Books, Random House Inc.: New York, NY, USA, 1994; 370p. [Google Scholar]
  46. Mohan, H.; Verma, J.; Singh, I.; Mohan, P.; Marwah, S.; Singh, P. Interrelationship of zinc levels in serum and semen in oligospermic infertile patients and fertile males. Pathol. Microbiol. 1997, 40, 451–455. [Google Scholar]
  47. Badmaev, V.; Majeed, M.; Passwater, R.A. Selenium: A quest for better understanding. Altern. Ther. Health Med. 1996, 2, 59–67. [Google Scholar]
  48. Holben, D.H.; Smith, A.M. The diverse role of selenium within selenoproteins: A review. J. Am. Diet. Assoc. 1999, 99, 836–843. [Google Scholar] [CrossRef]
  49. Ursini, F.; Heim, S.; Kiess, M.; Maiorino, M.; Roveri, A.; Wissing, J.; Flohe, L. Dual function of the selenoprotein PHGPx during sperm maturation. Science 1999, 285, 1393–1396. [Google Scholar] [CrossRef]
  50. Luca, G.; Lilli, C.; Bellucci, C.; Mancuso, F.; Calvitti, M.; Arato, I.; Falabella, G.; Giovagnoli, S.; Aglietti, M.C.; Lumare, A.; et al. Toxicity of cadmium on Sertoli cell functional competence: An in vitro study. J. Biol. Regul. Homeost. Agents 2013, 27, 805–816. [Google Scholar] [PubMed]
  51. Mancuso, F.; Arato, I.; Lilli, C.; Bellucci, C.; Bodo, M.; Calvitti, M.; Aglietti, M.C.; dell’Omo, M.; Nastruzzi, C.; Calafiore, R.; et al. Acute effects of lead on porcine neonatal Sertoli cells in vitro. Toxicol. In Vitro 2018, 48, 45–52. [Google Scholar] [CrossRef] [PubMed]
  52. Siu, E.R.; Mruk, D.D.; Porto, C.S.; Cheng, C.Y. Cadmium-induced Testicular Injury. Toxicol. Appl. Pharmacol. 2009, 238, 240–249. [Google Scholar] [CrossRef] [PubMed]
  53. Buck Louis, G.M.; Sundaram, R.; Schisterman, E.F.; Sweeney, A.M.; Lynch, C.D.; Gore-Langton, R.E.; Chen, Z.; Kim, S.; Caldwell, K.; Barr, D.B. Heavy Metals and Couple Fecundity, the LIFE Study. Chemosphere 2012, 87, 1201–1207. [Google Scholar] [CrossRef]
  54. Bonda, E.; W?ostowski, T.; Krasowska, A. Metabolizm i toksyczno?? kadmu u cz?owieka i zwierz?t. Kosmos 2007, 56, 87–97. [Google Scholar]
  55. O’Flaherty, C. The Enzymatic Antioxidant System of Human Spermatozoa. Adv. Androl. 2014, 2014, 626374. [Google Scholar] [CrossRef]
  56. Gladyshev, V.N.; Arnér, E.S.; Berry, M.J.; Brigelius-Flohé, R.; Bruford, E.A.; Burk, R.F.; Carlson, B.A.; Castellano, S.; Chavatte, L.; Conrad, M.; et al. Selenoprotein Gene Nomenclature. J. Biol. Chem. 2016, 291, 24036–24040. [Google Scholar] [CrossRef]
  57. Sallmen, M.; Lindbohm, M.L.; Anttila, A.; Taskinen, H.; Hemminki, K. Time to pregnancy among the wives of men occupationally exposed to lead. Epidemiology 2000, 11, 141–147. [Google Scholar] [CrossRef]
  58. el Feki, A.; Ghorbel, F.; Smaoui, M.; Makni-Ayadi, F.; Kammoun, A. Effects of automobile lead on the general growth and sexual activity of the rat Gynecol. Obstet. Fertil. 2000, 28, 51–59. [Google Scholar]
  59. Ga?ecka, E.; Jacewicz, R.; Mrowicka, M.; Florkowski, A.; Ga?ecki, P. Antioxidative enzymes–structure, properties, functions. Enzymy antyoksydacyjne-budowa, w?a?ciwo?ci, funkcje. Pol. Merk. Lek. 2008, 25, 266–268. [Google Scholar]
  60. Ga?ecka, E.; Mrowicka, M.; Malinowska, K.; Ga?ecki, P. Role of free radicals in the physiological processes. Wolne rodniki tlenu i azotu w fizjologii. Pol. Merk. Lek. 2008, 24, 446–448. [Google Scholar]
  61. Ga?ecka, E.; Mrowicka, M.; Malinowska, K.; Ga?ecki, P. Chosen non-enzymatic substances that participate in a protection against overproduction of free radicals. Wybrane substancje nieenzymatyczne uczestnicz?ce w procesie obrony przed nadmiernym wytwarzaniem wolnych rodników. Pol. Merk. Lek. 2008, 25, 269–272. [Google Scholar]
  62. Hsieh, Y.Y.; Sun, Y.L.; Chang, C.C.; Lee, Y.S.; Tsai, H.D.; Lin, C.S. Superoxide dismutase activities of spermatozoa and seminal plasma are not correlated with male infertility. J. Clin. Lab. Anal. 2002, 16, 127–131. [Google Scholar] [CrossRef]
  63. Zini, A.; de Lamirande, E.; Gagnon, C. Reactive oxygen species in semen of infertile patients: Levels of superoxide dismutase- and catalase-like activities in seminal plasma and spermatozoa. Int. J. Androl. 1993, 16, 183–188. [Google Scholar] [CrossRef]
  64. Siciliano, L.; Tarantino, P.; Longobardi, F.; Rago, V.; De Stefano, C.; Carpino, A. Impaired seminal antioxidant capacity in human semen with hyperviscosity or oligoasthenozoospermia. J. Androl. 2001, 22, 798–803. [Google Scholar]
  65. Sharma, R.K.; Pasqualotto, A.E.; Nelson, D.R.; Thomas, A.J., Jr.; Agarwal, A. Relationship between seminal white blood cell counts and oxidative stress in men treated at an infertility clinic. J. Androl. 2001, 22, 575–583. [Google Scholar]
  66. Asada, H.; Sueoka, K.; Hashiba, T.; Kuroshima, M.; Kobayashi, N.; Yoshimura, Y. The effects of age and abnormal sperm count on the nondisjunction of spermatozoa. J. Assist. Reprod. Genet. 2000, 17, 51–59. [Google Scholar] [CrossRef]
  67. Black, L.D.; Nudell, D.M.; Cha, I.; Cherry, A.M.; Turek, P.J. Compound genetic factors as a cause of male infertility. Hum. Reprod. 2000, 15, 449–451. [Google Scholar] [CrossRef]
  68. Krawczyński, M.R. Genetyczny mechanizm determinacji p?ci u cz?owieka. Post. Androl. 2002, 4, 143–150. [Google Scholar]
  69. Matheisel, A.; Babińska, M.; ?ychska, A.; Mrózek, K.; Szczurowicz, A.; Niedoszytko, B.; Iliszko, M.; Mrózek, E.; Mielnik, J.; Midro, A.T.; et al. Wyniki badań cytogenetycznych u pacjentów z wywiadem obci??onym niepowodzeniami rozrodu. Gin. Pol. 1997, 68, 74–81. [Google Scholar]
  70. Midro, A. Znaczenie badań chromosomowych w andrologii klinicznej. Post. Androl. 2000, 3, 1–10. [Google Scholar]
  71. Kurpisz, M.; Szczygie?, M. Molekularne podstawy teratozoospermii. Gin. Pol. 2000, 9, 1036–1041. [Google Scholar]
  72. Jakubowski, L.; Jeziorowska, A. Aberracje chromosomów X i Y w wybranych przypadkach zaburzeń rozwoju cielesno-p?ciowego. Endokrynol. Pol. 1995, 46 (Suppl. 1), 77–95. [Google Scholar]
  73. Wojda, A.; Korcz, K.; J?drzejczak, P.; Kotecki, M.; Pawe?czyk, L.; Latos-Bieleńska, A.; Wolnik-Brzozowska, D.; Jaruzelska, J. Importance of cytogenetic analysis in patients with azoospermia or severe oligozoospermia undergoing in vitro fertilization. Ginekol. Pol. 2001, 11, 847–853. [Google Scholar]
  74. McCallum, T.J.; Milunsky, J.M.; Cunningham, D.L.; Harris, D.H.; Maher, T.A.; Oates, R.D. Fertility in men with cystic fibrosis. Chest 2000, 18, 1059–1062. [Google Scholar] [CrossRef]
  75. Viville, S.; Warter, S.; Meyer, J.M.; Wittemer, C.; Loriot, M.; Mollard, R.; Jacqmin, D. Histological and genetic analysis and risk assessment for chromosomal aberration after ICSI for patients presenting with CBAVD. Hum. Reprod. 2000, 15, 1613–1618. [Google Scholar] [CrossRef]
  76. Oteiza, P.I. Zinc and the modulation of redox homeostasis. Free Rad. Biol. Med. 2012, 53, 1748–1759. [Google Scholar] [CrossRef]
  77. Kehr, S.; Malinouski, M.; Finney, L.; Vogt, S.; Labunskyy, V.M.; Kasaikina, M.V.; Carlson, B.A.; Zhou, Y.; Hatfield, D.L.; Gladyshev, V.N. X-ray fluorescence microscopy reveals the role of selenium in spermatogenesis. J. Mol. Biol. 2009, 389, 808–818. [Google Scholar] [CrossRef]
  78. Mier-Cabrera, J.; Aburto-Soto, T.; Burrola-Méndez, S.; Jiménez-Zamudio, L.; Tolentino, M.C.; Casanueva, E.; Hernández-Guerrero, C. Women with endometriosis improved their peripheral antioxidant markers after the application of a high antioxidant diet. Reprod. Biol. Endocrinol. 2009, 7, 54. [Google Scholar] [CrossRef]
  79. Rink, S.M.; Mendola, P.; Mumford, S.L.; Poudrier, J.K.; Browne, R.W.; Wactawski-Wende, J.; Perkins, N.J.; Schisterman, E.F. Self-report of Fruit and Vegetable Intake that meets the 5 A Day Recommendation is Associated with Reduced Levels of Oxidative Stress Biomarkers and Increased Levels of Antioxidant Defense in Premenopausal Women. J. Acad. Nutr. Diet. 2013, 113, 776–785. [Google Scholar] [CrossRef] [PubMed]
  80. Ambulkar, P.S.; Sigh, R.; Reddy, M.V.R.; Varma, P.S.; Gupta, D.O.; Shende, M.R.; Pal, A.K. Genetic Risk of Azoospermia Factor (AZF) Microdeletions in Idiopathic Cases of Azoospermia and Oligozoospermia in Central Indian Population. J. Clin. Diagn. Res. 2014, 8, 88–91. [Google Scholar] [PubMed]
  81. Sen, S.; Pasi, A.R.; Dada, R.; Shamsi, M.B.; Modi, D. Y chromosome microdeletions in infertile men: Prevalence, phenotypes and screening markers for the Indian population. J. Assist. Reprod. Genet. 2013, 30, 413–422. [Google Scholar] [CrossRef] [PubMed]
  82. Yu, X.-W.; Wei, Z.-T.; Jiang, Y.-T.; Zhang, S.-L. Y chromosome azoospermia factor region microdeletions and transmission characteristics in azoospermic and severe oligozoospermic patients. Int. J. Clin. Exp. Med. 2015, 8, 14634–14646. [Google Scholar] [PubMed]
  83. Choi, D.K.; Gong, I.H.; Hwang, J.H.; Oh, J.J.; Hong, J.Y. Detection of Y Chromosome Microdeletion is Valuable in the Treatment of Patients with Nonobstructive Azoospermia and Oligoasthenoteratozoospermia: Sperm Retrieval Rate and Birth Rate. Korean J. Urol. 2013, 54, 111–116. [Google Scholar] [CrossRef]
  84. Küçükaslan, A.S.; Çetinta?, V.B.; Alt?nta?, R.; Vardarl?, A.T.; Mutlu, Z.; Uluku?, M.; Semerci, B.; Ero?lu, Z. Identification of Y chromosome microdeletions in infertile Turkish men. Turk. J. Urol. 2013, 39, 170–174. [Google Scholar] [CrossRef]
  85. Zheng, H.Y.; Li, Y.; Shen, F.J.; Tong, Y.Q. A novel universal multiplex PCR improves detection of AZFc Y-chromosome microdeletions. J. Assist. Reprod. Genet. 2014, 31, 613–620. [Google Scholar] [CrossRef]
  86. Massart, A.; Lissens, W.; Tournaye, H.; Stouffs, K. Genetic causes of spermatogenic failure. Asian J. Androl. 2012, 14, 40–48. [Google Scholar] [CrossRef]
  87. Hellani, A.; Al-Hassan, S.; Iqbal, M.A.; Coskun, S. Y chromosome microdeletions in infertile men with idiopathic oligo- or azoospermia. J. Exp. Clin. Assist. Reprod. 2006, 3, 1. [Google Scholar] [CrossRef]
  88. Du, Q.; Li, Z.; Pan, Y.; Liu, X.; Pan, B.; Wu, B. The CFTR M470V, Intron 8 Poly-T, and 8 TG-Repeats Detection in Chinese Males with Congenital Bilateral Absence of the Vas Deferens. Biomed. Res. Int. 2014, 2014, 689–695. [Google Scholar] [CrossRef]
  89. Bareil, C.; Guittard, C.; Altieri, J.P.; Templin, C.; Claustres, M.; des Georges, M. Comprehensive and Rapid Genotyping of Mutations and Haplotypes in Congenital Bilateral Absence of the Vas Deferens and Other Cystic Fibrosis Transmembrane Conductance Regulator-Related Disorders. J. Mol. Diagn. 2007, 9, 582–588. [Google Scholar] [CrossRef] [PubMed]
  90. Havasi, V.; Rowe, S.M.; Kolettis, P.N.; Dayangac, D.; ?ahin, A.; Grangeia, A.; Carvalho, F.; Barros, A.; Sousa, M.; Bassas, L.; et al. Association of cystic fibrosis genetic modifiers with congenital bilateral absence of the vas deferens. Fertil. Steril. 2010, 94, 2122–2127. [Google Scholar] [CrossRef] [PubMed]
  91. Almeida, C.; Correia, S.; Rocha, E.; Alves, A.; Ferraz, L.; Silva, J.; Sousa, M.; Barros, A. Caspase signalling pathways in human spermatogenesis. J. Assist. Reprod. Genet. 2013, 30, 487–495. [Google Scholar] [CrossRef] [PubMed]
  92. Accardo, G.; Vallone, G.; Esposito, D.; Barbato, F.; Renzullo, A.; Conzo, G.; Docimo, G.; Esposito, K.; Pasquali, D. Testicular parenchymal abnormalities in Klinefelter syndrome: A question of cancer? Examination of 40 consecutive patients. Asian J. Androl. 2015, 17, 154–158. [Google Scholar]
  93. Bardsley, M.Z.; Falkner, B.; Kowal, K.; Ross, J.L. Insulin resistance and metabolic syndrome in prepubertal boys with Klinefelter syndrome. Acta Paediatr. 2011, 100, 866–870. [Google Scholar] [CrossRef]
  94. Van Rijn, S.; Swaab, H.; Baas, D.; de Haan, E.; Kahn, R.S.; Aleman, A. Neural systems for social cognition in Klinefelter syndrome (47, XXY): Evidence from fMRI. Soc. Cogn. Affect Neurosci. 2012, 7, 689–697. [Google Scholar] [CrossRef]
  95. Lai, H.Y.; Yang, B.C.; Tsai, M.L.; Yang, H.Y.; Huang, B.M. The inhibitory effects of lead on steroidogenesis in MA-10 mouse Leydig tumor cells. Life Sci. 2001, 68, 849–859. [Google Scholar]
  96. Bertin, G.; Averbeck, D. Cadmium: Cellular effects, modifications of biomolecules, modulation of DNA repair and genotoxic consequences (a review). Biochimie 2006, 88, 1549–1559. [Google Scholar] [CrossRef]
(責(zé)任編輯:佳學(xué)基因)
頂一下
(0)
0%
踩一下
(0)
0%
推薦內(nèi)容:
來了,就說兩句!
請自覺遵守互聯(lián)網(wǎng)相關(guān)的政策法規(guī),嚴(yán)禁發(fā)布色情、暴力、反動的言論。
評價(jià):
表情:
用戶名: 驗(yàn)證碼: 點(diǎn)擊我更換圖片

Copyright © 2013-2033 網(wǎng)站由佳學(xué)基因醫(yī)學(xué)技術(shù)(北京)有限公司,湖北佳學(xué)基因醫(yī)學(xué)檢驗(yàn)實(shí)驗(yàn)室有限公司所有 京ICP備16057506號-1;鄂ICP備2021017120號-1

設(shè)計(jì)制作 基因解碼基因檢測信息技術(shù)部

一区二区三区日韩欧美精品| 午夜影院在线观看电影国产| 久久精品美女av一区二区| 激情综合五月激情综合在线 | 亚洲天堂国产精品一区二区三区| 亚洲国产欧美中文字幕在线观看| 香蕉亚洲一级视频在线观看| 久久精品国产亚洲av蜜屁股| 亚洲av成人精品一区二区久久| 亚洲最大色综合成人av| 国产精品久久久影视青草| 精品美女福利视频在线观看| 在线亚洲精品国产成人av剧情| 九九热久久这里有免费精品| 亚洲国产精品日韩专区av| 99久久精品免费看国产四区| 9国产精品久久久久老师| 日韩一区二区淫片国产欧美在线| 日韩亚洲欧美中文在线电影| 最新中文字幕2018第一页| 精品视频精品人妻一区二区三区| 在线视频欧美日韩国产一区二区 | 久久精品国产亚洲av麻豆影院| 久久国产精品久久久久久| 人妻中文字幕在线一区二区| 国产精品久久久久久久av下| 激情欧美一区二区中文字幕| 日韩精品福利视频一区二区三区 | 中文字幕日韩欧美日韩在线| 久久久亚洲熟妇熟女2022| 一区二区三区久久久久国产精品| 日韩欧美中文字幕精品在线| 欧美国产区二区三区久久久| 亚洲午夜一区二区福利合集 | 亚洲高清日韩精品一区二区三区网| 亚洲高清一区二区三区四区电影| 国产无遮挡真人免费视频| 久久精品国产99精品国产| 亚洲精品色婷婷一区二区| 91精品天堂福利在线观看| 国产成人自拍电影天堂网站| 欧美精品在线观看不卡一区| 91亚洲精品福利在线播放| 91久久精品国产91久久久久| 日本精品免费一区二区三区乱码| 在线观看免费视频伊人网| 黄页网站视频大全在线观看| 国产精品久久久69粉嫩| 在线观看亚洲国产va网站| 五月六月丁香激情视频在线观看 | 亚洲中文字幕久久久久久| 久久精品国产亚洲av色哟哟| 可以免费在线看污视频的网站| 97精品国产97久久久久久春色| 99国产精品国产精品久久| 精品一区二区三区人妻视频 | 婷婷97狠狠成人免费视频| 岛国午夜精品视频在线观看 | 国产成人精品午夜二三区麻豆| 麻豆国产原创传媒在线观看 | 久久久精品人妻一区亚美研究所 | 热色阁精品香蕉一区二区三区| 国产成人精品一区二区小说| 国产精品欧美三级在线观看| 国产精品一区二区久久蜜臀内射| 一级片国产精品三级一区二区三区 | 最新的亚洲欧美中文字幕| 久久精品欧美中文一区二区三区| 欧美高潮国产高潮久久久| 欧美精品日韩一区二区三区| 国产欧美一区二区三区在线老狼| 91精品啪在线观看国产手机| 亚洲欧美一区二区三区久久| 亚洲av永久精品一区二区在线| 狠狠综合久久av一区二区三| 亚洲国产日韩综合久久精品| 精品欧美一区二区三区四区视频| 国产欧美1769免费观看视| 国产亚洲精品久久久一区| 欧美日韩一区二区三区在| 亚洲乱人伦中文字幕无码 | 国产欧美日韩在线中文一区| 91尤物视频在线观看视频| 午夜福利视频免费试看久久| 日本人妻少妇久久中文字幕乱码| 国产91精品一区成人免费| 国产老熟女精品一区二区| 精品少妇人妻av免费一区二区 | 久久久久久久久久久国产精品| 91超碰今日免费在线| 精品国产乱码一区二区三区网站 | 亚洲av成人精品网站在线播放| 国产不卡一区二区三区免费视频| 精品视频在线免费观看免费| 日韩熟女作爱视频一区二区 | 国产av午夜精品一区二区三| 欧美一区二区三区免费看片| 久热re在线观看免费视频| 97精品国产97久久久久久春色| 亚洲va欧美va天堂v国产综合| 欧美成年人在线观看视频| 日韩电影免费看中文字幕| 日韩精品福利视频一区二区三区| 在线观看亚洲免费视频网站| 欧洲精品视频在线网站大全| 国产l精品国产亚洲区在线观看| 手机在线大香蕉精品观看| 黄色三级av在线免费播放| 亚洲国产97在线精品一区| 精品欧美国产一区二区免费看| 97视频免费在线观看中文| 91麻豆精品女一区二区| 亚洲第一精品福利av在线| 久久精品亚洲一区二区三区浴池| 日韩一区二区三区av在线| 少妻少妇av中文字幕乱码| 欧美不卡一区二区在线视频| 国产情一区二区三区久久久| 久久久精品国产av麻豆| 免费无遮挡午夜视频网站| 欧美日本最新在线一区视频| 亚洲国产第一第二精品视频| 亚洲精品一区二区三区香蕉| 欧美成人精品一区二区综合免费| 18禁午夜免费福利久久| 日本高清不码不卡在线观看| 国产欧美日韩成人中文字幕| 日韩欧美激情视频在线观看| 亚洲日本精品视频第一页| 欧美国产日韩精品在线观看| 国产欧美一区二区三区网站| 一区三区三区日韩高清不卡| 欧美精品一区二区三区免费观看 | 久久青草免费91线频观久久| 久久久久久婷欧美亚洲日本| 中文字幕乱码在线看欧美| 国产欧美日韩精品高清二区综合区| 久久免费国产一区二区三区| 18禁午夜免费福利久久| 国产成年女人特黄特色毛片免| 欧美日韩一本的免费高清视频| 日本一区二区三区免费不卡视频| 精品国产污污免费网站在线 | 国产一区欧美精品在线观看| 中文字幕在线中文高清av| 国产精品初高中精品久久 | 国产99久久精品免费看| 国产精品成人亚洲一区二区夕| 91精品国产自产在线观看免费| 久久久精品一区二区三区| 国产亚洲成av人片在线观看| 久久av免费一区二区三区国产| 一区二区三区免费一级片| 欧美精品香蕉一区二区三区| 国产91精品看黄网站在线观看| 久久精品国产亚洲av水密被窝| 青青青国产精品免费观看| 久久亚洲国产精品一区二区三区| 精品人妻一区二区三区影视 | 中文字幕一区二区三区人妻免费| 亚洲av制服丝袜日韩高清| 国产成人精品午夜福利a| 美女黄色自拍99欧美国产| 亚洲国产精品区在线观看| 国产精品一区二区久久精品爱涩 | 精品少妇人妻av一区二区蜜桃| 91精品国产乱码久久久久久久| 手机在线高清国产一区二区| 亚洲国产成人一区二区精品区| 久久国产精品成人免费观看| 婷婷丁香蜜桃激情五月天| 欧美精品亚洲精品日韩专区| 日韩欧美电影网站一区二区| 国产成人精品午夜二三区波多野 | 亚洲欧美日韩国产综合婷婷久久| 精品亚洲午夜久久久久四季 | 亚洲天堂av岛国在线看| 欧美人妻中文字幕这里就是精品| 日韩不卡的一区二区三区视频| 99热这里只有精品精品| 亚洲欧美视频在线观看草草视频| 欧美性野久久久久久久久| 亚洲精品麻豆一区二区| 国产综合av在线免费观看| 亚洲精品成人天堂一二三| 男人天堂视频在线观看99| 农村少妇一区二区三区四区五区| 国产成人精品三级高清久久91| 中文字幕+乱码+中文乱码视频| 97精品免费视频国产专区| 欧美在线资源天堂第一页| 一区二区三区手机视频在线观看| 欧美成年人在线观看视频| 精品午夜福利欧美人成视频懂色| 国产麻豆一精品一免费一av| 最新欧美国产亚洲一区二区三区| 51国产午夜精品免费视频| 久久久成人精品麻豆发布| 亚洲国产成人在人网站天堂| 亚洲精品色在线观看视频| 亚洲人成无码www久久久| 精品日韩久久久久激情人妻| 久久这里只有精品一区二区三区 | 五月天丁香婷婷亚洲欧洲国产| 国产亚洲欧美日韩在线三区| 久久久亚洲精品蜜臀av| 久久夜色精品国产噜噜亚洲sv| 国产精品区久久久久久久| 欧美日韩视频一区三区二区在线观看| 91亚洲精品久久久蜜桃网站| 找中文字幕一区二区亚洲电影| 欧美高清一区二区三区四区五区 | av免费精品一区二区三区蜜桃| 国产毛片精品国产一区二区三区| 亚洲国产成人久久99精品| 精品欧美国产一区二区免费看| 久久精品国产亚洲综合一| 欧美不卡一区二区在线视频| 欧美一区二区精品人妻| 日韩高清一二三区在线观看| 国产日韩欧美在线精品一区二区| 亚洲国产精品欧美一区二区| 精品久久久久久国产经典| 中文字幕国产一区二区三区| 少妇毛片一区二区三区免费看| 97影院九七理论片高清| 国产精品蜜臀av在线一区 | 久久久久久久精油按摩7国产| 国产精品999久久久久久久| 欧美国产区二区三区久久久| 亚洲区午夜福利视频网站| 久久精品一区二区三网站| 99九九视频只有精品15| 欧美99久久精品乱码影视| 精品国产97久久久久久97免费| 亚洲国产精品美日韩久久| 亚洲欧美一级妻日韩精品 | 国产精品一区二区久久精品不卡| 国产盗摄一区二区三区厕所视频 | 精品亚洲午夜久久久久四季| 91久久精品国产91久久久久| 国产精品久久久免费免费 | 国产成人国产精品国产三级| 日本免费高清不卡一区二区三区| 精品人妻久久中文字幕一区二区 | 亚洲美女一区二区在线观看| 中文字幕第一页高清免费在线| 国产999精品久久久久久麻豆| 人妻一区二区三区在线视频| 欧美精品乱码久久久久蜜桃| 国产日韩精品一二三区线上看| 欧美五月激情在线播放| 欧美成人久久久蜜色aa| 国产直播视频福利日韩精品久久| 久久精品国产亚洲av熟女| 亚洲精品国产精品麻豆999| 亚洲精品福利免费在线观看| 久久久亚洲熟妇熟女2022| 在线观看黄av免费网站| 亚洲精品天天影视综合网网站| 国产乱码日韩一区二区三区| 久久国产午夜精品理论片3| 美日韩在线视频免费观看| 91精品国产综合久久久久久激情图区 | 国产一级内射免费在线观看| 日韩亚洲欧美中文在线电影| 精品一区二区三区美女| 午夜精品久久久久久久9蜜桃 | 国产视频一视频二视频三区| 日本一区二区免费在线视频| 一区二区国产精品精av影视| 日韩精品欧美激情中文字幕 | 国产精品女久久久久久久| 国产经典三级欧美日韩一区二区| 久久久精品日韩一区二区三区| 亚洲伦理中文字幕一区二区| 黄色欧美激情免费久久久| 免费的黄色成人欧美www在线| 亚洲精品自产拍在线观看app| 国产在线精品一区在线观看| 九九视频之九九在线精品视频97 | 国产伦精品一区二区三区视频青涩 | 亚洲一区二区三区色婷婷 | 99:国产一区二区三区| 午夜精品久久久久久影视麻豆 | 国产乱码一区二区三区爽爽爽视频 | 精品国产日韩专区欧美第一页| 国产精品日韩av在线播放| 久久99国产综合精品女同| 欧美精品一区二区二区三区| 国产精品午夜电影一区二区| 欧美成人aaa片一区国产精品| 精品亚洲一区二区在蜜臀av| 最近中文字幕高清mv在线| 蜜桃视频欧美日韩一区二区 | 国产91熟女高潮一区二区黑寡妇| 久久人人爽爽人久人爽av| 久久精品国产亚洲aaaa| 日本一区二区三区高清在线播放| 亚洲午夜福利18禁噜噜噜| 日韩一区二区三区久久香蕉 | 99:国产一区二区三区| 国产久久久精品一区二区三区| 中文字幕日本人妻久久久免费| 97精品国产97久久久久久久免费| 名婷婷国产精品久久久久久久| 狠狠人妻久久久久久综合密桃| 最新高清免费日韩视频在线观看| 欧美日韩一区二区三区精品大全| 中文高清在线中文字幕日韩| 亚洲国产成人精品一区二区三区 | 一区二区三区有码在线播放| 欧美区精品系列在线观看不卡| 久久精品国产亚洲AV香蕉| 国产在线精品一区二区不卡顿| 18禁黄网站一区二区三区| 国产美女午夜福利在线播放| 国产一级黄色片在线播放| 亚洲综合精品香蕉久久网| 黄页网站大全免费在线观看| 久久精品店一区二区三区| 亚洲欧美国产日韩天堂区| 91亚洲国产成人久久精品网址 | 欧美精品香蕉一区二区三区 | 国产精品另类亚洲精品久久小说 | 91精品国产麻豆综合久久不卡| 精品国产成人亚洲午夜福利| 91在线视频福利资源站| 中文乱码字幕精品高清国产av| 日韩av黄色片免费观看| 日韩欧美激情视频在线观看 | 亚洲精品国产字幕久久不卡| 成人av中文字幕一区二区三区| 日韩成人av影视在线观看| 日本成年少妇人妻中文字幕| 欧美亚洲国产日韩在线高清| 国产精品日韩欧美久久综合 | 日本高清免费播放一区二区| 国产午夜精品久久久免费| 亚洲福利电影一区二区三区| 午夜不卡在线观看亚洲人| 国产va免费精品观看精品高清| 亚洲国产韩国欧美在线天堂| 最新日本中文字幕在线蜜桃| 精品国产av一区二区三区四区入口| 午夜福利一区在线观看成人| 色综合亚洲精品激情狠狠| 国产精品后入内射日本在线观看| 黄色av电影在线免费观看| 一区二区亚洲欧美在线观看| 成人午夜精品久久久久久| 国产日韩欧美电影在线视频观看| 精品免费亚洲国产精品国产| 97人妻精品一区二区三区夜夜| 亚洲国产精品区在线观看 | 精品精品久久宅男的天堂| 国产suv精品一区二区9| 我想收看九九电影欧美日韩| 一二三四精品视频在线免费观看| 日韩精品毛片精品一区到三区 | 欧美日韩在线观看一区二区| 成人午夜伦理片一区二区三区| 精品区国产区一区二区三区| 国产一级淫片久久久片a级| 久久91欧美午夜精品久久久 | 国产中文字幕在线观看高清 | 久热re在线观看免费视频| 日韩中文字幕欧美在线观看| 久久爱天堂一区二区三区| 久久久中文字幕人妻一区| 欧美日韩亚洲精品免费观看| 俺也色丝袜人妻中文字幕三区| 色婷婷精品国产一区二区三区| 国产精品久久久久久久一区二区三区 | 色婷婷在线一区二区三区| 欧美一区二区三区精品五月天| 无码人妻久久一区二区三区| 国产在线自在拍91精品| 久久久久舒服少妇丰满毛片| 久久精品国产亚洲av一| 91精品国语高清自产拍| 久久99青青精品免费观看| 国产欧美亚洲一区二区在线| 欧美日韩视频一卡二卡在线观看| 国产免费一区二区三区久久久 | 国产精品一区二区在线播放| 久久国产欧美中文字幕视频| 日韩在线免费观看第一页| 精品欧美18久久久久久| 亚洲中文字幕久久精品一区| 伊人官网在线观看免费视频 | 日韩乱码人妻无码系列中文字幕 | 亚洲欧美日韩a级片在线观看| 国产av一区二区三区精品最新| 国产成人精品午夜福利a| 精品一区二区黄色一级片| 国产午夜三级一区二区三多人 | 91精品日韩人妻不卡久久| 一区二区三区欧美一级爽| 最近国产高清中文字幕网| 久久夜色精品国产片免费| 久久这里只有精品一区二区三区| 欧美一区二区在线观看不卡| 欧美日韩国产精品一区二区久久| 国产麻豆精品电影在线观看| 久久69热人妻偷产精品九色| 国产成人精品区在线观看| 亚洲高清日韩精品一区二区三区网 | 黄色成人污网站在线观看| 国产精品久久久久69孕妇| 欧美精品一区二区性色a| 亚洲国产精品热久久一区| 天天视频在线观看一区二区三区| 亚洲精品国产成人精品网站| 国产资源在线观看免费高清| 亚洲五月色婷婷综合开心网 | 国产亚洲欧美一区二区久久| 中文字幕精品在线免费观看| 人妻av一区二区三区高| 一区二区在线欧美日韩中文| 亚洲午夜福利网在线观看| 亚洲Av无码AV吞精久久| 亚洲天堂欧美中文在线播放| 精品日产一区二区三区视频怎么看 | 亚洲午夜福利电影网中文字幕| 久久久精品免费久精品蜜桃| 久久精品国产亚洲av麻豆影院| 99久久国产综合精品女不卡| 麻豆视频精品精选免费观看| 亚洲欧美在线综合色影视| 国产日韩欧美一区二区在线高清| 亚洲男人天堂av综合网| 亚洲av激情电影在线观看| 91青青青青青操免费在线视频| 69视频在线观看精品免费| 在线观看欧美日韩一区二区三区 | 国产精品自产拍在线观看97 | 国精品久久久久久久久久无| 亚洲欧美日韩久久一区二区三区| 欧美日韩中文字幕7在线| 在线日韩精品视频在线播放| 欧美激情一区二区三区视频| 视频二区中文字幕乱码免费| 亚洲国产aⅴ精品一区二区久久| 欧洲精品视频在线网站大全| 欧洲精品码一区二区三区免费看| 欧美亚洲激情网址第一页| 中文字幕一区二区三区97| 国产亚洲精品久久午夜玫瑰园 | 网址在线观看国产你懂的| 国产精品久久久影视青草| 国产成人拍精品免费网站| 精品一区二区三区色视频| 青青草国产成人久久| 欧美综合一区二区三区在线观看 | 亚洲伊人伊人伊人伊人伊人| 国产日本欧美在线| 精品无码人妻一区二区三区不卡| 尤物网站亚洲专区二区久久精品| 精品国产一区二区三区av明星 | 久久麻豆精亚洲av品国产精品| 亚洲国产中日韩精品综合| 激情五月天综合网中文字幕| 一区二区亚洲欧美在线观看| 欧美日韩国产综合一区二区三区| 91麻豆精品国产福利在线观看 | 欧美日韩高清在线一区二区| 亚洲av官网一区二区三区| 亚洲综合色香蕉视频在线播放| 在线观看视频欧美一区二区| 国产欧美一区二区在线免费观看| 亚洲欧美日韩中文字幕高清 | 亚洲AV无码AV男人的天堂| 日韩av在线不卡免费看| 熟妇人妻视频一区二区三区| 欧美日韩天堂v在线播放| 国产一区二区精品高清在线观看| 日韩精品欧美一区二区三区| 欧美成人乱码一二三四区免费 | 久久夜色精品亚洲国产av| 91久久久精品一区二区三区 | 综合国产精品久久久久久久| 欧美午夜精品久久久久久浪草 | 欧美日韩精品人妻狠狠躁免| 日韩在线视频不卡一区二区三区| 亚洲视频一区二区在线观看免费 | 人人妻人人澡人人爽人人精品免费| 红杏成人性视频免费看| 韩国av一区二区三区免费观看 | 亚洲综合av伊人久久麻豆| 亚洲欧美日韩精品免费观看| 国产视频久久这里只有精品| 精品国内自产拍在线播放观看| 91性高潮久久久久久久久毛片| 人妻av中文字幕无码专区| 国产成人91熟女精品网站| 欧美熟妇一区二区激情综合| 国产中文字幕av电影专区| 一区二区三区亚洲欧美日韩人色| 你懂的在线观看亚洲精品网站| 欧美一区二区三区有色视频| 色噜噜日韩精品欧美一区二| 欧美福利电影a喷奶水在线观看| 色哟哟精品视频一区二区| 欧美日韩国产免费一区二区| 日韩在线视频不卡一区二区三区| 欧美成人精精品一区二区频 | 美日韩在线免费视频观看| 欧美胖熟妇一区二区三区| 午夜福利精品一区二区三区| 国产午夜精品综合久久久| 欧美日韩不卡一区| 久久亚洲精品国产精品尤物 | 色婷婷国产精品综合在线观看| 亚洲一区伦理片在线观看| 日韩精品免费一区二区三区| 亚洲欧洲在线精品国产| 亚洲中文字幕在线一区二区三区| 日韩一区欧美一区国产一区| 青青草亚洲在线一区观看| 在线免费视频这里只有精品| 激情五月激情五月五月色| 欧美日韩国内精品一区二区| 国产成人精品一区二区小说| 成人免费视频在线观看| 九九热这里只有精品在线观看| 国产精品电影在线观看一区| 尤物视频官网美女在线免费观看 | 精品一区二区三区手机在线观看| 午夜精品久久久久久久第一页 | 欧美与黑人午夜猛交久久| 欧美日韩综合中文字幕一区二区| 精品精品国产国自在线| 欧美日韩视频一区三区二区在线观看| 亚洲国产欧美在线看片一国产| 久久精品国产精品亚洲毛片| 国内成人福利短视频在线| 亚洲高清视频在线观看免费视频 | 久久久中文字幕一区二区| 日韩的一区二区另类免费| 国产一级片久久免费看同| 精品久久久久久久久久久AⅤ | 日韩中文字幕国产在线观看| 国产精品成人一区二区三区精品久 | 一本色道久久99精品综合| 亚洲一区二区午夜福利在线观看| 国产精品美女久久久网站动漫| 精品精品国产国自在线| 日韩精品欧美一区二区三区| 精品人伦一区二区三区蜜桃视频| 色悠久久久久综合网小说| 日韩一区二区三区免费网站| 91久久精品日日躁夜夜躁欧美| 久久爱天堂一区二区三区| 97人妻精品一区二区三区图片| 99热日韩欧美成人精品| 欧美高清免费精品国产自| 日韩av手机免费观看网址| 最新福利一区三区视频在线观看 | 69免费福利社区在线观看视频 | 国产精品美女久久久网站| 欧美极品一区二区在线播放| 国产精品美女久久久网站| 国产精品久久久久久久av明星 | 中文字幕一二三区| 欧美日韩视频精品一区二区| 国产美女av高潮精品在线| 精品综合久久久久久99| 亚洲欧美自拍偷一区二区| 日本欧美一区二区三区在线播放| 亚州国产av一区二区三区| 国产欧美日韩另类在线专区| 99久久久精品国产一区二区| 一区二区三区四区看av| 黄页网站大全在线免费观看| 亚洲综合精品久久久午夜福利| 日韩av福利免费在线播放| 乱人伦人妻中文字幕禁忌1| 日韩精品免费一二三四区| 午夜精品久久久久久久2023| 综合五月天精品999| 91精品国产高清久久久久6| 日韩一级黄色片在线播放| 色先锋在线成人av资源网站| 999精品免费观看视频| 亚洲中文字幕av一区二区三区 | 精品一区二区三区色视频| 欧美偷拍视频一区二区三区| 精品奇米国产一区二区三区| 久久综合亚洲一区二区三区色| 熟女少妇视频一区二区三区| 久久国产午夜精品免费一区二区| 亚洲国产精品久久无人区| 国产伦精品一区二区三区视频青涩| 婷婷激情综合六月天丁香| 精品久久久久久亚洲国产一区二区| 精品人妻一区二区三区中文字幕| 国产一区二区三区免费不卡视频| 日韩av福利免费在线播放| 91精品国产综合久久久久久激情图区 | 亚洲国产一区二区精品在线| 国产精品爽爽va在线观看一| 欧美91一区二区三区成人| 国产精品国产三级国av中文| 在线点播国产精品亚洲欧美韩国 | 久久久国产欧美亚洲一区| 久久91欧美午夜精品久久久| 久久精品国产亚洲av专区| 亚洲乱亚洲乱少妇无码99p| 国产日韩综合一区二区性色av| 亚洲精品少妇嫩久久99| 国产裸体裸美女无遮挡网站| 久久久免费福利视频观看| 亚洲欧美成人久久一区二区三区| 国产欧美一区二区在线免费观看 | 国产精品久久久久久一区| 国产毛片久久久久久蜜臂媒| 99久久精品免费看国产四区 | 国产成人久久久久久网站| 日韩人妻一区二区三区久久 | 亚洲综合无码久久精品综合| 精品亚洲欧美视频在线观看| 四虎国产精品久久免费精品| 五月婷久久综合狠狠爱97蜜臀| 一区二区三区99999精品| 成人一区二区三区久久精品嫩草 | 在线观看黄av免费观看| 日韩欧美国产精品1区二区| 九九视频之九九在线精品视频97 | 99国产精品久久久久久久成| 丁香婷婷激情视频在线播放| 精品丝袜人妻久久久久久蝌蚪| 亚洲激情短视频在线播放| 亚洲第一欧美一区二区精品 | 国产亚洲精品久久久久久老妇| 亚洲最新精品国产精品乱码 | 欧美日韩国产午夜一区二区| 国产成人19精品免费看片| 成人黄色小视频下载网站| 青青国产线免观看手机版精品 | 国产精品主播勾搭在线观看| 国产精品成年人免费视频| 国产精品人伦一区二区三| 国产成人精品区在线观看| 五月天丁香婷婷亚洲欧洲国产 | 五月婷久久综合狠狠爱97蜜臀| 亚洲综合熟女久久久久久| 蜜桃91精品一区二区三区| 老司机午夜精品99久久免费| 亚洲欧美日韩国产综合婷婷久久| 亚洲精品国产熟女**久| 97久久精品人人澡人人| 日韩欧美亚洲天堂狠狠夜夜| 亚洲国产精品久久无人区| 中文字幕人妻制服丝袜在线| 蜜桃av噜噜一区二区三区四区| 久久精品欧美中文一区二区三区 | 97久久精品人人爽人人爽蜜臀| 国内精品一欧美一区二区 | 午夜福利一区在线观看成人 | 五月激情综合网免费视频| 久视频久免费视频久免费 | 在线点播国产精品亚洲欧美韩国| 国产看片色网站亚洲av| 在线国产精品一区二区三区观看| 一级国产麻豆片在线观看| 欧美日本一区二区免费看| 最近最新中文字幕完整版久久| 久久人妻一区二区三区免费密臀| 女人的天堂a国产在线观看| 人妻在线天堂精品视频成人| 久久道精品一区二区三区| 日韩av一级大片在线观看| 国产视频一区二区三区免费| 亚洲国产精品精品午夜福利| 国产成人亚洲欧美二区综合| 精品久久久国产成人久久综合一 | 欧美日韩成人精品在线观看 | 国产欧美精品一区二区在线 | 日韩欧美中文字幕在线播放一区| 亚洲精品少妇嫩久久99| 四虎永久在线精品视频婷婷 | 久久久91精品国产一区二区精品| 欧美日韩一级片在线观看| 欧美一区二区三区等等等| 国产精品久久久久久影院8| 国产蜜臀一区二区三区四区| 97人人欧美日韩亚洲片区| 精品美女福利视频在线观看| 欧美亚洲激情网址第一页| 五月丁香综合激情六月久久 | 青青草视频免费观看高清在线观看新| 国产精品毛片一区视频播 | 日本高清不码不卡在线观看| 日韩精品无码中文字幕一区二区| 日韩高清黄色免费电影一区二区三区 | 欧美亚州国产精品一区二区| 妖精视频欧美日韩国产精品| 18禁国产一区二区在线看| 日韩亚洲国产高清免费视频| 国产福利中文字幕在线看| 国产精品免费在线一二区| 在线观看黄av免费网站| 亚洲av成人一区二区在线观看| 亚洲一区在线观看欧美在线| 欧美精品一区精品999| 最新日韩av成人在线天堂| 欧洲精品亚洲精品日韩专区| 俺也色丝袜人妻中文字幕三区| 97视频免费在线观看中文| 国产极品高潮极品在线观看| 日韩精品一区二区三区水蜜桃| 日韩电影中文字幕在线看| 绯色av一本一道道久久精品| 老司机午夜精品99久久免费| 日本高清二区视频久二区| 国产专区日韩专区欧美专区| 91青青青手机频在线观看| 一区二区三区欧美国产日韩| 中文字幕一区二区三区97| 红杏成人性视频免费看| 九九电影网在线免费观看伦理片| 久久精品人人妻一区二区三| 亚洲欧美日韩久久一区二区三区 | 国产欧美日韩VA另类在线播放 | 日韩成人免费av网站| 麻豆乱码国产一区二区三区别 | 97精品免费高清在线观看| 欧美高清亚洲一区二区在线观看| 国产精品女主播一区二区三区| 国产精区一区二区高清在线0| 蜜臀av熟女一区二区三区| 精品粉嫩国产一区二区三区| 最新中文字幕有码在线播放| 在线播放视频国产区中文| 色老汉一区二区成人精品婷婷| 在线观看中文字幕码粉嫩| 久久精品国产亚洲av熟女| 视频区中文字幕在线播放| 2012av在线视频中文字幕| 2020国产激情视频在线观看| 高清美女毛片网站免费观看| 国产裸体裸美女无遮挡网站| 精品久久久久久国产经典| 很黄的美女国产av网站| 国产99熟女毛片对白看片| 91在线免费观看高清视频| 国内成人福利短视频在线| 日本论理片中文字幕在线观看| 一区区二区三区精品视频| 91精品国产色综合久久久蜜香臀| 亚洲高清日韩精品一区二区三区网 | 久久精品国产热久久精品国产亚洲| 久久亚洲av午夜精品一区二区三区 | www.精品一区二区三区| 国产直播视频福利日韩精品久久| 日韩国产精品综合高清av=| 精品综合国产亚洲欧美久久| 日韩精品视频中文在线观看 | 国产一区二区亚洲精品在线观看| 欧美精品一区二区性色a| 亚洲av区一区二区三区色婷婷| 国产日韩欧美一区二区在线高清 | 日韩亚洲欧美中文在线电影 | 国产精品久久久.com| 日韩精品一区二区三区免费视频| 99欧美一区二区成人久久片 | 久久精品国产亚洲精品色婷婷 | 91亚洲免费在线观看视频| 亚洲乱码一区av不卡久久| 国产激情资源网站在线观看| 国产黄色av中文字幕在线观看 | 免费亚洲视频在线观看99| 久久精品亚洲熟女av蜜謦| 国产精品老熟女一区二区三区| 日本黄色亚洲成人日韩欧美| 亚洲精品美女久久久久久久久久| 99久在线国内在线播放免费观看 | 国产精品免费观看一区二区三区 | 国内精品久久久久久久日韩| 国产精品久久国产三级国不卡顿 | 日日噜噜夜夜狠狠久久影院 | 最近最新中文字幕在线6| 国产麻豆91精品免费观看| 国产在线精品一区二区不卡| 精品自拍视频国产免费自拍视频| 亚州国产av一区二区三区| 91精品国产综合久久不| 国产精品日韩欧美一区二区99久久 | 国产激情亚洲综合五月天| 欧美成人高清aⅴ免费观看 | 欧美精品网站一区二区三区| 午夜精品黄页网站视频在线观看| 亚洲国产精品成人av在线| av网站在线免费观看入口| 熟女精品国产一区二区三区| 久久精品国产av一级二级三级 | 国产亚洲欧美一区二区久久| 九九视频之九九在线精品视频97 | 久久精品国产亚洲av高清a| 久9这里只有免费精品视频| 国产精品一区二区三区四季| 红杏成人性视频免费看| 一本精品99久久精品77| 男人天堂男人天堂网站在线| 欧美激情国产日韩视频一区 | 欧美精品一区二区三区手机在线| 亚洲最新精品国产精品乱码| 精品免费一区二区在线| 日本国产高清视频在线观看| 日本专区观看久久久精品| 久久久中文字幕人妻一区| 亚洲一区二区三区在线视频播放| 国产精品亚洲五月天丁香| 久久久久久男人精品天堂| 99e热久久免费精品首页| 国产欧美日韩美女在线电影| 黄色成人网久久久久久久| 国产91精品一区二区在线| 欧美精品在欧洲一区二区少妇| 欧美在线视频观看一区二区| 综合国产精品久久久久久久| 亚洲精品一区二区网站| 精品午夜福利欧美人成视频懂色| 手机看片国产高清日韩欧美| 美女黄色免费网站在线看| 日本片一区二区在线视频| 国产精品一区二区午夜久久| 国产午夜精品一区二区三区欧美 | 国产一区二区精品网站看黄| 欧美亚洲国产片在线观看| 日韩精品成人av免费看| 久久精品国产亚洲av专区| 国产精品久久久久久传媒| 重口sm一区二区三区视频| 日韩欧美亚洲国产午夜在线| 精品国产91久久久久久| 欧美熟女精品一区二区三区精品 | 五月婷婷在线观看蜜臀av| 日本精品少妇一区二区三区| 91久久精品日日躁夜夜躁欧美 | 国产经典三级欧美日韩一区二区| 欧美精品亚洲人成在线观看| 亚洲av色区一区二区三区在线 | A国产一区二区免费入口| 在线观看中文字幕亚洲欧美中出| 99视频在线观看免费视频| 国产精品妇女久久久久久| 国产视频福利在线免费观看| 免费的黄色的a级中文字幕| 亚洲欧美精品激情在线观看| 91亚洲国产不卡在线观看视频| 国产成人精品一二三四区| 久久久精品成人欧美大片| 亚洲春色另类小说校园| 午夜男女久久久免费视频| 久久久国产99久久国产久一| 久久免费国产精品一区二区| 欧美高潮国产高潮久久久| 清纯唯美亚洲色图在线视频| 精品曰本电影一区二区三区 | 国产精品一区二区三区乱码视频 | 在线观看欧美精品一区二区三区 | 国产欧美日韩不卡91在线| 国产精品欧美日韩亚洲综合| 欧美日韩在线专区一区二区三区| 日韩欧美一区二区三区免费观看 | 亚洲国产欧美自拍视频在线观看| 精品国产一区二区三区高潮视 | 国产传媒天美av一区二区三区| 国产无套精品白浆一区二区| 欧美欧美欧美欧美在线观看| 精品亚洲欧美视频在线观看 | 久久久久人妻99精品| 黄色成人网久久久久久久| 性色av色香蕉一区二区蜜桃网 | 欧美视频一区二区精品在线观看| 手机在线高清不卡欧美视频 | 欧美人成在线播放日韩不卡| 国产一区二区精品高清在线观看 | 久久久一本精品99久久精品| 可以在线观看的黄色av网站| 中文字幕高清中文字幕在线视频| 亚洲中文字幕一区二区三区多人 | 日韩人妻一区二区三区试看| 国产欧美日韩区香蕉久久| 国产欧美大陆日韩精品亚洲综合 | 色吊丝中文字幕一区二区三区| 手机在线观看亚洲一区二区| 精品国产一区二区影院| 欧美欧一欧美性视频欧美二欧美性视频 | 亚洲伦理中文字幕一区二区| 视频区中文字幕在线播放| 亚洲乱码国产乱码精华| 亚洲国产精品久久国产精品99| 欧美一级高清片国产特黄大片一| 精品精品国产国自在线| 在线免费观看欧美污视频| 国产三级亚洲精品三级av| 欧美一区二区三区在线播放| 久久精品亚洲国产综合色| 精品奇米国产一区二区三区| 91麻豆国产精品91久久| 久久夜色精品久久噜噜亚| 欧美日韩免费不卡激情在线视频| 亚洲av永久一区二区三区久久 | 91亚洲精品福利在线播放| 亚洲综合精品香蕉久久网| 手机看片国产高清日韩欧美| 国产亚洲欧美日韩精品一区| 一本色道69色精品综合久久| 中文字幕黄色在线免费观看 | 五月婷婷丁香激情综合网 | 综合国产精品久久久久久久| 最新天堂а√8在线最新版在线 | 精品丰满少妇一区二区毛片| 在线亚洲欧美制服另类国产| 国产欧美综合精品一区二区| 亚洲欧美一区二区日韩高清在线| 5252色欧美激情在线| 精品国产麻豆一区二区三区| 精品丝袜人妻久久久久久蝌蚪 | 97影院成人午夜电影在线观看| 尤物精品国产第一福利网站| 国产999精品久久久久久麻豆| 亚洲av极品男人的天堂观看| 成人精品精品视频在线播放| 国内精品久久久久久网站| 免费国产高清精品一区在线| 精品无码人妻一区二区三区不卡| 女国产精品视频一区二区三区多人| 亚洲欧美极品一区在线观看| 日韩免费在线一区二区三区| 精品视频久久久久久久97| 久久久亚洲欧洲日产国产成人| 国产精品久久久久久久久网站 | 乱码久久久久久蜜桃免费| 日韩一级黄色片在线播放| 日本东京热日韩精品一区二区三区| 99re在线精品视频首页| 亚洲精品艳片在线播放网站| 国产成人久久精品一区二区三区 | 亚洲国产成人精品女人久久久| 久久久成人精品麻豆发布| 亚洲第一区二区在线观看| 精品国内自产拍在线播放观看| 国产精品九九九九九av| 国产一区二区激情亚洲吃瓜| 日韩av在线一区中文字幕| 五月天丁香婷婷一区二区| 国产一区二区三区中出视频| 欧美精品在欧美一区二区少妇大片 | 99久久国产自偷自自偷蜜月| 日韩免费高清中文av| 欧美一级做一级a做片性黄| 亚洲成人免费电影天堂av| 国产在线精品一区在线观看麻豆 | 日韩欧美亚洲另类在线第十页| 欧美日韩一区二区入口大全| 亚洲av高清资源在线观看| 久久黄色视频一级片免费的| 中文字幕乱码亚洲美女精品一区| 亚洲av色区一区二区三区 | 熟女少妇视频一区二区三区| 99国产午夜精品一区二区视频 | 精品中文一区二区三区电影| 亚洲18色成人网站WWW| 综合久久99中文综合久久| 国产精品久久久久久久久久久不卡| 综合五月天精品999| 日韩av黄色制服在线网站| 欧美国产日韩一区二区不卡视频| 欧美日韩国产在线一区二区三区| 欧美性猛交一区二区三精品 | 99国产精品美女久久久久| 亚洲国产欧美亚洲国产欧美| 视频一区二区三区视频一区二区| 亚洲欧美日韩有码中文字幕不卡| 日韩熟女精品一区二区三区视频 | 亚洲欧美精品国产二级在线| 中国熟女午夜福利视频高清免费| av网站在线观看亚洲国产| 99久久999久久久国产精品 | 精品免费久精品蜜桃久久久久| 亚洲欧美日韩国产男人天堂| 在线视频中文字幕视频一区| 国产精品久久久久久三级精品| 在线播放亚洲欧美日韩第一区| 精品中文一区二区三区电影| 亚洲hd国产直播观看视频| 欧美人成在线播放日韩不卡| 欧美午夜精品久久久久久浪草| 日韩视频免费高清在线观看| 性色av色香蕉一区二区蜜桃网 | 亚洲欧美激情国产综合久久| 91精品国产蜜臀在线观看| 国产区视频一区在线观看| 精品国产自在久久精品国产| 丁香六月婷婷激情综合| 亚洲av色综成人网在线看小说| 久久久精品成人欧美大片| 欧美一级不卡视频在线播放| 男人阁激情亚洲欧美中文字幕| 国产精品99久久久久久免费看| 欧美日本高清一区二区三区大片| 国产精品麻豆a在线播放| 99er热精品视频国产| 国产乱色熟女视频一区二区| 日本岛国电影天堂久久久| 欧美丰满人妻一区二区三区| 精品少妇人妻av免费久久久 | 国产精品一区二区不卡视频| 一区二区三区高清av在线| 国产69精品麻豆久久久久传媒| 永久网成人免费在线观看| 一区二区三区欧美国产日韩| 亚洲日本中文字幕高清在线| 国产区精品区一区二区三区 | 精品免费一区二区在线| 五月激情综合网免费视频| 国产欧美亚洲精品在线二区| 黄色资源网日韩三级一区二区| 国产精品久久99999人四虎| 国产成人久久精品麻豆二区33| 日韩精品电影综合区亚洲| 97视频在线观看免费观看| 最近免费中文字幕高清成人精品| 在线播放视频国产区中文| 欧美日韩精品人妻狠狠躁免| 日韩av一区二区三区网站 | 欧美日韩不卡一区| 日韩一区精品视频在线观看| 日韩精品免费观看视频在| 日韩一区二区三区在线等观看 | 日韩欧美国产精品1区二区| 精品国产理论一区二区电影| 日韩国产欧美亚洲一区不卡| 91香蕉视频在线观看污污污| 日本一二三区在线播放在线播放| 久久国产一区色婷日韩精品| 不卡二区国产在线视频国产| 久久久精品五月天六丁香| 国产成人91色精品免费网站| 中文字幕在线观看第一区| 校园春色中文字幕国产精品| 国产精品妇女久久久久久| 国产香蕉视频在线观看一区二区 | 国产麻豆精品传媒av国产网址| 俺来也官网欧美久久精品| 久久久精品国产亚洲亚洲| 又黄又爽无遮挡在线视频| 国产精品久久久久久久av明星| 久久久国产精品日韩激情爽爽| 国产精品丝袜久久久久久不| 最新中文字幕有码在线播放| 日韩人妻中文字幕在线播放| 国产精品美女福利在线观看| 午夜福利亚洲精品在线观看| 国产精品毛片一区视频播| 欧美日韩在线精品中文字幕 | 亚洲一区日韩精品中文字幕 | 91精品国产乱码久久久久久久| 国产va免费精品观看精品高清 | 最近日韩一区二区三区四区av| 最新日韩欧美不卡一二三区| 欧美熟妇精品一区二区蜜桃视频| 最新中文字幕有码在线播放| 激情五月激情五月五月色| 中文字幕理论片一区二区| 精品美女人妻一区二区三区| 久久精品一区二区中文字幕| 色哟哟精品视频一区二区| 久久久精品亚洲国产av| 久久精品国产亚洲av色哟哟| 国产欧美日韩VA另类在线播放| 成人精品在线播放视频| 久久精品国产亚洲av专区| 免费va国产高清大片在线| 久久天天躁狠狠躁夜夜a| 精品亚洲一区二区在蜜臀av| 国产国语自产精品视频一区 | 国产视频福利在线免费观看| 精品免费一区二区在线| 欧美日韩一本的免费高清视频| 国产精品成人黄网站免费 | 最新中文字幕2018第一页| 国产乱码日韩一区二区三区| 国产精品午夜久久久久久久密桃| 欧美日韩免费高清一区色橹橹 | 亚洲国产精品久久无人区 | 97人妻精品一区二区三区夜夜| 日韩欧美国产一区二区免费 | 在线观看中文字幕亚洲欧美中出 | 国产理论一区二区三区久久| 日韩一区中文字幕在线观看| 亚洲欧美另类激情综合区| 99热日韩欧美成人精品| 国产欧美日韩午夜大长腿不卡 | 日韩一区二区三区免费网站 | 97视频在线观看免费观看| 国产手机小视频福利在线| 精品视频美女久久久中文字幕| 日韩欧美久久久久久久久一区| 经精品久久久精品久久久国产| 国产精品中文字幕免费观看| 亚洲国产精品成人久久久麻豆| 久久精品99国产精品最新| 欧美日韩国产三级一区二区三区| 国产精品久久久久久久天毒 | 天堂资源网一区二区三区| 国产精品一区二区三区在线观| 欧美精彩视频一区二区三区| 久久精品国产99精品国产亚洲性色| 在线视频网站www色国产| 国产精品成人综合一区二区三区 | 国产精品国产三级国av中文| 欧美日韩国产人成在线播放 | 在线观看中文字幕码粉嫩| 日本不卡的一区二区三区| 91久久精品国产91久久久| 国产精品色午夜免费视频| 国产免费人成午夜69堂小视频| 99热日韩欧美成人精品| 国产精品综合av一区二区国产馆| 日韩熟女精品一区二区三区视频| 国产91熟女高潮一区二区黑寡妇 | 99国产精品99久久久久久久| 精品久久久久久亚洲国产一区二区| 欧美一区二区三区精品五月天| 亚洲中文字幕一区二区三区多人| 欧美国产一区二区三区在线播放| 国产欧美一区二区三区精剧| 欧美一区二区三区免费看片| 黄色精品一区二区久久久| 日本一区二区三区免费不卡视频| 久久精品人妻丝袜乱一区三区| 欧美日韩国产精品一区二区三区不卡 | 99蜜月精品久久91| 精品少妇久久一区二区三区| 欧美日韩在线播放三级视频| 国产十八禁视频在线播放 | 色老汉一区二区成人精品婷婷| 久久亚洲国产精品五月天| 极品av三级女优一区二区三区| 日韩av黄色制服在线网站| 国产午夜免费高清久久影院| av网站在线免费观看入口| 欧美精品综合一区二区3区4区| 在线观看中文字幕成人高清视频 | 国产亚洲一区二区三区在线观看 | 中文字幕av一区二区三区蜜桃| 精品阿v中文字幕在线观看| 国产精品高清国产三级国产a∨| 国产中文字幕一区二区在线| 一区二区三区国产日本欧美| 国产中文字幕av免费观看| 久久精品国产亚洲av高清蜜臀| 国产精品欧美日韩视频播放一区 | 亚洲综合日韩欧美精品在线| 日韩av高清不卡在线观看| 1000部精品视频免费| 亚洲一区日韩精品中文字幕| 欧美在线不卡视频每天更新| 91免费精品国自产拍在线不卡| 欧美黄色一区二区在线观看| 国产999精品久久久久久二| 六月婷婷天天网1234区| 亚洲欧美一二区日韩高清在线 | 国产亚洲精品福利视频| 在线观看视频欧美一区二区| 国产毛片久久久久久蜜臂媒| 国产女人水真多18毛片| 一区二区国产精品免费视频91| 亚洲欧美一区二区免费在线观看| 国产直播视频福利日韩精品久久| 好看的亚洲中文字幕在线观看| 国产精品美女久久久网站| 日韩亚洲欧美中文字幕在线观看| 在线观看av电影一区| 天天操天天干天天干天天操| 国产精品高清国产三级国产a∨| 99久精品中文在线视频| 91久久久精品中文字幕| 亚洲av成人精品网站在线播放| 999国产精品麻豆久久久| 97超碰人人看超碰人人| 日本精品一区二区电影在线观看| 一级特黄大片色欧美精品| 亚洲av成人一区二区三区在线 | 最近中文字幕高清mv在线| 99久久精品国产综合精品| 精品国产av一区二区三区6 | 日韩精品福利视频一区二区三区| 日本牲交大片在线一区二区| 青苹果影院在线亚洲一区二区三区| 欧美一级高清片国产特黄大片一 | 久久久精品国产av麻豆| 久久久精品欧美国产免费观看 | 国产精品99久久久久久免费看| 午夜欧美日韩精品久久久久 | 亚洲精品区午夜亚洲精品区| 91精品手机国产在线播放| 欧美性大战久久久久久久蜜桃| 日本人妻少妇久久中文字幕乱码| 99er6久久这里就有精品| www.又爽又色又久久久久久| 亚洲欧美日本视频在线看| 87亚洲中文aⅴ中文字幕在线| 日本韩国欧美国产第一页在线 | 色欧美高清视频在线观看| 久久久国产99久久国产久一| 九月色婷婷天天操天天爽| 欧美国产一区二区三区久久久| 亚洲五月色婷婷综合开心网| 2020亚洲男人的天堂| 精品亚洲国产成人久久一线夕| 亚洲国产女人精品久久久久久久| 2020国产激情视频在线观看| 欧洲激情一区二区三区在线观看| 日韩精品成人大片在线观看| 精品国产亚洲一区二区三区演员表 | 亚洲欧美日韩国产男人天堂| 日韩人妻一区二区三区试看 | 欧美日韩在线视频播放网站免费| 97久久精品人人爽人人爽蜜臀| 精品久久久久久国产经典| 色婷婷一区二区在线观看| 一区两区三区四区乱码国产精品| 日本免费高清不卡一区二区三区 | 精品人妻二区三区在线免费观看| 欧美大片久久久久久久久| 久久国产成人午夜AV影院| 日韩在线免费观看视频a| 亚洲国产天堂久久综合网| 日本又粗又猛又爽又黄的视频| 精品女同一区二区免费播| 国内精品一欧美一区二区 | 国产精品久久久亚洲av| 国产精品一区二区三区乱码视频| 亚洲一区二区精品美利坚| 久久99久国产精品黄毛| 亚洲午夜福利18禁噜噜噜| 深夜福利网站视频在线观看| 久久久91精品国产一区不卡 | 欧美大香蕉2019一区二区| 91麻豆精品国产福利在线观看| 在线观看免费你懂的国产| 国产经典三级欧美日韩一区二区| 在线亚洲免费的不卡欧美| 最新自拍成人在线看片网| 在线观看国产精品xxx| 日韩电影中文字幕在线观看| 不卡视频免费观看视频在线| 中文字幕日韩电影av在线| 人妻中文字幕一区二区三区19| 69视频在线观看精品免费三区 | 99久在线国内在线播放免费观看 | 亚洲精品美女久久久久久久久久| 亚洲AV日韩AV无码污污网站| 亚洲欧美日本a托在线观看| 日本一区二区三区在线观看免费| 伊人官网在线观看免费视频| 高清日韩一区二区三区视频| 999国产精品999久久久久久| 国产电影精品视频一区二区三区| 综合五月天精品999| 久久精精品久久久久久噜噜| 日韩精品毛片直接看视频| 国产精品欧美日韩激情在线| 熟妇人妻无码XXX视频| 98国产精品午夜免费福利视频 | 国产亚洲av午夜在线路线| 久久夜色精品国产噜噜亚洲sv| 日韩欧美国产精品一二三区免费在线| 欧美日韩一区三区不卡在线| 97人妻精品一区二区三区夜夜| 日韩激情视频欧美激情视频欧美 | 久久精品国产亚洲AV香蕉 | 欧美高清一区二区三区四区五区| 日韩欧美精品一区二区二区不卡| 理伦精品亚洲一区二区三区| 欧美新一区二区视频在线看| 国产精品一区二区久久蜜臀内射| 国产又硬又粗又爽又黄的视频 | 伦理午夜福利影院在线观看| 性色av色香蕉一区二区蜜桃网| 欧美乱码1区2区3区久久| 国产精品久久久一二三区| 精品国产乱药久久久久久| 午夜福利亚洲精品在线观看| 精品久久久久久久久久久AⅤ| 亚洲欧美日韩中文国产网| 国产精品久久久久久成人| 91精品国产综合久久不| 国产91精品福利一区二区三区| 欧美一区二区三区免费看片| 中文字幕第一页高清免费在线| 婷婷99精品国产97久久综合| 99久久精品免费看国产一区二 | 亚洲综合视频在线免费观看| 97影院九七理论片高清| 欧美日韩综合中文字幕一区二区| 青青久在线视频视频在线| 蜜臀88av国产一区二区三区| 伊人久久综合影院| 亚洲午夜福利18禁噜噜噜| 精品国产av一区二区三区四区入口| 国产精品一级a理论片在线观看| 久久久精品成人欧美大片| 超碰手机在线观看亚洲色图| 国产伦精品一区二区三区无广告| 74pao免费人妻视频| 亚洲精品色在线观看视频| 欧美精品中文字幕亚洲专区| 亚洲国产精品成人av在线| 国产精品久久亚洲一区二区| 亚洲精品色婷婷一区二区| 国产主播免费日本在线播放| 99热99这里有免费的精品| 成人午夜福利小视频在线观看| 日韩成人午夜电影在线观看| 国内一区二区三区黄色片| 一区二区三区久久久久国产精品| 婷婷丁香啪综合春色av| 中文字幕一区二区日韩精品蜜臀| 亚洲激情俺去了在线视频| 国产suv精品一区二区9| 日韩中文字幕剧情在线播放| 亚洲一区二区在线中文字幕| 日韩大尺度人妻av在线| 精品一区二区三区人妻视频| 午夜精品久久久久久久第一页| 欧美国产成人久久精品直播| 999国产精品麻豆久久久| 精品欧美三级69视频在线播放| 久久久国产综合av天堂| 黄色特级片一区二区三区| 久久精品国产亚洲av麻| 日本欧美中文字幕人在线| 国产精品日本不卡一区二区 | 日韩国产欧美视频一区二区三区| 久久久久人妻99精品| 五月六月丁香激情视频在线观看| 国产l精品国产亚洲区在线观看| 国产激情精品一区二区三区| 玩弄放荡人妻一区二区三区| 亚洲av无遮挡在线观看| 国产精品野外a∨久久久| 精品日韩av高清一区二区三区| aaaaa国产毛片一区二区| 欧美另类精品一区二区三区| 久热热久这里只有精品国产| 韩国一级av大片高清中文字幕| 国产专区亚洲欧美综合久久| 91精品国产综合久久不| 91麻豆精品国产自产在线的 | 久久久亚洲熟妇熟女2022| 亚洲综合熟女久久久久久| 热re91久久精品国产99热| 欧美日韩国产人成在线播放| 亚洲无人区乱码中文字幕在线| 亚洲av乱码国产精品色| 国产精品久久久免费免费| 97超视频在线免费观看| 久久天天操狠狠操夜夜操 | 国产亚洲精品久久午夜玫瑰园| 精品国产亚洲欧美一区二区| 91精品国产蜜臀在线观看| 日本一区二区三区免费中文版| 精品火热分享久久一区二区| 在线亚洲免费的不卡欧美| 久久久婷婷精品福利国产午夜 | 亚洲av激情电影在线观看| 国产一区二区精品免费观看| 欧美熟妇精品一区二区三区免费| 伊人专区一区二区三区| 夜夜夜夜夜夜夜久久久久久久 | 在线a亚洲视频播放在线观看| 国产免费观看久久黄av涩av | 日韩在线成人一区成人二区| 欧美色综合二区三区四区 | 欧洲精品亚洲精品日韩专区| 开心久久综合激情五月天| 日韩精品视频在观看免费| 国产蜜臀av在线一区二区| 无码人妻品一区二区三区精99 | 99久精品中文在线视频| 51麻豆精品自产国产在线 | 国产精品色内内在线播放| 美女黄的视频全免费一区二区 | 成人精品精品视频在线播放| 蜜臀av熟女一区二区三区| 色吊丝中文字幕一区二区三区| 亚洲国语精品自产拍在线观看 | 中文字幕国产视频一区二区| 国产精品一区二区久久久| 伊人在免费在线观看高清| 日韩精品一区二区在线电影| 欧美亚洲韩国日本理论电影| 久久综合给合久久狠狠狠974色| 中文字幕国产欧美视频在线观看| 亚洲av成人精品久久一区二区三区| 日韩精品成人一区二区三区| 蜜臀久久精品国产亚洲av| 在线播放亚洲欧美日韩第一区 | 一区二区三区四区在线免费观看 | 国产一a精品黄页免费观看| av免费在线观看美女网站| 五月天色婷婷亚洲综合一区| 欧美日韩专区一区二区三区 | 亚洲美女日韩精品色图在线视频| 羞羞羞的视频在线免费观看| 国产精品久久久久久一区二| 一区二区国产精品免费视频91| 亚洲国产欧洲欧美日本日韩| 又黄又粗又猛大的视频在线播放 | 亚洲国产精品精品国产综合 | 国产精品免费在线一区二区 | 熟女丝袜av一区二区三区| www欧洲在线观看视频| 国产欧美1769免费观看视| 国产欧美亚洲精品在线二区| 久久夜色精品久久噜噜亚| 91久久久精品中文字幕| 精品一区二区三区免费电影| 成人黄色一级片在线观看| 亚洲婷婷久久一本青青久久网站| 日韩人妻一区二区三区试看| 国产精品熟女一区二区全集观看 | 成人综合网免费在线观看| 一区二区三区亚洲免费版| 另类精品日韩欧美色国产| 日韩人妻中文字幕2021视频| 在线小视频一区二区三区| 精品在欧美一区二区少妇| 欧美国产激情一区二区三区| 永久黄网站视频在线观看| 亚洲精品高清视频在线播放| 国产精品免费在线一二区| 日韩欧美一区中文字幕在线| 精品国产亚洲区久久露脸| 亚洲高清在线日韩av电影| 亚洲AV无码AV男人的天堂| 欧美日韩一区二区三区在| 精品动漫欧美一二三区在线| 99国产精品欧美一区二区三区| 91精品国产高清久久久久6| 国产av天堂亚洲国产av二区| 久99视频精品免费观看福利| 欧美日本道在线观看视频| 日韩欧美中文字幕1234区| 中文字幕人妻制服丝袜在线| 久久精品人妻一区二区三区一 | 久久久99国产精品免费观看| 精品午夜美女在线观看视频| 国产91精品一区二区在线| 国产亚洲av午夜在线路线| 国产精品成人综合在线观看| 国产成年女人特黄特色毛片免| 精品人妻一区区免费视频| 黄色特级片一区二区三区| 欧美精品一区二区性色a| 伊人网综合视频免费播放| 日韩亚洲国产高清免费视频| 亚洲国产欧洲欧美日本日韩| 久热久热中文字幕综合激情 | 欧美激情精品久久久久久变态y| 久久精品国产99精品国产亚洲性色| 日韩电影在线观看中文字幕| 91精品国产99久久久久久| 你懂得亚洲社区午夜福利| 欧美亚洲激情网址第一页| 欧美日韩一区二区午夜福利| 国产精品成人久久久久a级| 欧美激情亚洲专区一区二区| 国产51av视频在线观看| 亚洲天堂一区二区在线影院| 又黄又粗又猛大的视频在线播放| 国产精品一二三区久久狼| 国产无套精品白浆一区二区| 日本美女一区二区精品视频 | 性欧美长视频免费观看不卡| 日本一区二区激情视频在线观看| 精品少妇久久一区二区三区| 五月天丁香婷婷亚洲欧洲国产| 亚洲欧美在线综合色影视| 欧美熟妇另类久久久久久69堂| 日本国产高清视频在线观看| 国产一区二区日韩欧美精品 | 久久夜色精品国产噜噜亚洲sv| 在线观看中文字幕不卡aa | 国产一区二区三区免费不卡视频 | 久久精品国产99国产精品导 | 99久久精品一区二区三区四区 | 人人妻人人澡人人爽人人精品不卡| 日韩欧美中文字幕1234区| 最近中文字幕高清mv在线| 国产手机小视频福利在线| 国产一级免费在线高清播放| 欧美人妻中文字幕这里就是精品| 99久久毛片精品一区二区三区 | 手机在线播放网址你懂的| 国内精品久久久久久网站| 狠狠躁18三区二区一区三级| 日本不卡免费人成小视频| 蜜臀av日韩精品一区二区| 亚洲av永久精品一区二区在线| 青青青青视频精品站网址大全| 亚洲国产精品久久久av| 国产午夜福利在线不卡视频| 国产精品视频网站免费看 | 国产精品免费vv欧美成人a| 欧美日韩成人精品在线观看| 伊人久久大香线蕉免费观看| 日韩欧美国产v一区二区三区| 亚洲欧美一区二区精品性色| 国产欧美在线观看一区二区三区 | 免费亚洲天堂免费成人av| 在线观看亚洲国产va网站| 国产精品午夜一区二区三区四区 | 国内精品国产三级国产AV| 国产免费的黄色一级无遮挡网站 | 人妻少妇精品视频三区二区一区| 日韩中文字幕免费人妻系列| 一本久久a精品一合区久久久| 狠狠狠综合久久久久久久| 欧美日韩一区二区在线精品| 欧美日韩激情免费在线视频| 98国产精品午夜免费福利视频 | 国产福利第一视频在线观看| 婷婷99久久久精品综合| 国产成人久久蜜一区二区| www.亚洲欧洲在线观看| 中文字幕一本一道在线| 青青国产线免观看手机版精品| 日韩极品人妻在线第一页| 你懂的在线观看亚洲精品网站| 黄色三级av在线免费播放 | 亚洲天堂最新视频在线观看| 国产欧美日韩VA另类在线播放| 99久久麻豆99久久免费| 99久久精品国产综合精品| 国产日韩欧美一区二区在线| 久久夜色精品国产噜噜亚洲av| 国产日韩欧美手机在线看片| 成人av中文字幕一区二区三区| 欧美色综合二区三区四区| 国产午夜精品久久精品电| 中文字幕欧美精品人妻一区 | 精品少妇一区二区三区蜜桃| 久久福利社最新高清精品| 国产一区二区精品高清在线观看 | 91亚洲精品久久久蜜桃网站| 日韩欧美在线综合网另类| 亚洲精品一区二区三区四区在线 | 伊人网综合视频免费播放 | 亚洲电影国产一区二区三区 | 一区二区三区在线手机视频| 一区二区国产精品精av影视| 国产乱码日产乱码精品精| 日韩av二区三区亚洲综合| 久久久久国产精品全免费 | 97国产香蕉视频在线观看| 俺也色丝袜人妻中文字幕三区| 精品国产免费久久久久久站| 中文字幕无线码一区欧美| 国产成人欧美日韩精品亚洲一区| 国产福利中文字幕在线看| 亚洲欧美激情国产综合久久| 精品午夜福利在线视在亚洲| 亚洲欧美日本a托在线观看| 国产日韩情欧美日韩在线| 久久久久国产精品9999| 52亚洲欧美在线a中文字幕| 免费无遮挡午夜视频网站| 永久av网站免费在线看| 国产成人99亚洲综合精品| 久久综合久久鬼中文字幕| 国产精品成人综合在线观看| 亚洲精品国产美女久久久久| 精品国产成人一区二区三区在线| 97精品国产97久久久久久春色| 又黄又粗又猛大的视频在线播放| 亚洲人成电影在线天堂色| 查看久久美女黄色特级片| 亚洲欧美日韩国产男人天堂| 青青草亚洲在线一区观看| 在线观看国产精品日本不卡网 | 国产精品午夜久久一区二区| 精品国产97久久久久久97免费| 中文字暮日本人妻久久久免费| 色噜噜国产日韩欧美精品| 国产欧美一区二区三区在线老狼 | 浮力影院路线路1路线2| 国产精品久久久.com| 亚洲精品国产剧情久久9191| 中文字幕一区二区三区97| 欧美日韩国产人成在线播放| 日韩国产欧美成人综合另类| 日韩电影中文字幕在线看| 亚洲国产欧美国产综合一区| 久久精品国产av一级二级三级| 久久精品国产福利亚洲av| 久久精品国产av一级二级三级| 精品一区二区黄色一级片| 欧美一级不卡视频在线播放 | 2019亚洲男人的天堂| 日韩熟女精品一区二区三区视频| 亚洲综合一区二区在线免费观看| 在线观看亚洲国产va网站| 欧美亚州国产精品一区二区| 欧美日韩在线精品中文字幕| 国产精品久久精品久久国产| 国产中文字幕av免费观看| 国产成人亚洲综合小说区| 婷婷色在线精品国自产拍| 国产精品久久久久久a.| 伊人久久综合影院| 中文字幕中韩乱码亚洲大片| 99久久精品免费看蜜桃| 中文字幕一区二区日韩精品蜜臀 | 日韩视频在线观看亚洲第一视区| 欧美精品午夜理论片在线网址| 校园春色中文字幕国产精品| 日本高清久久一区二区三区| 国产91精品福利一区二区三区| 精品福利一区二区三区蜜桃| 蜜臀av一区二区三区免费观| 欧美一区二区三区精品激情91 | 国产日韩欧美手机在线看片| 99国产精品久久久久久| xx在线视频导航国产欧美| 成人性生交大片免费看视频在线 | 国产又粗又猛又爽又的视频| 亚洲第一精品福利av在线| 国产精品爽爽va在线全集观看| 18禁国产一区二区在线看| 欧美视频一区二区精品在线观看| 欧美精品成人一区二区在线观看 | 日韩精品视频在线观看一区二区三区 | 午夜视频免费在线观看xxx| 亚洲精品久久区二区三区| 成人黄色一级片在线观看| 日韩av午夜福利在线观看 | 午夜激情精品视频在线观看| 午夜男女视频一区二区三区| 亚洲av激情电影在线观看| 国产精品久久中文字幕第一页| 久99视频精品免费观看福利| 性色av色香蕉一区二区蜜桃网| 天堂网www在线一区二区| 91麻豆精品国产福利在线观看| 日韩欧美中文字幕在线播放| 久久91欧美午夜精品久久久| 久久久久女人精品毛片九一| 久久精品国产亚洲av色哟哟| 99久久精品免费看国产四区| 国产免费爽爽视频在线观看| 欧美亚洲中文字幕一区二区| 日韩一区二区三区av在线观看| 精品亚洲国产成人痴汉av| 一本久久a久久精品亚洲| 国产这里都是精品在线播放| 蜜臀av在线一区二区三区| 亚洲综合小说另类图片五月天| 国产精品1区2区在线播放| 亚洲精品电影久久久影院| 日本东京热日韩精品一区二区三区 | 在线观看日韩av中文字幕| 伊人久久丁香婷婷六月五月综合| 一级国产麻豆片在线观看| 最新的亚洲欧美中文字幕| 久久99久国产精品网址| 在线观看免费完整版视频国产| 国产精品久久久久久永久免费看 | 国产伦精品一区二区三区视频青涩| 精品精品国产国自在线| 美女黄的视频全免费一区二区| 日本香蕉视频一区二区三区| 久久综合久久鬼中文字幕| 日本一区二区三区在线观看免费| 中国老熟女精品久久国产精| 精品国产麻豆一区二区三区| 色狠狠一区二区三区中文| 五月激情综合婷婷六月久久| 欧美国产另类久久久精品| 日韩av淫影院一| 精品人妻一区二区免费视频| 色婷婷婷激情国产综合在线| 精品人妻一区区免费视频| 日韩一二三四区精品电影免费播放| 国产成人自拍电影天堂网站| 国产馆在线精品极品麻豆| 中文字幕一区二区人妻中文字| 欧美精品在欧美一区二区少妇大片 | 亚洲欧美日韩综合在线尤物| 欧美一区二区三区免费在线观看 | 青青青国产精品免费观看| 四虎精品免费在线观看视频| 日本高清久久一区二区三区| 国产精品视频一区二区三区四| 中文字幕第十页一区二区三区 | 亚洲视频在线观看免费的| 国产亚洲精品久久久久久91精品| 国产免费观看久久黄av涩av| 99re国语自产精品视频在| 男女国产精品久久久久久| 久久久精品久久久99少妇| 欧美日韩一区二区在线精品| 国产老人一区av二区三区| 国产毛片久久久久久国产| 国产a欧美精品一区二区三区| 欧美熟妇一区二区三区仙踪林| 亚洲国产精品欧美一区二区| 人妻精品一区二区视频免费| 国产精品久久久久久久久午夜福利 | 一区二区三区国产欧美精品| 午夜精品美女久久久久av福利| 精品国内自产拍在线播放观看| 精品久久久久久久久久久AⅤ| 精品亚洲永久免费精品91| 日韩欧美在线一区二区在线观看| 99热这里只有精品夫妻| 国内女人精品一区二区三区| 亚洲精品色婷婷一区二区| 中文字幕中文字幕在线中一区| 精品区国产区一区二区三区| 婷婷国产亚洲性色av网站 | 国产精品一区二区久久精品爱涩 | 亚洲а∨天堂男人无码2008 | 中文字幕在线观看欧美精品| 久久久精品日韩一区二区三区| 91精品国产老熟女系列碰碰| 国产午夜精品一区二区理论影院| 国产一级黄色录像在线播放| 国产精品久久久久久精k8| 国产精品久久精品久久精品| 99久久夜色精品国产亚洲va| 99视频在线观看自拍| 亚洲黄av网站在线观看| 中文字幕日韩欧美日韩在线| 精品国产99久久免费观看 | 国产香蕉视频在线观看一区二区| 欧美日韩综合中文字幕一区二区| 91精品手机国产在线播放| 日韩欧美视频在线观看一区二区| 日韩欧美电影网站一区二区| 最新中文字幕在线不卡网址| 国产区综合另类亚洲欧美| 精品国产99久久免费观看| 97久久久综合亚洲久久88 | 精品久久久久久亚洲国产一区二区 | 亚洲精品国产一级夜夜爽| 国产66精品久久久久99| 国产精品亚洲欧美大片在线观看| 日韩一区二区淫片国产欧美在线| 亚洲av网站首页在线| 国产在线精品一区二区不卡顿| 日韩最新视频在线观看一区| 精品丰满少妇一区二区毛片| 国产粉嫩av一区二区三区| 久久久一区二区三区国内精品| 亚洲国产精品高清线久久dvd| 在线观黄色日本亚洲天堂| 50岁人妻丰满熟妇αv无码区 | 欧美亚洲韩国日本理论电影| 99:国产一区二区三区| 92看看午夜福利合集免费观看| 99久久夜色精品国产亚洲va| 91麻豆精品女一区二区| 无码人妻久久一区二区三区| 国产小视频在线观看不卡| 精品自拍视频国产免费自拍视频 | 欧美三级在线观看不卡1区| 欧美亚洲国产日韩在线高清| 麻豆国产原创传媒在线观看| 无码人妻h动漫中文字幕| 国产精品成人综合一区二区三区| 国产三级不卡视频在线观看| 91精品国产综合久久婷婷 | 国产三级亚洲精品三级av| 国产午夜亚洲精品理论片久久| 中文字幕成人精品久久不卡 | 国产视频一区二区三区免费| 中文字幕成人精品久久不卡 | 手机在线播放网址你懂的| 国产精品夜色高潮久久一区 | 久久福利社最新高清精品| 久久99久久久国产精品| 亚洲乱码中文字幕在线观看| 日韩欧美在线视频免费中文| 91麻豆精品国产福利在线观看 | 日本一区二区三区高清在线播放| 91亚洲国产成人久久精品麻豆| 日韩国产欧美综合在线观看| 亚洲国产精品成人久久| 日本va欧美va精品59| 国产精品久久国产三级国不卡顿| 日韩精品免费一二三四区| 久久精品国产亚洲av湖南| 六月婷婷天天网1234区| 国产欧美亚洲精品在线二区| 日韩欧美国产精品1区二区| 精品国产丝袜一区二区三区乱码| 国产精品久久久久久久av电影 | 国产精品久久久.com| 国产激情av网站免费在线观看| 欧美亚洲国产精品专区久久| 日韩人妻一区二区三区试看 | 国产精品二区三区在线观看| 国产精品免费不卡视频专区| 亚洲中文字幕日韩一区二区| 少妇熟女a久久久久久久久| 亚洲av色福利天堂久久| 久久亚洲精品国产精品尤物| 中文字幕国产剧情亚洲精品| 成人一区二区三区国产精品| 日韩一级欧美一级高清视频| 久久精品国产99久久丝袜最新| 亚洲国产精人品久久久久久| 国产热门精品第1页91| 国产欧美一区二区三区网站| 尤物视频官网美女在线免费观看 | 日韩一区二区淫片国产欧美在线 | 国产精品久久国产三级国不卡顿| 国产又色又爽又黄无遮挡| 日韩av一区二区三区网站| 国产精品主播一区二区三区| 最近免费中文字幕高清在线| 精品综合国产亚洲欧美久久| 麻豆91精品91久久久久久| 久久国产成人午夜AV影院| 激情五月天免费在线直播观看| 在线观看免费av永久免费| 欧美日本最新在线一区视频| 久久亚洲国产精品一区二区三区| 亚洲精品国产成人久久精品网| 综合在线亚洲欧美手机在线| 亚洲午夜福利网在线观看| 人妻av中文字幕无码专区| 国产日韩欧美手机在线看片 | 国产精品不卡一区二区在线| 亚洲欧洲国产欧美一区精品| 欧美三级一区二区三区视频| 国产999精品久久久久久麻豆| 蜜桃少妇人妻一区二区视频| 夜色www中国精品视频网站| 粉嫩av一区二区老牛影视| 97激情在线视频五月天视频| 在线观看日韩av中文字幕| 色噜噜日韩精品欧美一区二| 最新精品国产三级a∨在线| 亚洲av成人精品久久一区二区三区| 亚洲国产精品精品国产综合| 亚洲av日韩一级片免费看| 日韩精品免费一二三四区| 日韩国产欧美成人综合另类| 一区区二区三区精品视频| 尤物精品国产第一福利网站| 图片专区欧美亚洲国产另类| 国产福利91精品一区二区三区大奶子| 中文字幕一区二区三区在线播放 | 国产午夜精品久久久久久影视 | 欧美91一区二区三区成人| 亚洲最大色综合成人av| 国产伦精品99久久自偷国产| 亚洲欧美色区一区二区三区| 欧美国产中文在线字幕视频| 五月天丁香婷婷激情在线| 日韩在线视频不卡一区二区三区 | 九月色婷婷天天操天天爽 | 色综合综合色综合色综合| 国产高清中文字幕在线观看| 日本国产精品第一页久久| 国产欧美日韩一区二区网站| 亚洲欧洲成人va在线观看| 日韩一区精品视频在线观看视频| 久久99国产精品一区二区| 国产日韩精品一区二区三区四区| 成人精品在线播放视频| 久99视频精品免费观看福利 | 国产一区二区精品高清在线观看| 97精品久久久久久久久2020| 色噜噜国产日韩欧美精品| 国产精品久久精品久久国产| 日本又粗又猛又爽又黄的视频| 国产日韩欧美在线精品一区二区| 一区二区亚洲欧美在线观看| 欧美日韩国产三级一区二区三区| 国产污污污视频大全免费| 久久道精品一区二区三区| 国产日韩欧美高清一区二区精品 | 日本高清一二三区在线播放| 亚洲av成人一区二区电影在线| 成人午夜伦理片一区二区三区| 国产欧美精品区一区二区| 99久久免费看精品国产一区非洲| 亚洲国产精品久久国产精品99 | 国产一级黄色录像在线播放| 欧美日韩亚洲中文字幕一区| 欧美日本最新在线一区视频| 久分夜色精品国产噜噜亚洲av| 一区两区三区四区乱码国产精品| 国产三级在线观看一区二区| 精品欧美一区二区三区四区视频| 日韩中文在线一区二区三区| 国产成人亚洲欧美在线二区小说| 青青草国产成人久久| 91精品国产自产在线观看蜜臀| 91久久精品国产91久久久久| 欧美日韩亚洲国产动漫手机| 欧美日韩综合中文字幕一区二区| 久久久这里只有17精品| 国产一级免费在线高清播放| 欧美美女一区二区在线观看| av三级女优黄色日韩制服丝袜在线| 国产自揄拍3亚洲欧美日韩精品| 色欧美一区二区三区在线| 最近免费中文字幕高清成人精品| 欧美日韩亚洲国产综合网 | 久久青草免费91线频观久久| 国产精品午夜一区二区三区四区 | 国产精品乱人伦一区二区| 国产探花在线精品一区二区| 日本不卡人成手机在线视频| 91香蕉亚洲精品一区二区在线| 成人性生交大片免费看视频在线 | 2019亚洲男人的天堂| 色婷婷六月亚洲婷婷国产| 欧美高清国产一区二区三区| 99久久精品免费看蜜桃| 精品国产乱码久久久久久丨区2区| 日本欧美一二区在线观看| 国产免费一区二区三区性色| 久久久久久久精油按摩7国产| 亚洲av成人精品久久一区二区三区 | 亚洲中文字幕在线观看一区二区| 久久婷婷七月色综合视频| 欧美日韩精品一区二区在线看| 国产精品欧美日韩激情在线| 国产精品免费久久久久久免 | 久久久噜噜噜精品麻豆av| 国产欧美一区二区在线免费观看| 91麻豆精品国产福利在线观看| 精品日韩精品国产另类专区 | 美女高潮喷水月一区二区| 精品美女人妻一区二区三区| 国产三级在线一区二区三区 | 国产成人综合精品一区二区| 操国产丝袜露脸在线播放| 日本岛国电影天堂久久久| 中文字幕亚洲无线码一区女同| 无人去码一码二码三码区| 亚洲国产精品第一页久久婷婷| 久久69热人妻偷产精品九色| 国产精品久久久久久吞精| 亚洲一区二区三区在线播放| 欧美日韩国产综合一区二区| 97精品国产欧美一区二区三区| 欧美性野久久久久久久久| 久久夜色精品亚洲国产av| 亚洲午夜国产片在线观看| 日韩精品成年人在线观看| 在线观看国产精品xxx| 欧美美女在线一二三四区| 北条麻妃av全部免费看| 日韩欧美国产一中文字暮 | 91亚洲国产成人久久精品麻豆| 国产精品久久久久久a.| 亚洲精品自产拍在线观看app| 中文字幕国产精品第一页| 久久综合伊人77777麻豆| 国产精品成人亚洲一区二区夕| 欧美国产日韩一区二区不卡视频| 亚洲成人免费电影天堂av| 国产乱人精品视频69av| 国产精品18久久久久久久| 亚洲成人av乱码在线观看 | 国产精品午夜福利影院在线观看 | 亚洲mⅴ国产精品色在线看| 久9这里只有免费精品视频| 亚洲综合日韩欧美精品在线| 日本一区二区三区免费中文版| 日韩精品中文字幕熟女少妇| 国产农村妇女毛片精品久久一| 国产精品久久久久福利电影| 精品久久久久久亚洲国产一区二区| 欧美美女视频在线观看一区三区| 国语精品免费自产拍在线观看| 婷婷丁香啪综合春色av| 日韩不卡的一区二区三区视频 | 亚洲精品国产成人精品网站| 91精品日韩人妻不卡久久| 婷婷97狠狠成人免费视频| 国产自产21区激情综合一区| 成人一区二区三区国产精品| 亚洲综合一区二区在线免费观看| 91精品国产91久久久蜜臀粉嫩| 国产精品美女一区二区三| 一区二区三区四区精品黄| 欧美日韩视频在线观看网址| 国产日本欧美在线一区二区| 国产在线韩日在线欧美在线| 日韩欧美亚洲国产午夜在线| 欧美一区二区三区日韩三级| 91精品国产91久久久久久密臀| 国产91精品一区二区在线| 尤物免费视频网站在线观看| 亚洲综合色视频在线观看| 人妻中文字幕在线一区二区| 熟女亚洲综合精品伊人久久| 尤物久久精品国产第一福利站| 影音中文字幕av资源在线| 精品女同一区二区三区在线绯色| 黄页网站大全在线免费观看| 日韩欧美国产v一区二区三区| 在线播放视频国产区中文| 久久0243精品免费看| 国产视频一视频二视频三区| 日韩的一区二区另类免费| 国产综合久久久一区二区三区 | 国产精久久久久久亚洲美女高潮 | 亚洲国产精品久久久久网站| 国产精品久久久久久久久午夜福利| 亚洲高清国产拍精品熟女i | 精品人妻一区二区三区久久久久| 女人天堂一区二区三区婷婷av| 99久久久无国产精品免费| 欧美激情在线一区二区三区四区| 91精品国产蜜臀在线观看| 91高清精品视频在线观看一区| 日韩欧美在线观看国产精品| 日韩精品人妻系列中文字幕| 热色阁精品香蕉一区二区三区 | 国产亚洲欧美传媒麻豆精品| 欧美熟妇一区二区激情综合| 久久精品亚洲一区二区三| 羞羞色午夜视频一区二区三区| 国产日韩欧美亚洲中文国| 午夜国产三级一区二区三| 亚洲精品中文字幕无乱码麻豆| 国产视频久久这里只有精品 | 亚洲酒色另类久久久免费精品| 69视频在线观看精品免费| 欧美成人精品电影在线观看| 欧美日韩大片在线观看视频网站| 日韩av一区二区不卡电影| 久久精品亚洲一区二区三区浴池| 国产亚洲精品久久午夜玫瑰园| 日本一区二区不卡在线国产| 伊人精品一区二区三区四区五区| 亚洲免费中文字幕一区二区三区| 欧美日韩精品一区二区水蜜桃| 久久久精品日韩一区二区三区| 日韩a国产v亚洲欧美精品| 国产欧美精品一区二区色| 久久久久久蜜桃一区二区| 国产精品久久久久久传媒| 亚洲欧美综合在线观看不卡| 午夜精品视频在线观看一区| 国产精品女久久久久久久| 国产美女永久无遮挡网站| 国产经典三级欧美日韩一区二区| 日韩欧美一区二区三在线观看 | 久久精品国产亚洲av一| 欧美国产区二区三区久久久| 中文字幕乱码一区二区三区在线| 精品一区二区三区人妻视频| 制服国产欧美高清不卡在线观看| 色噜噜狠狠一区二区三区| 国产一级淫片久久久片a级| 国产老熟女精品视频大全免费| 国产成人综合精品一区二区| 无人码人妻一区二区三区免费| 精品中文一区二区三区电影| 亚洲欧美日韩一区成人| 精品视频在线观看免费亚洲 | 中文字幕一区资源久久| 色狠狠婷婷一区二区三区| 国产精品蜜臀av在线一区| 久99精品免费观看视频| 中文字幕乱码在线看欧美| 精品精品久久宅男的天堂| 日韩欧美国产综合中文字幕| 亚洲综合色一区二区三区在线| 日韩极品人妻在线第一页| 最新中文字幕2018第一页| 国产视频精品一区二区三区| 91久久久精品一区二区三区| 国产一区二区三区欧美日韩| 探花系列在线观看| 国产精品亚洲欧洲日韩av| 日本大香蕉最新最新视频| 亚洲综合熟女久久久久久 | 国产一区二区三区四区推荐| 亚洲天堂中文字幕综合在线| 亚洲国产高清精品线久久| 在线观看亚洲中文字幕国产精品| 亚洲自在精品网久久一区| 国产成人精品区在线观看| 久久精品国产亚洲精品色婷婷| 久久国产精品一区二区三区精品 | 亚洲精品美女久久久久99蜜臀 | 2020亚洲欧美日韩在线| 国产区精品区一区二区三区 | 日韩在线一区二区三区中文字幕| 在线免费视频这里只有精品| 国产激情高清在线视频免费观看| 欧美日韩精品久久亚洲区熟妇人 | 精品一区二区三区av在线| 日韩精品国产精品欧美精品| 久久久精品成人欧美大片| 日韩精品中文字幕熟女少妇| 中文字幕一区二区日韩精品蜜臀| 国产亚洲精品福利视频| 欧美一区二区三区免费在线观看| 亚洲精品欧洲精品一二三区| 久久国产精品免费一区二区三区 | 精品一区二区三区人妻视频| 精品熟女少妇av免费久久野外| 日韩中文字幕电影在线观看| 精品视频美女一区二区三区| 精品自拍视频国产免费自拍视频| 欧美日韩免费电影一区二区 | 日韩精品中文字幕免费人妻| 国产精品影视在线观看网址| 亚洲综合视频在线免费观看| 国产av电影一区二区三| 91精品国语高清自产拍| 农村少妇一区二区三区四区五区 | 亚洲一区伦理片在线观看| 91麻豆国产精品91久久 | 91精品国产综合久久久久久激情图区 | 日韩免费一区二区人妻丝袜| 久久青草免费91线频观久久| 97精品久久久久久久久2020| 国产三级不卡视频在线观看| 国产乱码日产乱码精品精 | 在线视频中文字幕视频一区| 国产99久久久国产精品免费1| 亚洲中文字幕av天天看| 欧美精品香蕉一区二区三区| 天天躁日日躁夜夜躁av| 999久久国产麻豆视频| 亚洲国产成人综合久久精品| 日韩欧美国产一中文字暮| 国产精品一区二区久久精品不卡 | 国产亚洲精品久久久一区| 亚洲欧美日韩综合精品二区| 国产精品日韩av在线播放| 国产精品国产三级国产剧情| 欧美天堂亚洲天堂男人天堂| 天堂中文字幕在线乱码一区| 国产精品久久久久久亚洲av站| 国产乱色熟女视频一区二区| 久久嫩草精品久久久精品一| 国产女主播在线观看91| 欧美日韩精品久久亚洲区熟妇人| 黄色av网址在线免费观看| 欧美熟妇视频一区二区三区| 91精品日产一区二区三区乱码| 韩国日本一区二区手机在线播放| 亚洲电影国产一区二区三区| 91色综合久久夜色精品国产| 久久精品国产88久久综合张津瑜| 中文字幕黄色综合网免费| 国产美女永久无遮挡网站| 中文字幕av一区二区三区| 亚洲av无删减在线观看| 欧美午夜精品久久久久久元件 | 国产激情精品在线播放| 久久久久久国产精品嫩模综合影院 | 日韩中文字幕一区二区高清 | 男女爽爽无遮挡久久精品| 91精品国产综合久久婷婷| 日韩欧美在线中文字幕网 | 日韩欧美久久久久久久久一区 | 黄色影院在线观看一区二区| 久久精品国产福利亚洲av| 日韩精品人妻中文字幕区二区三区| 国产成人91色精品免费网站| 在线观看免费av永久免费| 久热re在线观看免费视频| 久久精品国产亚洲精品色婷婷| 免费高清国产片在线观看 | 五月婷婷精彩视频综合激情| 视频一区二区三区视频一区二区| 午夜精品久久久久久久第一页| 2021国产精品不卡在线观看| 色综合久久中文综合久久97| 中国熟女午夜福利视频高清免费| 色综合亚洲精品激情狠狠| 亚洲一区二区三区电影观看| 亚洲免费视频一区二区三区| 欧美午夜福利在线免费看| www视频在线免费观看欧美| 深爱激情婷婷丁香春五月 | 色哟哟一区二区国产精品| 青青草原国内免费观看91福| 国产经典午夜福利视频合集| 亚洲精品国产熟女**久| 欧美精品一区二区二区三区| 99精品国产一区二区青青性色| 免费95精品视频在线观看| 国产精品久久国产三级国不卡顿| 日本又粗又猛又爽又黄的视频| av在线亚洲欧洲日产一区二区 | 国产精品色婷婷亚洲综合看片| 色哟哟哟精品一区二区三区| 亚洲一区二区欧美日韩精品| 精品亚洲午夜久久久久91| 国产一区二区午夜福利久久| 国产精品久久久校园春色av | 在线色视频日本熟妇不卡| 国产成人伦精品一区二区| 夜夜爽一区二区三区精品| 亚洲黄av网站在线观看| 一区二区三区亚洲免费版| 精品人人妻人人澡人人爽人人牛牛| 日韩精品毛片直接看视频| 男女羞羞视频一区二区三区| 免费观看欧美日韩在线成人做| 国产又粗又猛又爽又的视频| 久久久久久国产精品久久| 一级特黄大片色欧美精品| 欧美日韩精品一区二区在线看| 欧美日韩国产精品系列区| 大香蕉网大香蕉在线免费| 日韩在线免费观看视频a| 日韩欧美一区二区三区免费观看 | 欧美91一区二区三区成人| 999精品自产国产免费 | 91人妻人人澡人人爽人人精品乱| 午夜国产精品久久久久久久久| 日韩美女aaa片免费网站| 欧美日韩亚洲国产综合网| 性感美女在线观看91极品| 国产亚洲综合一区二区在线观看| 国产欧美精品一区二区三区老狠| 蜜臀91精品一区二区三区| 久久久99婷婷久久久久| 欧美成人久久综合亚洲欧美成人| 在线看片日本免费一区二区| 国产欧美日韩不卡91在线| 中文线码中文高清播放中| 国产一级二级三级视频网站| 国产精品免费久久久久久免| 国产精品久久久亚洲综合天堂| 亚洲天堂欧美中文在线播放| 亚洲一区二区在线中文字幕| 伊人久久大香线蕉综合影视| 欧美精品在欧洲一区二区少妇 | 久久久国产一区二区三区| 中文字幕丰满人妻日本了| 日韩欧美国产视频二区三区| 欧美三级不卡在线观线看最新| 久久人综合中文字幕色婷婷| 亚洲Av无码AV吞精久久 | 国产美女av激情在线播放| 亚洲Av综合色区无码专区桃色 | 久久这里只有国产精品视频| 国产精品视频最多的网站| 91亚洲国产三上悠亚在线播放| 日本高清免费播放一区二区 | 97久久国产亚洲精品超碰热| 亚洲欧美日韩国产男人天堂| 亚洲欧美视频在线观看草草视频| 最新中文字幕1区二区四季| 中文字暮日本人妻久久久免费| 在线免费视频这里只有精品| 国产精品美女久久久网站| 一区二区三区在线日本在线视频| 日韩欧美中文字幕1234区| 欧美亚洲免费一区二区三区| 日韩欧美在线视频免费中文 | 97精品国产97久久久久久久久久久| 又黄又爽无遮挡在线视频| 熟妇女人妻少妇一区二区| 成人一区二区三区久久精品 | 性色av色香蕉一区二区蜜桃网| 欧美亚洲一区二区三区免费网站| 69视频在线观看精品免费| 色八戒一区二区三区四区| 亚洲限制级电影一区二区| 黄页免费观看在线观看视频| 国内外精品影视推荐网站| 最新日韩av成人在线天堂| 九九热国产这里只有精品| 中文字幕精品一区二区三| 亚洲欧美日韩成人中文在线观看| 91精品国产91久久久久久| 日本欧美一区二区三区高清视频| 日韩一区二区淫片在线观看| 亚洲欧美日韩综合在线尤物| 最新日韩av成人在线天堂| 熟妇女人妻少妇一区二区| 黄色带三级一区二区三区| 午夜精品一区二区三区免费视频| 精品国产中文字幕在线视频| 一级黄色免费看中文字幕| 极品少妇被弄得99精品欧美| 五月天久久久噜噜噜久久网站| 欧美日韩免费aⅴ一区二区三区 | 日韩欧美国产视频二区三区| 国产激情高清在线视频免费观看| 日韩一级欧美一级高清视频| 又大又又粗又爽又黄的视频在线| 欧美一区二区精品在线免费观看| 欧美日韩中文字幕亚洲国产| 欧美不卡一区二区在线视频| 成人av一区二区三区免费在线| 亚洲国产精品高清久久久| 日韩欧美亚洲国产精品字幕久久久| 99资源免费在线观看视频网站 | 欧美日韩精品一区二区天天拍| 精品女同一区二区三区在线绯色| 久久99这里只有精品99| 亚洲综合色视频在线观看| 精品国产乱药久久久久久| 蜜臀av一区二区三区免费观| 一区二区三区在线日本在线视频| 亚洲高清国产自产拍av| 中文字幕高清中文字幕在线视频| 久久久久久国产精品嫩模综合影院 | 手机在线免费观看你懂得| 理伦精品亚洲一区二区三区| 一区二区三区视频二男一女| 一级毛久久久久久18女人| 无人去码一码二码三码区| 91在线中文字幕第一页| 欧美日本中文字幕在线观看| 日韩熟女精品一区二区三区| 久久国产欧美中文字幕视频 | 女人的天堂a国产在线观看| 国产日韩欧美在线精品一区二区| 五月天丁香婷婷激情在线| 国产亚洲欧美一区二区久久| 国产精品成人黄网站免费| 国产一区二区三区麻豆视频 | 国产理论精品一区在线观看 | 亚洲欧美日韩国产综合精品二区| 人妻av一区二区三区精品| 国产欧美大陆日韩精品亚洲综合 | 国产精品久久久久久久av下| 欧美日韩精品免费| 亚洲av一二三专区在线观看| 欧美精品综合一区二区3区4区 | 亚洲一区二区三区中文久久| 在线免费观看欧美污视频| 国产精品中文字幕一区二区三区| 日韩欧美亚洲国产精品字幕久久久| 亚洲中文字幕在线一区二区三区 | 中文久久久久久久久久| 欧美日韩人妻视频网站在线看| 中日韩欧美视频在线观看| 亚洲精品欧洲精品精品动漫| 91手机在线观看麻豆视频| 久久精品亚洲国产综合色| 久久精品国产亚洲av高清色三区| 性色av网站一区二区三区| 高清美女毛片网站免费观看| 亚洲一区二区三区不卡视频| 亚洲AV高清一区二区三区| 亚洲日本韩国欧美在线观看| 久久婷婷色香五月综合图| 日韩欧美视频在线观看一区二区| 亚洲一区二区三区不卡视频| 欧美日韩国产综合在线一区二区| 国产精品久久久久久永久免费看| 伊人久久大香线蕉免费观看| 欧美日韩免费在线观看一区二区| 欧美日韩精品久久久免费看| 日韩欧美精品一区二区三区不卡| 亚洲国产精品久久男人天堂| 欧美在线不卡视频每天更新| 亚洲成a人片在线观看无遮挡 | 亚洲中文字幕一区二区三区多人| 国产精品久久久久久网站| 亚洲欧美日韩a级片在线观看| 色先锋在线成人av资源网站| 欧美国产激情一区二区三区| 亚洲视频在线观看免费一区二区| 天码高清免费视频一区| 亚洲第一av一区二区三区| 午夜精品久久久久久久第一页| 久久久国产一区二区三区精品| 国产午夜三级一区二区三多人| 国产精品九九九九九av| 欧美日韩成人精品在线观看| 国产精品理论在线免费观看| 97国产香蕉视频在线观看| 老司机精品成人免费视频 | 国产盗摄国产盗摄视频在线| 最新日韩av成人在线天堂| 亚洲一区二区三区四区乱码| 999国产精品久久久久| 国产亚洲成av人片在线观看| 欧美视频不卡一区二区三区| 国产成人精品久久综合电影| 亚洲国产日韩综合久久精品 | 国产又粗又长又猛又爽又黄| 日韩欧美中亚中文字幕免费观看| 国产精品日韩欧美高清情| 亚洲精品高清在线观看视频| 狠狠综合久久av一区二区三| 日韩精品视频在线观看一区二区三区 | 91色综合久久夜色精品国产| 99九九视频只有精品15| 亚洲一区二区三区av在线| 亚洲欧美日韩中文国产网 | 欧美日韩国产人成在线播放| 亚洲视频在线观看第一区| 欧美日韩在线视频第三区| 精品中文一区二区三区电影| 麻豆乱码国产一区二区三区别| 日韩欧美国产综合在线观看蜜臀| 亚洲激情五月之综合婷婷| 欧美日本国产一区二区三区| 久久人妻一区二区三区免费密臀| 国产农村妇女毛片精品久久一| 国产亚洲综合一区二区在线观看| 国产手机精品a在线观看| 亚洲av乱码一区二区三区观影| 精品国产理论一区二区电影| 欧美日韩综合中文字幕一区二区| 国产在线精品一区二区观看| 久久精品国产亚洲av麻豆影院 | 欧美中文字幕1区2区3区 | 欧美精品日韩精品一区二区| 亚洲欧美日韩中文字幕高清| 日韩人妻中文字幕2021视频 | 日本午夜精品一区二区三区| 女国产精品视频一区二区三区多人| 影音中文字幕av资源在线| 性高潮视频免费在线观看91 | 精品国产一区二区三久久| 日本一区二区在线不卡免费看| 欧美人妻中文字幕这里就是精品| 91久久精品一区二区三区大| 国产欧美日韩精品第一区| 国产成人精品午夜福利在线播放| 国产91精品一区二区果冻传媒| 欧美精品成人一区二区在线观看| 欧美日韩国产中文字幕视频| 91性高潮久久久久久久久毛片 | 亚洲欧美国产乱子精品观看片| 国产又粗又长又猛又爽又黄| 日本亚洲欧美在线视频观看| 精品视频久久久久久久97| 91亚洲国产成人久久精品蜜臀| 综合久久99中文综合久久| 青草伊人久久综在合线亚洲| 亚洲高清中文字幕一区二区| 日韩欧美电影网站一区二区 | 欧美成人aaa片一区国产精品| 色综合综合色综合色综合| 精品福利一区二区三区免费视频 | 免费无遮挡午夜视频网站| 亚洲av永久在线观看更新| 中文字幕2022第一页| 国产麻豆精品传媒av国产网址| 91久久久精品中文字幕| 97蜜桃臀美人妻一区二区三区 | 欧美二区香蕉色香蕉在线视频| 国产精品久久久久久精k8| www99一区二区三区| 99精品欧美一区二区三区蜜臀| 久久亚洲精品成人无码网站夜色 | 日韩三区三区一区区欧69国产| 国产精品久久久久久久av电影| 亚洲国产精品久久久久久女王| 日韩av二区三区亚洲综合| 国产区精品区一区二区三区| 国产欧美日韩不卡91在线| 久久99青青精品免费观看| 久久国产免费高清视频观看| 天堂国产永久综合人亚洲欧美| 天堂视频在线观看免费观看| 亚洲美女在线观看综合网站| 亚洲一区二区三区四区电影网| 99精品久久久久久久久人妻| 国产麻豆精品免费在线观看| 亚洲av无码成人精品区一区| 亚洲欧美日韩在线观看中文字幕| 国产精品久久久免费免费| 欧美日韩人妻视频网站在线看 | 久久综合九色综合欧美98 | 一区二区三区亚洲欧美日韩人色| 国产亚洲图片欧美在线日韩动图 | 97精品国产97久久久久久春色| 国产精品久久久久久久久午夜福利| 91亚洲精品久久久蜜桃网站| 中文字暮日本人妻久久久免费| 日韩欧美中文精品久久久| 久久亚洲国产精品一区二区三区| 国产精品久久久久久a.| 亚洲一区二区三区四区乱码| 欧美日韩亚洲国产天堂区| 亚洲精品一二三区久久久| 久久久久久a亚洲欧洲AV| 在线观看中文字幕码粉嫩| 亚洲国产第一第二精品视频 | 在线视频欧美韩不卡第页专区| 国产精品久久久久999| 欧美黄一区二区在线观看| 五月六月丁香激情视频在线观看 | 中文字幕在线不卡免费视频| 人妻中文字幕在线一区二区| 久久av一区二区三区四区五区| 欧美国产精品123区观看| 91精品国产欧美一区二区最新| 亚洲欧美日韩aⅴ免费一区二区| 蜜臀av一区二区三区免费观| 羞羞色午夜视频一区二区三区 | 高清日韩一区二区三区视频| 亚洲综合无码久久精品综合| 日本大香蕉最新最新视频| 国产欧美日韩在线中文一区| 久久综合给合久久狠狠狠974色| 久久精品国产亚洲av高清色三区 | 中文线码中文高清播放中| 久久久久久久国产精品66c| 日韩免费高清中文av| 国产成人精品一二三四区| 国产精品后入内射日本在线观看| 男女激情爽爽爽免费视频网站| 中文字幕亚洲一区二区中文 | 国产区视频免费在线观看| 欧美二区香蕉色香蕉在线视频| 成人国产精品一区二区网站 | 国语精品免费自产拍在线观看 | 国产成人av大片大片在线播放| 午夜福利国产盗摄久久性| 91精品国产91久久久久久| 精品亚洲国产成人av制服| 欧美亚洲国产精品第一页| 国产精品精品国产一区二区| 亚洲最新精品国产精品乱码| 91香蕉亚洲精品一区二区在线 | 色婷婷一区二区三区四区成人 | 国产日韩欧美视频在线播放| 在线观看欧美天堂一区中文| 国产av一二三四又爽又色又色| 色噜噜综合亚洲AV中文无码| 久久久久久久精油按摩7国产| 欧美视频在线观看免费一区| 九九热国产这里只有精品| 91精品一区二区三区久久蜜桃| 国产成人精品一区二区三区电影| 国产在91线观看免费高清 | 亚洲欧美一区二区精品久久| 国产亚洲欧美日韩综合一区二区| 九九热国产这里只有精品| 日本一区二区三区不卡视频网站| 国产国语自产精品视频一区| 91亚洲欧美精品一区二区三区| 国产精品88久久久久久| 国产亚洲欧美日韩在线三区| 开心五月六月婷婷综合啪啪| 成人午夜在线高清福利一区| 久久婷婷色香五月综合图| 国产99熟女毛片对白看片 | 精品少妇人妻av免费一区二区| 日韩高清黄色免费电影一区二区三区| 亚洲一区二区三区在线视频播放 | 日韩欧美的一区二区三区| 亚洲国产欧美小综合噜噜包| 国产精品麻豆a在线播放| 日韩亚洲欧洲人妻三区中文字幕| 99久久久久久国产视频| 国产精品亚洲欧洲日韩av| 久久精品熟女欧洲av麻豆中出| 日韩一级av在线免费观看| 人妻在线天堂精品视频成人 | 亚洲综合日韩欧美精品在线| 久久免费国产精品一区二区 | 97精品久久久久久久久2020| 色综合网亚洲精品久久久小说| 最新天堂а√8在线最新版在线| 国产欧美日韩美女在线电影| 精品人妻一区区免费视频| 国产av一区二区麻豆网| 精品国产高清露脸在线观看| 亚洲欧洲日本精品一区二区三区| 精品国产综合区久久久久久小说 | 欧美成人精品第一区二区三区在线| 国产在线观看网站| 色哟哟精品视频一区二区| 亚洲一区二区三区四区乱码| 国产精品成久久久999| 久久国产成人午夜AV影院| 亚洲第一欧美一区二区精品| 人妻人人做人碰人人爽91| 国产精品影视在线观看网址| 中文字幕+乱码+中文乱码视频| 91精品一区二区三区久久蜜桃 | 伊人久久综合影院| 99精品欧美一区二区三区蜜臀| 精品国产自在久久精品国产| 日韩电影中文字幕在线观看| 在线人成免费视频97国产| 国产精品久久久久久无毒| 亚洲av成人永久网站一区| 国产成人91色精品免费网站| 国产一区二区激情亚洲吃瓜| 国产老人一区av二区三区| 国产精品久久大屁股白浆黑人| 欧美亚洲国产精品系列在线一区 | 中文线码中文高清播放中| 欧美激情一区二区三区在线| 老司机精品成人免费视频| 男女激情爽爽爽免费视频网站| 三上悠亚在线中文字幕一区二区| 久久精品国产亚洲av麻豆欧 | 性色av一区二区三区四区| 国产99久久久国产精品免费1| 蜜臀av久久国产午夜福利软件| 欧美日韩精品一区二区在线看 | 亚洲精品高清视频在线播放 | 国产五月色婷婷六月丁香视频| 国产精品高清电影一区二区| 精品人妻av综合一区二区 | 99国产精品欧美久久久久久| 精品国产污网站网址入口| 91精品日产一区二区三区乱码| 日本一区二区高清免费在线观看| 天堂视频在线观看免费观看| 国产制服丝袜有码在线播放| 国产69精品久久久久乱| 日韩欧美精品一区二区三区不卡| 国产乱人乱精一区二区三区 | 久久久精品人妻一区亚美研究所| 亚洲国产精品久久电影欧美| 无码人妻h动漫中文字幕| 久久久国产综合av天堂| 日韩精品一区二区电影网| 国产老人一区av二区三区| 亚洲日本国产一区二区精品成人| 五月天婷亚洲综合在线嫩草网| 久久久久久国产一区二区三区 | 亚洲精品高清视频在线播放| 亚洲日本中文字幕一区二区 | 日韩精品一区二区三区麻豆| 精品自拍视频国产免费自拍视频| 欧美中文字幕一区二区综合我| 日韩亚洲欧洲人妻三区中文字幕| 国产精品18久久久久久久| 99资源免费在线观看视频网站| 蜜臀精品人妻av一区二区| 亚洲国产综合视频在线观看| 亚洲精品区午夜亚洲精品区| 精品99久久久久久免费国产| av在线亚洲欧洲日产一区二区 | 日韩精品在线观看中文字幕网 | 久久精品国产福利亚洲av| 精品欧美国产一区二区免费看| 日本一区二区国产高清在线播放| 青青操成人在线视频十八禁| 国产一级特黄aa大片野外| 国产亚洲婷婷香蕉久久精品| 国产精品手机在线观看你懂的 | 国产欧美成人福利在线播放| 又黄又爽无遮挡在线视频| 亚洲国产欧美在线人成人| 精品午夜美女在线观看视频| 欧美亚洲精品一区二区三区| 激情综合网五月六月丁香国产 | 亚洲综合小说另类图片五月天 | 日韩熟女作爱视频一区二区| 日本高清一区二区三区免费| 2012av在线视频中文字幕| 亚洲精品国产欧美日韩精品| 国产自产21区激情综合一区| 久久91精品国产丰满美女| 在线观看日韩av中文字幕| 中文字幕av一区二区三区蜜桃| 亚洲精品自产在线免费播放| 日韩精品视频在线观看毛片| 精品国产乱码久久久久久夜深| 久久精品国产亚洲av不卡网站 | 国产精品美女久久久久av麻豆| 亚洲天堂一区二区免费在线看| 欧美日韩大片在线观看视频网站| 欧美日韩精品一区二区网站| 亚洲欧美日韩人妻一区二区| 国产在线精品一区二区不卡| 亚洲字幕av一区二区三区四区| 亚洲综合网在线观看视频 | 亚洲视频在线观看免费一区二区 | 久久久精品高清一区二区三区| 操美女视频在线不卡免费播放 | 欧美极品少妇xxxx亚洲精品| 精品免费一区二区在线| 国产三级久久精品字幕高潮| 久久亚洲av午夜精品一区二区三区| 国产精品久久久久久a.| 91尤物视频在线观看视频| 亚洲国产欧美在线看片一国产| 亚洲国产精品久久无人区| 熟妇女人妻少妇一区二区| 91色综合久久夜色精品国产| 午夜一级特黄试看免费欧美| 日韩一区欧美一区国产一区| 亚洲精品久久久国产极品| 久久这里只有国产精品视频| 欧美日本道在线观看视频 | 亚洲欧美日韩综合视频免费看| 性色av网站一区二区三区| 99精品免费久久久久久久久| 国产av综合一区二区三区| 国产精品一区二区久久精品爱涩| 在线观看欧美日韩一区二区三区| 欧美日韩一区三区不卡在线 | 欧美激情国产日韩视频一区 | 国产av麻豆一区二区三区 | 国产亚洲天堂一区在线| 国产精品午夜久久久久久久密桃 | 色哟哟一区二区国产精品| 蜜臀精品人妻av一区二区| 91性高潮久久久久久久久毛片| 国产精品毛片久久久久福利 | 久久久精品国产精品久久久| 九区十一区久久精品国产精品| 日本欧美一区二区三区在线播 | 男人的天堂久久综合91精品 | 欧美区精品系列在线观看不卡| 精品女同一区二区免费播| 亚洲国产精品久久男人天堂| 欧美一区2区三区4区网站| 色婷婷在线免费观看视频| 亚洲无人区乱码中文字幕在线| 日本一区免费精品视频在线观看| 国产色电影在线观看一区| 亚洲精品国产剧情久久9191| 久久久久久国产精品一级片 | 手机在线高清国产一区二区| 久久亚洲精品中文字幕毛片| 99资源免费在线观看视频网站 | 人妻少妇精品一区毛二区| 99er热精品视频国产| 中文字幕一区二区三区97| 国产精品1区二区三区| 亚洲综合精品视频在线观看| 精品丝袜人妻久久久久久蝌蚪| 亚洲国产日韩在线人成下载| 性色av网站一区二区三区| 欧美日韩人妻视频网站在线看 | 国产伦精品一区二区三区无广告 | 亚洲国产综合亚洲综合国产| 日本一在线观看中文字幕小视频| 不卡视频免费观看视频在线| 99久久精品一品区免视观看| 久久精品国产亚洲精品色婷婷| 日韩欧美一区二区在线视频电影精品 | 国产亚洲欧美日韩在线三区| 欧美成人免费va影院高清| 一区二区三区香蕉久久久综合| 成人午夜精品影院在线观看| 日韩av一区二区三区网站| 国产精品一区二区白浆视频| 99热这里只有精品76| 欧美在线观看日韩在线观看| 一本精品99久久精品77| 国产精品一区二区在线播放| 97人人欧美日韩亚洲片区| 国产91精品看黄网站在线观看| 亚洲综合精品久久久午夜福利 | 在线观看中文字幕码粉嫩 | 精品美女视频在免费观看| 亚洲精品乱码久久久久久自慰| 国产精品一级a理论片在线观看| 免费在线观看91精品美女| www.又爽又色又久久久久久| 欧美成人久久综合亚洲欧美成人 | 五月激情丁香六月狠狠干| 久久国产精品视频人人都爽 | 欧美一区二区三区免费在线观看| 国产女人专区久久久久久久| 国产精品欧美日韩激情在线 | 亚洲天堂中文字幕综合在线| 欧美日韩亚洲一区二区三区在线 | 韩国av一区二区三区四区| 天堂网www在线一区二区| 久久黄色视频一级片免费的| 欧美精品一区二区三区免费观看| 91久久久久人成亚洲国产一区 | 亚洲国产精品欧美一区二区| 国产一区二区三区免费不卡视频 | 日韩电影中文字幕在线看| 日韩电影免费看中文字幕| 亚洲精品国产剧情久久9191| 日韩欧美亚洲国产精品字幕久久久 | 欧美精品香蕉一区二区三区| 精品国产一区二区三久久| 国产精品成人久久久久a级| 麻豆国产原创传媒在线观看| 91精品国产综合久久婷婷香| 亚洲男人天堂久久久久久久| 中文字幕在线不卡免费视频| 欧美精品人妻熟妇一区二区不卡| 国产专区亚洲欧美综合久久| 国产老熟女精品一区二区| 国产男女精品一区二区三区| 小草在线观看视频播放2019| 中文字幕人妻丝祙乱一区三区| 熟女精品国产一区二区三区| 日本精品免费偷拍小视频网| 亚洲国产一区二区精品专区发 | 高清欧美精品一区二区三区| 欧美国产成人久久精品直播| 亚洲女优中文字幕第一页| 国产精品久久久久久一区二| 在线看片日本免费一区二区| 亚洲乱码中文字幕在线观看| 欧美国产成人在线免费观看 | 久久久国产精品粉嫩av| 欧美日韩国产三级一区二区| 97精品国产欧美一区二区三区| 久久精品亚洲一区二区三区浴池| 亚洲精品午夜福利小视频| 永久网成人免费在线观看| 亚洲欧美日韩a级片在线观看| 日韩美亚洲快播电影网一区二区三区| 国产精品久久亚洲一区二区 | 午夜天堂视频在线观看免费| 亚洲欧洲中文日韩乱码av| 真人国产毛片网完整版视频 | 亚洲hd国产直播观看视频| 手机看片国产高清日韩欧美| 日韩在线成人一区成人二区| 亚洲人成网站18禁止人| 国厂偷拍在线视频观看| 亚洲av成人午夜福利入口 | 日本高清二区视频久二区| 国产午夜精品美女免费视频| 麻豆欧美精品国产综合久久| 亚洲av成人波多野一区二区三区| 天堂资源网一区二区三区| 国产精品妇女久久久久久| 精品蜜臀av高清在线观看| 超碰亚洲av人人夜夜澡人人爽| 欧美激情第一页在线观看| 欧美一区二区三区视频免费看| 免费va国产高清大片在线| 国产精品毛片一区二区三区| 手机视频在线观看一区二区三区| 日本韩国欧美中文字幕久久 | 亚洲国产第一小视频在线观看| 免费看污片网站在线观看| 在线69高清免费观看视频| 亚洲欧美国产乱子精品观看片| 在线观看欧美精品一区二区三区| 久久精品日韩免费美女视频| 欧美久久久精品免费观看 | 国产精品国产三级国产专区66| 成人a视频一区二区三区| 国产精品午夜福利影院在线观看| 国产精品久久久美女出水| 国产v大片刺激激情在线观看| 精品午夜福利在线视在亚洲| 国内精品极品久久免费看| 免费高清国产片在线观看| 在线免费视频这里只有精品| 亚洲天堂一区二区免费在线看| 亚洲成av人片乱码色午夜| 中文字幕一区二区日韩精品蜜臀 | 日韩av黄色制服在线网站| 99亚洲综合精品久久精品国产久| 91在线精品一区二区三区| 久久久国产一区二区三区精品 | 美女高潮喷水月一区二区| 日韩中文字幕免费一区二区| 亚洲欧美国产日韩精品一区| 亚洲熟妇人妻一区二区三区| 亚洲一区二区在线视频在线观看| 亚洲福利欧美日韩午夜一区| 日韩大尺度人妻av在线| 黄色av网站在线免费观看| 99久久精品免费看国产一区二| 欧美一区二区三区四区日韩| 久久精品国产亚洲av麻豆四虎| 涩网站久久久久久久久久| 国产在线精品一区在线观看| 日本本亚洲三级在线播放| 五月丁香综合激情六月久久| 99久久久精品免费观看国产| 欧美日韩国产精品系列区| 日本va欧美va精品59| 久久国产欧美一区二区三区免费| 欧美日韩大片在线观看视频网站| 亚洲欧美国产日韩天堂区| 亚洲国产精品久久久高清| 日韩精品中文字幕免费电影| 久热在线这里只有精品国产| 亚洲精品高清欧美日韩精品| 久久久精品国产精品久久久| 18禁黄网站一区二区三区| 国产精品一二三区久久狼| 1000部精品视频免费| 日韩人妻一区二区三区试看| 国产精品大片资源在线观看| 久久久精品免费久精品蜜桃 | 亚洲高清国产拍精品熟女i| 91丝袜精品久久久久久久| 日韩一区二区三区av在线观看| 91国自产精品中文字幕| 五月婷婷丁香色视频免费| 日本一区二区三区高清在线播放 | 精品日韩久久久久激情人妻| 色婷婷一区二区在线观看| 欧美在线视频一区二区在线观看| 91香蕉国产线观看麻豆免费| 亚洲色大成网站WWW在线观看| 伊人久久大香线蕉综合影视| 国产精品欧美一区二区三区不卡| 久久久精品一区二区国产| 国产亚洲婷婷香蕉久久精品| 亚洲综合久久久久久久久久久| 国产日韩欧美一区二区在线 | 亚洲欧美一二区日韩高清在线 | 99国产精品久久久久久久久| 女人的天堂a国产在线观看| 亚洲欧美中文日韩在线观看不卡| 亚洲欧美日韩成人中文在线观看| 亚洲精品福利免费在线观看| 亚洲天堂网在线观看第一页| 久久精品综合亚洲精品鲁鲁| 小泽玛利亚不卡视频在线观看| 黄色av网页网站免费观看| 国产毛片久久久久久蜜臂媒| 精品乱码乱码久久久久蜜桃| 午夜视频久久播五月婷婷| 国产成人综合怡春院精品| 欧美国产日韩精品在线观看| 久久久精品久久久99少妇| 亚洲欧美综合在线观看不卡| 很黄的美女国产av网站| 亚洲免费观看电影av自拍| 91香蕉在线精品一区在线观看| 国厂偷拍在线视频观看| 中文字幕一区二区三区欧美| 成人午夜精品久久久精品| www欧洲在线观看视频| 国产欧美日韩久久久久久| 欧美国产精品va在线观看| 午夜天堂视频在线观看免费| 久久日产精品一区到六区| 91尤物视频在线观看视频| 91精品国产麻豆综合久久不卡| 国产理论片精品在线观看| 精品日韩精品国产另类专区| 色国产精品一区在线观看| 欧洲亚洲国产成人综合色婷婷| 国产小视频在线观看不卡| 五月婷婷丁香花开亚洲综合网 | 精品国产99久久久成人| 黄色带三级一区二区三区| 国产理论片精品在线观看| 丁香婷婷色综合激情五月| 国产66精品久久久久99| 欧美精品一区二区三区久久蜜臀| 中文字幕乱码在线观看一区| 午夜欧美日韩精品久久久久 | 国产精品老熟女露脸视频| 亚洲国产中日韩精品综合| 91在线免费观看高清视频| 日本人妻久久久中文字幕免费| 国产欧美日韩成人中文字幕 | 五月婷婷精彩视频综合激情| 97影院九七理论片高清| 91亚洲国产成人久久精品麻豆| 国产成人亚洲综合二区| 亚洲一区二区在线观看日韩欧美| 精品免费一区二区影院电影| 国产精品一区二区久久久| 加勒比不卡av在线播放| 国产亚洲欧美日韩综合一区二区| 国产女人专区久久久久久久| 亚洲美女日韩精品色图在线视频| 欧美精品成人一区二区在线观看| 亚洲高清一区二区三区四区电影| 999久久国产麻豆视频| 91精品一区二区三区久久蜜桃| 91青青青手机频在线观看 | 欧美午夜精品一二三区91 | 欧美成年人在线观看视频| 国产伦精品一区二区三区| 日本午夜精品一区二区三区 | 911精品一二国产在线观看| 日韩电影免费看中文字幕| 国产精品毛片一区二区三区| 黄色特级片一区二区三区| 久久久久亚洲午夜综合福利| 久久久精品国产亚洲亚洲| 日韩欧美国产精品一二三区免费在线 | 国产精品高清免费在线色| 欧美精品在欧美一区二区少妇大片| 亚洲国产精品一区二区成人片| 男人天堂男人天堂网站在线 | 国产精品九九九九九av| 97超碰人人看超碰人人| 国产一区二区三区在线啊| 日韩国产欧美综合在线观看| 99re热在线免费视频| 国产精品蜜臀av在线一区 | 亚洲欧美日韩国产无线码| 日韩一级av在线免费观看| 亚洲国产成人久久综合小说 | 香蕉91成人一区二区三区飘花| 岛国av一区二区三区四区| 在线观看国产免费直播视频| 87亚洲中文aⅴ中文字幕在线| 久久精品一二欧美无婷婷| 欧美日韩国内精品一区二区| 欧美精品一区二区久久不卡| 午夜视频免费在线观看xxx| 91精品国产免费自在线观看| 欧美在线观看日韩在线观看| 日韩精品免费不卡av一区二区 | 国产成人综合精品一区二区| 国产欧美日韩VA另类在线播放| 精品欧美国产一区二区免费看| 欧美在线资源天堂第一页| 91亚洲精品福利在线播放| 五月激情综合婷婷六月久久| 91视色国内揄拍国内精品人妻| 俺来也官网欧美久久精品| 亚洲国产另类久久久精品| 国产三级精品三级在线观看四季网 | 狠狠亚洲婷婷综合色香五月排名| 久久av喷吹av高潮av懂色| 91青青青青青操免费在线视频| 亚洲春色另类小说校园| 一区二区三区四区看av| 久久精品国产亚洲av色哟哟| 国产精品欧美日韩视频播放一区| 国产激情精品在线播放| 日韩一区中文字幕在线观看| 欧美日韩精品999在线看| 日韩精品中文字幕在线高清| 亚洲欧洲中文日韩乱码av| 久久亚洲女同一区二区av| 亚洲AV高清一区二区三区| 蜜桃av一区二区三区人妻 | 精品人妻一区二区三区久久久久| 日韩av成人在线观看网站| 最近免费av中文字幕电影| 久久夜色精品国产片免费| 一区二区三区欧美国产日韩| 日韩av电影在线播放一区二区三区 | 99热热久久这里只有精品68 | 国产成人精品亚洲一区二区 | 国产欧美精品一区二区色| 可以在线免费观看av的网站| 亚洲欧美日韩国产综合在线看片| 欧美亚洲一区二区三区免费| 顶级欧美人妻一区二区三区| 国产69精品久久久久999三级| 亚洲精品一区二区三区香蕉| 久久精品99国产精品最新| 日韩精品毛片精品一区到三区| 国产福利第一视频在线观看| 亚洲毛片一区二区三区四区| 欧美日韩高清在线一区二区 | 色噜噜国产日韩欧美精品| 欧美精品香蕉一区二区三区| 亚洲av激情电影在线观看| 日本高清不卡中文字幕免费| 国产99久久精品免费看 | 国产女人水真多18毛片| 熟妇人妻精品一二区三区视频| 国产欧美亚洲一区二区三区在线| 国产亚洲欧美在线第一页| 国产成人精品一二三四区| 日韩欧美激情视频在线观看 | 亚洲精品人成乱熟女久久久 | 国产精品免费观看一区二区三区| 亚洲欧美精品国产二级在线| 99热这里只有精品精品| 国产直播视频福利日韩精品久久| 久久精品国产亚洲av成人动漫| 91精品国产综合久久婷婷| 日本1区2区3区4区国色| 黄色欧美精品一区二区三区| 精品国产99高清一区二区三区| 国产精品一区二区不卡视频| 在线免费视频这里只有精品| 欧美日韩一级片在线观看| 亚洲国产精品久久网午夜| 美女久久黄频视频免费看图片| 亚洲av嫩草极品在线观看| 久久91精品久久久久清纯| 国产成人亚洲综合小说区| 少妇人人妻人人爽人人爽快| 污视频免费在线欧美一区| 久久久精品国产亚洲av高清| 亚洲国产精人品久久久久久| 国产精品美女久久久免费| 国产日韩精品一区二区三区四区| 国产精品自产拍在线观看97| www视频在线观看亚洲| 精品国产99久久久成人| 99精品免费久久久久久久久| 夜夜夜夜爽爽爽爽爽爽爽| 精品免费中文字幕在线观看 | 五月天色婷婷亚洲综合一区| 欧美日韩一区二区三区不卡地| 精品精品国产欧美在线小说区| 日本欧美亚洲tv综合专区| 欧美区一区视频在线观看| 欧美精品在线观看不卡一区 | 日韩欧美在线精品一区二区三区| 久久精品亚洲一区二区三区一本 | 国产看片色网站亚洲av| 亚洲国产欧美日韩成人精专区| 伊人色综合九久久天天蜜桃 | 欧美91一区二区三区成人| 亚洲高清中文字幕在线观看| 亚洲中文字幕av一区二区三区| 国产精品亚洲欧洲日韩av| 久久这里只有精品好国产| 国产毛片久久久久久国产| 99久久毛片精品一区二区三区 | 国产精品99久久久久久有的能看| 国产一区二区三区四区推荐 | 日本高清不卡中文字幕免费| 国产高清一道不卡在线观看| 久久久婷婷五月亚洲97号色| 久久国产精品久久国产精品| 日韩一级欧美一级高清视频| 9精品久久久久久婷婷久| 欧美三级日韩三级亚洲三级| 一级毛久久久久久18女人 | 日本一区免费精品视频在线观看| 日韩欧美亚州国产精品字幕久久久 | 精品美女福利视频在线观看 | 99re热精品视频在线观看| 高清少妇熟女一区二区三区| 中文字幕中韩乱码亚洲大片| 国产中文色婷婷久久久精品| 国产激情小视频在线观看一v| 国产午夜精品久久久久久影视| 欧美精品一区二区日韩系列| 一区二区不卡在线观看不卡精品| 伊人久久大香线蕉av超碰| 国产一区日韩精品免费看| 国产精品久久久久国产a级五个月| 欧美精品福利视频一区二区| 岛国av无码免费无禁网站| 91香蕉视频网站在线看| 欧美一区二区三区免费视| 99久只有精品免费视频观看| 日韩欧美在线观看国产精品| 日韩免费一区二区人妻丝袜| 久久久精品久久久99少妇| 伊人久久大香线蕉免费观看| 熟女精品国产一区二区三区| 亚洲欧美综合久久久久久| 国产精品毛片久久久久福利| 国产清纯91天堂在线观看| 精品丝袜人妻久久久久久蝌蚪| 日本精品在线亚洲国产欧美| 国产美女午夜福利在线播放| 99免费在线视频播放| 精品国产自在久久精品国产| 色婷婷在线免费观看视频| 欧美激情一区二区三区四区| 87亚洲中文aⅴ中文字幕在线| 性感美女在线观看91极品| 欧美日韩天堂v在线播放| 99久只有精品免费视频观看| 欧美日韩中文在线字幕视频| 国产va免费精品观看精品高清| 欧美日韩一区二区日日骚| 亚洲天堂网一区二区三区四区| 99久久久精品免费观看国产 | 日本精品一区二区三区免费| 亚洲加勒比精品一区二区| 国产精品综合av一区二区国产馆 | 久久精品国产亚洲av水密被窝| 亚洲国产精品第一页久久婷婷| 欧美丝袜亚洲国产日韩一区二区| 五月天亚洲激情综合av| 精品国产麻豆一区二区三区| 亚洲av无遮挡在线观看| 国产美女黄a三级三级三级| 亚洲精品自产在线免费播放| 91亚洲国产三上悠亚在线播放| 国产精品大片资源在线观看| 亚洲av成人永久网站一区| 国产区综合另类亚洲欧美 | 五月婷婷国产中文在线观看 | 国产欧美日韩成人中文字幕| 精品国产污污免费网站下载| 欧美一区二区三区性视频网站| 日韩美亚洲快播电影网一区二区三区| 国产欧美日韩精品高清二区综合区| 美女内射网站久久久精品| 国产做a爰片久久毛片a午夜场| 精品精品久久宅男的天堂| 伊人久久大香线蕉av色软件| 久久精品国产亚洲av专区| 欧美.xxx.中文字幕| 欧美一区二区三区在线精品| 亚洲男人天堂av综合网| 黄页网站视频大全在线观看| 欧美三级在线观看不卡1区| 色婷婷六月亚洲婷婷国产| 久久夜色精品国产片免费| 欧美午夜精品一二三区91| 日韩av在线一区中文字幕| 一区二区三区四区看av| 国产av午夜精品一区二区三| 中文字幕一区二区三区啊| 欧美精品在线观看不卡一区 | 亚洲av色综成人网在线看小说| 中文字幕日韩亚洲乱码日韩在线 | 亚洲精品人成乱熟女久久久| 韩国日本国产精品久久99| 精品国产成人av一区二区| 91麻豆精品国产观看免费| 成人av免费一区二区三区| 91精品国产自产拍在线观看| 国产黄a三级三级三级av在线看| 91亚洲国产不卡在线观看视频| 亚洲av成人一区二区三区在线| 999这里只有精品国产| 中文字幕v中文字幕第一| 欧美在线观看视频二区一区| 激情五月激情五月五月色| 国产成人精品午夜福利av免费| 亚洲综合精品久久久午夜福利| 另类欧美区综合区图片区小说| 欧美国产成人久久精品直播| 亚洲国产精品一区二区在线 | 少妇人妻精品一区三区二区| 午夜福利亚洲精品在线观看| 久久国产欧美日韩高清专区| 日韩精品人妻中文字幕区二区三区| 蜜臀久久99久久久久久| 日本欧美中文字幕人在线| 色哟哟一区二区国产精品| 日本精品免费一区二区三区乱码| 免费久久久久久中文字幕| 国产精品久久久久久久www | 国产高清精品免费在线观看| 日本高清不卡中文字幕免费| 国产无套精品白浆一区二区| 手机视频在线观看一区二区三区| 国产精品国产自产拍高清| 最近中文字幕mv免费高清| 亚洲欧美日韩a级片在线观看| 欧美日韩加勒比一二三区| 久久婷婷六月丁香综合啪| 99国产精品99久久久久久久| 国产老人一区av二区三区| 99视频在线观看免费视频| 国产精品99久久久久久有的能看| 国产亚州欧美一区二区三区| 国产区视频免费在线观看| 中文乱码字幕精品高清国产av| 欧美中文字幕在线观看| 找中文字幕一区二区亚洲电影| 国产精品久久久久岛国欧美| 欧美日韩中文字幕每日更新| 6080日韩毛片一区二区| 亚洲激情俺去了在线视频| 69视频在线观看精品免费| 亚洲国产av激情五月天| 人妻中文字幕乱码亚洲无线码| 一视频二视频三视频在线观看| 欧美日韩精品一区二区色| 精品免费中文字幕在线观看| 岛国av无码免费无禁网站| 免费在线观看日韩91av| 青青在线观看视频中文字| 在线视频中文字幕丝袜人妻| 国内视频一二三区视频| 久久麻豆精亚洲av品国产精品| 欧美午夜精品一区二区三区电影| 精品奇米国产一区二区三区 | 国产乱码一区二区三区久久| 中文字幕黄色在线免费观看| 亚洲av成人精品日韩一区麻豆| 国产乱码一区二区三区爽爽爽视频| 色噜噜色狠狠狠狠狠综合色一| 欧美日韩天堂v在线播放| 国产精品欧美日韩中字一区二区| 国产午夜福利在线不卡视频| 在线观看麻豆91精品国产| 欧美亚洲国产日韩在线高清| 亚洲精品乱码久久久久久小说 | 精品一区二区久久久久久久网精 | 亚洲av永久在线观看更新| 国产一二三区在线观看视频| 超97视频在线观看国产日韩| 欧美成人欧美精品一级乱黄| 不卡视频一区二区在线免费观看 | 性感美女在线观看91极品| 欧美色综合二区三区四区| 91精品国产99久久久久久| 欧美精品一区二区三区手机在线| 亚洲精品国产综合一线久久| 久久国产精品一区二区三区精品| 有码中文字幕在线第1页| 亚洲av综合专区色区桃色| 免费欧美一区二区三区四区| 国产蜜臀一区二区三区四区| 久久精品国产88久久综合张津瑜 | 一级a做爰视频在线观看| 九九热这里只有精品在线观看| 国产精品入口麻豆免费看 | 日韩视频一区二区三区人妻| 欧美日韩精品999免费看| 国产精品视频最多的网站| 国产精品毛片一区二区三区| 熟女少妇视频一区二区三区| 亚洲精品在线观看午夜福利| 久久精品国产亚洲av高清a| 国产中文字幕一区二区在线 | 欧美亚洲一区二区三区免费| 久久婷婷色香五月综合图| 一区二区三区国产欧美精品| 国产精品久久久18成人| 久久久久久久国产精品久久国产| 欧美日韩在线观看你懂的| 国产自产21区激情综合一区| 日本1区2区3区4区国色| 四虎精品免费在线观看视频| 中文字幕国产在线欧美日韩| 国产精品一区二区久久精品| 97精品国产自在在线观看蜜臀 | 亚洲乱码中文字幕在线观看| 国产电影精品视频一区二区三区| 国产男女精品一区二区三区| 亚洲天堂最新视频在线观看| 欧美成人三级一区二区在线观看| 国产精品欧美日韩激情在线 | 亚洲av激情电影在线观看| 国产精品久久精品久久国产| 一区二区三区四区中文字幕在线| 日韩精品电影综合区亚洲 | 日韩特一级a毛大片欧美大片| 久久久久久国产精品一级片| 欧美成人精品一区二三区在线观看| 久久精品亚洲一区二区三| 日本欧美在线免费一区二区三区| 欧洲亚洲国产成人综合色婷婷| 熟女精品国产一区二区三区| 日韩欧美亚洲另类在线第十页| 手机在线一区二区三区视频| 91久久91麻豆精品国产| 亚洲一区二区三区色婷婷| 亚洲中文字幕在线观看四区| 久久久久9999国产精品| 精品一品国产午夜福利视频| 欧美欧一欧美性视频欧美二欧美性视频| 深爱激情婷婷丁香春五月| 国产成人亚洲欧美在线二区小说 | 午夜国产三级一区二区三| 日韩一区欧美一区国产一区| 国产高清电影一区二区三区四区| 中文字幕你懂的一区二区| 精品国产污污免费网站在线| 国产精品熟女一区二区全集观看| 中文字幕一区二区三区人妻免费| 91亚洲国产三上悠亚在线播放| 亚洲Av综合色区无码专区桃色 | 久久婷婷六月丁香综合啪| 欧美日韩亚洲国产天堂区 | 欧美亚洲中文字幕一区二区| 北条麻妃91精品青青久久| 精品精品久久宅男的天堂| 亚洲Av综合色区无码专区桃色| 日韩精品欧美一区二区三区| 欧美人妻中文字幕这里就是精品| 91久久精品国产91久久最新| 日韩美女高清在线观看免费网站 | 日本高清一二三区在线播放| 欧美中文字幕尹人视频一区| 日本免费一区最新在线观看| 精品动漫欧美一二三区在线| 性一交一乱一乱一视频亚洲熟妇| 欧美一级成人淫片免费看| 91精品久久久久久99蜜桃| 92看看午夜福利合集免费观看| 国产片av在线观看精品免费| 99精品视频在线在线观看免费| 精品国产va一区二区三区| 中文字幕一区二区国产在线| 国产午夜精品一区二区理论影院| 国产精品久久久久久一区| 亚洲精品国产熟女**久| 精品一区二区黄色一级片| 亚洲日本乱码一区二区三区蜜桃| 国产精品一区二区久久久| 一区二区三区国产日本欧美 | 国产精品午夜久久久久久久密桃 | 色综合久久综合网欧美综合网| 男人天堂男人天堂网站在线| 在线观看亚洲免费视频网站| 中文字幕av一区二区三区| 男人天堂男人天堂网站在线| 久久精品99国产精品最新| 中文字幕黄色在线免费观看 | 国产福利中文字幕在线看| 精品免费亚洲国产精品国产 | 最近免费中文字幕高清成人精品| 亚洲高清日韩精品一区二区三区网| 一区二区三区国产欧美精品| 国产激情高清在线视频免费观看 | 午夜视频久久播五月婷婷| 亚洲黄色在线观看一区二区| 久久精品国产亚洲av先锋| 亚洲国产精品一区二区免费电影| 国产亚洲欧美日韩在线三区| 六月综合激情丁香婷婷色| 久久久久亚洲午夜综合福利| 91精品天堂福利在线观看| 成人免费av一区二区三区| 中文字暮日本人妻久久久免费| 在线看片日本免费一区二区| 成人1区2区爽爽在线网站| 精品福利一区二区三区免费视频 | 国产专区日韩专区欧美专区| 亚洲国产精品成人综合久久久久久久| 国产成人亚洲欧美二区综合| 老熟女高潮视频一区二区| 久久国产精品久久久久久| 国产精品久久久久久影院8| 国产成人av一区二区三区| 亚洲欧美国产另类91综合| 亚洲欧美日韩在线精品2区| 欧美在线观看日韩在线观看| 欧美国产日韩一区二区不卡视频| 日本一区二区激情视频在线观看| 国产亚洲欧美精品一区二区三区| 成人精品在线播放视频| 日韩精品免费av一区二区三区| 国产精品欧美日韩激情在线 | 国产三级在线一区二区三区| 97色婷婷成人综合在线观看| 一区二区三区四区中文字幕在线| 伊人精品一区二区三区四区五区| 久久久久久国产精品国产| 国产欧美一区二区中文字幕| 日韩精品成年人在线观看| 亚洲一区二区三区四区网站| 蜜臀av久久国产午夜福利软件| 欧美视频精品一区二区三区99 | 色综合综合色综合色综合| 日韩欧美国产综合中文字幕| 色综合亚洲精品激情狠狠| 北岛玲精品视频在线观看| 欧美亚洲国产日韩在线高清| 日本一区二区三区免费中文版| 欧美精品在欧美一区二区少妇大片| 青青操成人在线视频十八禁 | 日韩欧美在线精品一区二区三区| 亚洲av成人一区二区三区在线| 亚洲一区伦理片在线观看| 毛片视频精品在线观看罗| 久久久久国产精品全免费| 国产欧美成人手机在线观看| 欧美日韩精品免费| 久久久精品欧美国产免费观看 | 久久精品国产亚洲av高清蜜臀| 欧美在线视频观看一区二区| 色哟哟一区二区国产精品| 日韩在线一区二区三区四区| 国产无套精品白浆一区二区| 又粗又长又大又猛国产片在线观看 | 久久久国产精品夜夜夜夜| 91久久久久久亚洲精品| 国产99久久久国产精品免费1| 国产精品日韩欧美一区二区五区| 精品视频久久久久久久97| 精品一区二区三区人妻视频| 亚洲乱码av乱码国产精品| 亚洲国产精品久久久久久女王| 国内精品久久久久久影院| 五月天在线视频观看婷婷| 亚洲天堂网在线观看第一页| 日韩熟女作爱视频一区二区| 日韩最新视频在线观看一区| 欧美亚洲精品日韩国产精品专区| 久久精品国产亚洲av忘忧草2| 激情五月天视频在线观看| 久久久中文字幕人妻一区 | 精品日韩久久久久激情人妻| 国产精品久久亚洲一区二区| 精品精品国产国自在线| 日韩精品欧美在线视频在线 | 亚洲国产精品线路久久| 午夜精品久久久久久久第一页 | 欧美日韩精品999免费看| 欧美日韩国产精品一区二区三区不卡| 国产91香蕉视频免费看| 美女内射网站久久久精品| 国产成人精品亚洲午夜麻豆| 欧美午夜精品久久久久久元件| 久久999国产精品美女高潮| 亚洲AV无码AV男人的天堂| 91亚洲精品福利在线播放| 亚洲一区二区欧美日韩精品| 91久久久久人成亚洲国产一区| 成人精品在线播放视频| 日本欧美一二区在线观看| 国产精品一区二区在线播放| 视频二区人妻中文字幕好吊色 | 999精品自产国产免费| 日本高清一区在线你懂得| 久久精品国产亚洲av麻豆四虎| 国产精品久久久免费精品| 国产精品视频网站免费看 | 国产福利91精品一区二区三区大奶子| 黄色成人网久久久久久久| 国产美女永久无遮挡网站| 日韩一区二区三区精品在线| 国产精品福利网站在线观看| 亚洲精品自产在线免费播放| 久青草免费在线视频观看| 亚洲国产综合久久久精品蜜臀| 国产精品久久久久免费观看| 操美女视频在线不卡免费播放| 精品蜜臀av高清在线观看| 国产一区二区精品久久久蜜臀 | 无码人妻品一区二区三区精99 | av网站在线观看亚洲国产| 无色码中文字幕一本久道久| 日本韩国欧美国产第一页在线 | WW欧日韩视频高清在线 | 久久国产精品成人免费观看| 日本免费中文字幕一区二区久久| 国产十八禁视频在线播放| 亚洲国产精品成人av在线| 国内不卡的二区三区中文字幕| 激情91精品大片在线观看 | 国产中文字幕在线观看一区| 91在线视频福利资源站| 精品视频在线免费观看免费| 久久久国产午夜精品一区 | 国产裸体裸美女无遮挡网站| 亚洲av乱码国产精品色| 黄色带三级一区二区三区| 手机在线观看国产一区二区三区| 99久久免费看精品国产一区非洲 | 国产午夜精品一区二区理论影院| 国产日韩欧美中文字幕在线观看 | 日韩av二区三区亚洲综合| 精品亚洲午夜久久久久91| 欧美精品在欧洲一区二区少妇| 国产中文字幕在线观看一区| 99久久毛片精品一区二区三区| 婷婷丁香啪综合春色av| 五月天丁香婷婷激情在线| 日本美女一区二区精品视频| 日韩精品毛片一区到三区| 激情综合网激情五月五月激情| 久久这里只有国产精品视频| 中文字幕人妻丝祙乱一区三区| 国产区综合另类亚洲欧美| 亚洲91久久久一区二区三区| 久久精品久久久久久国产| 精品一区二区三区色视频| 日本免费第一区二区三区| 亚洲精品少妇嫩久久99| 日本欧美一区二区三区在线播放| 亚洲国产精品日韩专区av | 国产欧美日韩一区二区三区在线| 蜜臀av午夜一区二区三区偷拍 | 亚洲欧美一二区日韩高清在线| 欧美精品一区二区三区久久蜜臀| 精品一区二区三区国产视频 | 成人国产精品三上悠亚久久| 亚洲av中午一区二区三区| 国产999精品久久久久久二| 亚洲国产欧洲欧美日本日韩| 日本精品免费偷拍小视频网| 一区二区三区欧美在线播放| 国产精品久久精品久久精品久久 | 日韩欧美中亚中文字幕免费观看| 成人国产精品三上悠亚久久| 性色av色香蕉一区二区蜜桃网 | 日韩电影中文字幕在线观看| 免费人成a大片在免费视频| 国产情一区二区三区久久久| 成人精品在线观看www| 狠狠久久精品中文字幕无码| 探花系列在线观看| 亚洲av影视一区二区三区| 日韩欧美中文字幕在线观看网站| 国产av一二三四又爽又色又色| 91亚洲国产成人精品久久久| 精品国产一区二区影院| 亚洲字幕av一区二区三区四区| 欧美日韩一区二区三区不卡地| 亚洲国产日韩欧美中文字幕 | 中文字幕免费av中文字幕免费| 国产午夜精品综合久久久| 免费av一区二区三区四区 | 欧美一区二区三区精品激情91| 五月婷久久综合狠狠爱97蜜臀| 精品精品久久宅男的天堂| 亚洲av成人一区二区电影在线| 日韩精品福利视频一区二区三区 | 精品久久久无码中文字幕天天| 少妇熟女a久久久久久久久| 国产精品午夜久久久久久久密桃| 国产91在线免费视频观看| 国产精品后入内射日本在线观看| 欧美日韩大码中文区二区三区 | 国产视频久久这里只有精品| 日韩欧久久精品一区二区| 国语自产拍在线观看国产精品| 中文字幕国产在线播放黄色| 99热都是精品久久久久| 欧美亚洲韩国日本理论电影| 日韩成人免费av网站| 久久精品国产亚洲av麻豆欧| 久久久久国产精品9999| 欧美中文字幕在线观看| 欧美丝袜综合色区第一页| 国产经典三级欧美日韩一区二区| 顶级欧美人妻一区二区三区| 国产美女永久无遮挡网站| 国产二区三区在线观看视频| 国产精品国产自产拍高清| 伊人久久大香线蕉精品婷婷 | 亚洲av无删减在线观看| 性色av一区二区三区观看| 中文字幕欧美精品人妻一区| 中文字幕一区二区国产在线| 狠狠久久精品中文字幕无码| 久久精品国产亚洲av麻豆影院| 在线观看欧美天堂一区中文| 日韩中文字幕成人免费电影| 亚洲国产av激情五月天| 亚洲欧美日韩综合在线观看| 日韩av在线不卡免费看| 国产欧美一区二区三区精品酒店 | 久久久精品高清一区二区三区| 日韩精品免费一区二区三区| 91亚洲国产成人久久精品麻豆| 精品一区二区三区手机在线观看 | 91精品国产91久久久久久| 亚洲国产第一第二精品视频| 色狠狠一区二区三区中文| 99er6久久这里就有精品| 人妻中文字幕乱码亚洲无线码 | 久久精品久久精品久久精品| xx在线视频导航国产欧美| 97精品国产97久久久久久久久久久| 六月综合激情丁香婷婷色| 五月婷婷网在线视频观看| 91久久精品国产91久久久| 粉嫩av一区二区三区麻豆| 中文字幕在线高清第一页| 久久精品国产99精品国产| 欧美日韩专区一区二区三区| www.久久国产精品伦子伦| 五月激情综合婷婷六月久久| 天堂视频资源在线观看免费| 亚洲av色综成人网在线看小说| 四虎永久在线精品视频婷婷| 亚洲精品福利免费在线观看| 亚洲天堂熟女一区二区三区| 粉嫩av一区二区三区麻豆| 精品国产一区二区三区伦理| 精品女同一区二区免费播| 一本色道久久综合精品婷婷| 97蜜桃臀美人妻一区二区三区| 欧美一级做一级a做片性黄| 国产亚洲精品久久久一区| 亚洲乱码一区二区三区精品| 久久天天躁日日躁狠狠躁| 2020国产激情视频在线观看 | 中美日韩在线一区黄色大片| 久久精品国产亚洲av免费| 欧美三级不卡在线观线看最新| 久热在线这里只有精品国产| 欧洲精品亚洲精品日韩专区| 精品国产va一区二区三区| 一区二区三区99999精品| 中文字幕国产视频一区二区 | 精品曰本电影一区二区三区| 51麻豆精品自产国产在线| 欧美日韩国产看片一区二区| 国产精品久久久久久精k8| 成人av中文字幕一区二区三区 | 麻豆一区二区三区香蕉视频| 亚洲国产最新一高清视频| 国产污污视频网站在线观看| 国产精品99久久久久久免费看| 亚洲国产精品久久国产精品99| 国产一区二区精品免费观看| 国产欧美另类在线视频观看| 99e热久久免费精品首页| 97麻豆精品国产专区在线观看 | 亚洲AV高清一区二区三区| 日韩精品一区二区三区射精| 国产精品禁久久久久久久久| 91亚洲国产成人精品久久久| 国产一区中文字幕在线观看| 美日韩在线视频免费观看| 在线观看av电影一区| 91久久久精品一区二区三区 | 最新欧美一区二区三区在线| 最新日韩欧美一区二区三区| 亚洲五月色婷婷综合开心网| 一本久久a久久精品亚洲| 午夜福利一区在线观看成人| 成人黄色一级片免费观看| 国产盗摄一区二区三区厕所视频| 亚洲伦理中文字幕一区二区| 国产三级久久精品三级91| 日韩高清一二三区在线观看| 一区二区三区久久久久国产精品| 日韩性色av一区二区三区| 视频一区二区三区视频一区二区| 日韩精品电影综合区亚洲 | 国产精品一区二区av国| 在线观看日韩av中文字幕| 找中文字幕一区二区亚洲电影| 91麻豆精品女一区二区| 亚洲av永久在线观看更新| 亚洲字幕av一区二区三区四区| 精品国产蜜臀九九九久久| 日韩人妻一区二区三区试看| 久久久亚洲精品蜜桃入口| 国产电影小毛片一区二区| 亚洲av成人一区二区在线观看 | 国产精品女同久久久久777| 欧美不卡一区二区在线视频| 日韩中文字幕国产在线观看| 欧美亚洲精品一区二区三区| 日韩欧美成人精品一区二区| 久久久久9999国产精品| 国产毛片久久久久久国产| 在线小视频一区二区三区 | 久久久精品欧美国产免费观看| 国产老人一区av二区三区| 久久0243精品免费看| 中文字幕乱码亚洲无线三区| 五月婷婷丁香色视频免费| 97精品国产自在在线观看蜜臀| 久久精品国产亚洲av成人看光了| 区一区二区视频免费观看| 免费看国产精品九九九九| 国产高清中文字幕在线观看| 久久久久久国产一区二区三区 | 日本高清视频在线网站不卡| 熟妇女人妻少妇一区二区| 日韩一区二区淫片在线观看| 一区二区三区视频二男一女| 亚洲国产精品第一页久久婷婷| 国产中文字幕av免费观看| 久久99精品久久久久蜜桃tv| 亚洲国产欧美在线看片一国产| 开心五月婷婷激情在线观看| 日韩AV无码一区二区三区无码| 欧美人妻精品一区二区免费看| 国产乱码日产乱码精品精| 国产成人亚洲综合a∨婷婷图片| 欧洲精品视频在线网站大全| 熟女精品视频一区二区视频| 欧美日一区二区三区精品| 性一交一乱一乱一视频亚洲熟妇| 欧美日韩精品一区二区在线观看| 国产中文字幕一区二区在线观看| 精品火热分享久久一区二区| 国产污污视频在线观看免费| 国产黄色一级电影一区二区| 最新中文字幕在线不卡网址| 国产在线视频国产在线视频| 国产精品亚洲精品韩日已满| 欧美亚洲国产日韩一区二区三区 | 亚洲视频在线观看第一区| 国产清纯91天堂在线观看| 日韩欧美亚州国产精品字幕久久久| 人妻少妇精品视频三区二区一| 欧美久91一区二区三区| 国产视频一区婷婷在线观看| 亚洲国产精品成人av在线| 视频一区二区三区视频一区二区| 欧洲成人高清av一区二区| 久久亚洲女同一区二区av| 欧美精品大屁股一区二区| 欧美一区2区三区4区网站| www.亚洲欧洲在线观看| 蜜桃少妇人妻一区二区视频| 日韩精品成人大片在线观看| 亚洲av成人精品一区二区久久| 欧美亚洲精品一区二区三区| 五月天丁香色婷婷中文字幕| 久久夜色精品久久噜噜亚| 亚洲精品电影久久久影院 | 久久99久国产精品黄毛| 久久久久亚洲午夜综合福利| 亚洲欧美国产日韩精品一区 | 青青草亚洲在线一区观看| 日韩av淫影院一| 亚洲精品在线观看午夜福利| 亚洲福利电影一区二区三区| 久久爱天堂一区二区三区| 国产区在线免费观看视频| 国产精品久久久久久一区| 亚洲综合视频在线免费观看| 国产一级视频在线观看免费| 午夜精品黄页网站视频在线观看| 亚洲精品福利免费在线观看| 国产成人精品三级在线影院 | 97精品国产97久久久久久春色 | 一区二区三区在线日本在线视频| 74pao免费人妻视频| 91免费国产自产地址入口| 国产精品久久久久久精k8| 一区二区三区国产高清免费视频 | 最新日韩av成人在线天堂| 亚洲国产精品麻豆一区二区| 国产麻豆精品免费在线观看 | 亚洲精品国产精品麻豆999| 国产中文字幕av免费观看| 亚洲av一二三专区在线观看| 亚洲国产高清精品线久久| 91精品人妻一区二区三区蜜臀 | 精品一区二区三区国产视频 | 欧美不卡免费在线观看的视| 欧美日韩在线一区二区三区四区| 日韩精品一区二区三区免费视频 | 韩国av一区二区三区四区| 麻豆视频精品精选免费观看| 欧美日韩国产综合一区二区三区| 99久久久无国产精品免费| 中文字幕在线2023一区| 伊人精品一区二区三区四区五区 | 久久婷婷亚洲国产精品第一页| 亚洲欧美在线综合色影视| 精品少妇极品久久久久久久| 久久久亚洲精品蜜桃入口| 亚洲欧洲在线精品国产| 深夜福利网站视频在线观看 | 国产一级淫片久久久片a级| 午夜福利亚洲精品在线观看| 在线观看免费亚洲人成网址| 国产美女av网站在线观看| 国产成人av大片大片在线播放| 国语自产精品偷拍视频密月| 久久精品国内一区二区三区水蜜桃| 精品人妻午夜一区二区三区四区| 国产成人精品午夜二三区麻豆| 中文字幕一区二区国产在线| 国产午夜精品理论片免费视频| 亚洲一区二区三区综合在线观看 | 国产成人国产精品国产av| 成人成人成人成人成人一区三区| 激情久久av区二区av| 国产精品日韩欧美一区二区| 69视频在线观看精品免费| 99久久国产自偷自自偷蜜月| 亚洲小说欧美激情另类小说| 日韩视频在线观看亚洲第一视区 | 性色av网站一区二区三区| 91久久精品国产91久久久| 日韩人妻成人福利电影一区二区| 国产乱人乱精一区二区视频| 伊人专区一区二区三区| 精品国产污污免费网站在线| 国产最新自拍视频手机在线看| 久久这里只有精品一区二区三区| 一区二区三区四区看av| 精品欧美国产一区二区免费看| 亚洲蜜臀av日韩熟妇在线| 国产一区日韩精品免费看| 五月婷婷网在线视频观看| 热re99久久精品国99热| 一区二区三区免费一级片| 国产亚洲av午夜在线路线| 日本乱码一区二区三区香蕉网 | 天天综合天天激情在线播放 | 欧美视频精品一区二区三区99| 天堂视频在线观看免费观看| 亚洲欧美综合久久久久久| 色婷婷精品中文字幕在线推荐| 日本又粗又猛又爽又黄的视频| 中文字幕欧美一区二区日韩亚洲| 人妻一区二区三区人妻黄色| 国产一区二区精品久久久蜜臀 | 欧美亚洲国产精品综合图区| 欧美日韩一区二区三区在| 国产精品久久久久久久久婷婷| 精品国产乱码久久久久久丨区2区| 亚洲精品久久久国产极品| 亚洲av无码成人精品区一区| 欧美精品一区二区三区久久蜜臀| 亚洲av色国产精品色午含羞草| 亚洲国产精品麻豆一区二区| 国产精品女同久久久久777| 国产精品午夜电影一区二区 | 2020亚洲精品在线播放| 国产在线视频国产在线视频| 免费无遮挡午夜视频网站| 精品欧美一区二区三区四区视频 | 亚洲中文字幕日韩一区二区| 97资源在线视频免费观看| 国产亚洲欧美自拍第一页| 亚洲未满十八禁国产av| 婷婷激情亚洲综合综合久久| 性感美女在线观看91极品| 免费91麻豆国产自产在线| 精品欧美18久久久久久| 亚洲女优中文字幕第一页| 蜜桃视频欧美日韩一区二区| 亚洲AV综合色区无码另类小说| 欧美精品大屁股一区二区| 国产亚洲女人久久久久久| 国产精品免费观看一区二区三区 | 中文字幕成人精品久久不卡| 日本一区二区免费在线视频| 日韩极品人妻在线第一页| 九月色婷婷天天操天天爽| 亚洲欧美v视色一区二区| 色婷婷一区二区在线观看| 性色av色香蕉一区二区蜜桃网| 综合国产精品久久久久久久| 欧美日韩国产午夜一区二区| 欧美一区二区三区免费看片| 国产精品禁久久久久久久久 | 日韩欧美精品一区二区三区不卡| 最新欧美一区二区三区在线| 99蜜月精品久久91| 亚洲一区二区欧美日韩精品| 97蜜桃臀美人妻一区二区三区| 在线视频中文字幕视频一区| 亚洲综合日韩欧美精品在线| 国产热门精品第1页91| 国产91精品久久久黑人与中国| 欧美.日韩.国产一区二区| 亚洲中文字幕av一区二区三区| 国语自产精品视频在线看| 色悠久久久久综合网小说| 国产l精品国产亚洲区在线观看 | 日韩欧美国产综合中文字幕| 最新69成人精品视频免费| 日本一区二区三区免费不卡视频 | 久久国产精品高清一区二区三区| 国产成人精品一区二区色戒 | 在线观看国产精品日本不卡网| 五月婷婷丁香激情综合网| 日韩国产欧美亚洲一区不卡| 青青在线观看视频中文字| 亚洲欧美日韩综合视频免费看 | 中文字幕乱码人妻二区三区| 2020亚洲欧美天堂网| 一级特黄大片色欧美精品| 国产蜜臀av在线一区尤物| 久久国产精品久久国产精品| 国产美女高潮久久精品免费欧美| 国产精品999久久久久久久| 亚洲午夜福利中文乱码字幕| 精品国产蜜臀九九九久久| 在线点播国产精品亚洲欧美韩国| 国产精区一区二区高清在线0 | 尤物视频官网美女在线免费观看| 日韩熟女作爱视频一区二区 | 欧美一区二区三区四区五区精品| 亚洲高清日韩精品一区二区三区网| 亚洲欧美日韩在线免费影院| 精品午夜福利欧美人成视频懂色| 99热这里只有精品精品| 国产又色又爽又黄无遮挡| 欧美亚洲一区二区久久播| 18禁国产一区二区在线看| 图片专区欧美亚洲国产另类| 午夜福利视频免费试看久久| 中文字幕一区二区人妻中文字| 尤物精品国产第一福利网站| 亚洲女优中文字幕第一页| 日韩欧美国产精品一二三区免费在线| 亚洲一区二区在线天堂网| 日韩欧美国产综合中文字幕 | 麻豆国产精品专区在线观看| 亚洲毛片一区二区三区四区| 国产成人精品三级在线影院 | 日本久久久一区二区三区精品少妇| 久久夜色精品国产密桃亚洲av| 欧美日韩视频一卡二卡在线观看| 最新日韩欧美不卡一二三区| 国产成人19精品免费看片| 精品视频日本视频在线观看| 国产一区二区在线视频免费观看| 日本精品一区二区电影在线观看| 国产精品综合av一区二区国产馆 | 中文字幕乱码亚洲美女精品一区| 精品人人妻人人澡人人爽人人牛牛| 高清少妇熟女一区二区三区| 人妻人人做人碰人人爽91| 久久精品国产亚洲av色哟哟 | 国产做a爰片久久毛片a午夜场| 日韩精品中文乱码免费人成在| 国产精品国产高清国产专区| 国产91精品一区成人免费| 国产精品一区二区三区乱码视频 | 国产亚洲欧美日韩在线三区| 日韩欧美一区二区三区免费观看|